
0.0.1 Point/Circle Hierarchy using private data

Class Point3 (Figs. 1-2) declares data members x and y as private and
exposes member functions setX, getX, setY, getY and print for manip-
ulating these values.

1 Case Study: Three-Level Inheritance Hier-

archy

Three level point/circle/cylinder hierarchy

• Point

– x-y coordinate pair

• Circle

– x-y coordinate pair

– Radius

• Cylinder

– x-y coordinate pair

– Radius

– Height

Derive class Cylinder from class Circle4. Class Cylinder should redefine
member functions getArea and print member functions. Figs. 7-8 present
class Cylinder, which inherits from class Circle4. We were able to
develop classes Circle4 and Cylinder much more quickly by using inheritance
than if we had developed these classes ”from scratch”. Inheritance avoids
duplicating code and the associated code-maintenance problems.

1



Figure 1: Point3 class header file. Point/Circle Hierarchy Using private
Data

2



Figure 2: Point3 class uses member functions to manipulate its private
data.

3



Figure 3: Circle4 class header file.

4



Figure 4: Circle4 class that inherits from class Point3, which does not
provide protected data. (part 1 of 2)

5



Figure 5: Circle4 class that inherits from class Point3, which does not
provide protected data. (part 2 of 2)

6



Figure 6: Base class private data is accessible to a derived class via public
or protected member function inherited by the derived class.

7



Figure 7: Cylinder class header file.

8



Figure 8: Cylinder class inherits from class Circle4 and redefines member
function getArea.

9



Figure 9: Point/Circle/Cylinder hierarchy test program. (part 1 of 2)

10



Figure 10: Point/Circle/Cylinder hierarchy test program. (part 2 of 2)

1.1 Constructors and Destructors in Derived Classes

• Instantiating derived-class object

– Chain of constructor calls

∗ Derived-class constructor invokes base class constructor

· Implicitly or explicitly

∗ Base of inheritance hierarchy

· Last constructor called in chain

· First constructor body to finish executing

· Example: Point3/Circle4/Cylinder hierarchy
Point3 constructor called last
Point3 constructor body finishes execution first

∗ Initializing data members

· Each base-class constructor initializes data members
Inherited by derived class

• Destroying derived-class object

11



– Chain of destructor calls

∗ Reverse order of constructor chain

∗ Destructor of derived-class called first

∗ Destructor of next base class up hierarchy next

· Continue up hierarchy until final base reached; After final
base-class destructor, object removed from memory

• Base-class constructors, destructors, assignment operators

– Not inherited by derived classes

– Derived class constructors, assignment operators can call

∗ Constructors

∗ Assignment operators

Next example revisits the point/circle hierarchy by defining class Point4
(11-12) and class Circle5 (13-15) that contain constructors and destructors,
each of which prints a message when it is invoked.

12



Figure 11: Point4 class header file and Point4 base class contains a con-
structor and a destructor. (part 1 of 2)

13



Figure 12: Point4 base class contains a constructor and a destructor. (part
2of 2)

14



Figure 13: Circle5 class header file.

15



Figure 14: Circle5 class inherits from class Point4. (part 1 of 2)

16



Figure 15: Circle5 class inherits from class Point4. (part 2 of 2)

17



Figure 16: Constructor and destructor call order.

18



1.2 ”Uses A” and ”Knows A” Relationships

• ”Uses a”

– Object uses another object

∗ Call non-private member function; using pointer, reference
or object name

• ”Knows a” (association)

– Object aware of another object; contain pointer handle or refer-
ence handle

– Knowledge networks

1.3 public, protected and private Inheritance

Figure 17: Summary of base–class member accessibility in a derived class.

19



1.4 Software Engineering with Inheritance

Customizing existing software

• Inherit from existing classes

– Include additional members

– Redefine base-class members

– No direct access to base class’s source code; Link to object code

• Independent software vendors (ISVs)

– Develop proprietary code for sale/license; available in object-code
format

– Users derive new classes; without accessing ISV proprietary source
code

20


	Point/Circle Hierarchy using private data
	Case Study: Three-Level Inheritance Hierarchy
	Constructors and Destructors in Derived Classes
	 "Uses A" and "Knows A" Relationships
	 public, protected and private Inheritance
	Software Engineering with Inheritance


