
1 Performance Analysis

• Analysis of the performance measures of parallel programs.

• Two computational models are studied, namely the equal duration pro-
cesses and the parallel computation with serial sections models.

• Two measures; the speedup factor and the efficiency.

• The impact of the communication overhead on the overall speed per-
formance of multiprocessors is emphasized in these models.

• Discussion on the scalability of parallel systems.

1.1 Computational Models

In developing a computational model for multiprocessors, we assume that a
given computation can be divided into concurrent tasks for execution on the
multiprocessor.

1.1.1 Equal Duration Model

• In this model, it is assumed that a given task can be divided into n
equal subtasks, each of which can be executed by one processor.

• If ts is the execution time of the whole task using a single processor, then
the time taken by each processor to execute its subtask is tp = ts/n.

• Since, according to this model, all processors are executing their sub-
tasks simultaneously, then the time taken to execute the whole task is
tp = ts/n.

• The speedup factor of a parallel system can be defined as the ratio
between the time taken by a single processor to solve a given problem
instance to the time taken by a parallel system consisting of n processors
to solve the same problem instance.

S(n) =
ts
tp

=
ts

ts/n
= n (1)

• The above equation indicates that, according to the equal duration
model, the speedup factor resulting from using n processors is equal to
the number of processors used, n.

1



• One important factor has been overlooked in the above derivation.
This factor is the communication overhead, which results from the time
needed for processors to communicate and possibly exchange data while
executing their subtasks.

• Assume that the time taken due to the communication overhead is
called tc then the actual time taken by each processor to execute its
subtask is given by

S(n) =
ts
tp

=
ts

ts/n + tc
=

n

1 + n ∗ tc/ts
(2)

• The above equation indicates that the relative values of ts and tc affect
the achieved speedup factor.

• A number of cases can then be studied:

1. if tc � ts then the potential speedup factor is approximately n

2. if tc � ts then the potential speedup factor is ts/tc � 1

3. if tc = ts then the potential speedup factor is n/n + 1 ∼= 1, for
n � 1.

• In order to scale the speedup factor to a value between 0 and 1, we
divide it by the number of processors, n. The resulting measure is
called the efficiency, E.

• The efficiency is a measure of the speedup achieved per processor. Ac-
cording to the simple equal duration model, the efficiency E is equal
to 1 if the communication overhead is ignored.

• However if the communication overhead is taken into consideration, the
efficiency can be expressed as

E =
1

1 + n ∗ tc/ts
(3)

• Although simple, the equal duration model is however unrealistic. This
is because it is based on the assumption that a given task can be divided
into a number of equal subtasks that can be executed by a number of
processors in parallel.

• However, it is sufficient here to indicate that real algorithms contain
some (serial) parts that cannot be divided among processors. These
(serial) parts must be executed on a single processor.

2



Figure 1: Example program segments.

• Consider, for example, the program segments given in Fig. 1. In these
program segments, we assume that we start with a value from each of
the two arrays (vectors) a and b stored in a processor of the available
n processors.

– The first program block can be done in parallel; that is, each
processor can compute an element from the array (vector) c. The
elements of array c are now distributed among processors, and
each processor has an element.

– The next program segment cannot be executed in parallel. This
block will require that the elements of array c be communicated
to one processor and are added up there.

– The last program segment can be done in parallel. Each processor
can update its elements of a and b.

1.1.2 Parallel Computation with Serial Sections Model

• In this computational model, it is assumed that a fraction f of the
given task (computation) is not dividable into concurrent subtasks.
The remaining part (1− f) is assumed to be dividable into concurrent
subtasks.

• The time required to execute the task on n processors is tp = ts ∗ f +
(1 − f) ∗ (ts/n). The speedup factor is therefore given by

S(n) =
ts

ts ∗ f + (1 − f) ∗ (ts/n)
=

n

1 + (n − 1) ∗ f
(4)

3



• According to this equation, the potential speedup due to the use of n
processors is determined primarily by the fraction of code that cannot
be divided.

• If the task (program) is completely serial, that is, f = 1, then no
speedup can be achieved regardless of the number of processors used.

• This principle is known as Amdahl’s law. It is interesting to note that
according to this law, the maximum speedup factor is given by

limn→∞S(n) =
1

f

• Therefore, according to Amdahl’s law the improvement in performance
(speed) of a parallel algorithm over a sequential one is limited not by
the number of processors employed but rather by the fraction of the
algorithm that cannot be parallelized.

• According to Amdahl’s law, researchers were led to believe that a sub-
stantial increase in speedup factor would not be possible by using par-
allel architectures.

• The effect of the communication overhead on the speedup factor, given
that a fraction, f , of the computation is not parallelizable.

S(n) =
ts

ts ∗ f + (1 − f) ∗ (ts/n) + tc
=

n

(n − 1) ∗ f + 1 + n ∗ (tc/ts)
(5)

The maximum speedup factor under such conditions is given by

limn→∞S(n) = limn→∞

n

(n − 1) ∗ f + 1 + n ∗ (tc/ts)
=

1

f + (tc/ts)

• The above formula indicates that the maximum speedup factor is de-
termined not by the number of parallel processors employed but by the
fraction of the computation that is not parallelized and the communi-
cation overhead.

• Recall that the efficiency is defined as the ratio between the speedup
factor and the number of processors, n. The efficiency can be computed
as:

E(no communication overhead) = 1
1+(n−1)∗f

E(with communication overhead) = 1
(n−1)∗f+1+n∗(tc/ts)

(6)

4



• As the number of processors increases, it may become difficult to use
those processors efficiently. In order to maintain a certain level of pro-
cessor efficiency, there should exist a relationship between the fraction
of serial computation, f, and the number of processor employed.

1.2 Skeptic Postulates For Parallel Architectures

A number of postulates were introduced by some well-known computer ar-
chitects expressing about the usefulness of parallel architectures.

1.2.1 Grosch’s Law

Figure 2: Power-cost relationship according to Grosch’s law.

• It was as early as the late 1940s that H. Grosch studied the relationship
between the power of a computer system, P , and its cost, C.

• He postulated that P = K ∗Cs, where s and K are positive constants.
Grosch postulated further that the value of s would be close to 2. Sim-
ply stated, Grosch’s law implies that the power of a computer system
increases in proportion to the square of its cost (see Fig. 2).

• Alternatively, one can express the cost of a system as C = sqrt(P/K)
assuming that s = 2.

• According to Grosch’s law, in order to sell a computer for twice as
much, it must be four times as fast. Alternatively, to do a computation
twice as cheaply, one has to do it four times slower. With the advances
in computing, it is easy to see that Grosch’s law is overturned, and it
is possible to build faster and less expensive computers over time.

5



1.2.2 Amdahl’s Law

• We defined the speedup factor of a parallel system as the ratio between
the time taken by a single processor to solve a given problem instance
to the time taken by a parallel system consisting of n processors to
solve the same problem instance (see Eqn. 4).

• Similar to Grosch’s law, Amdahl’s law made it so pessimistic to build
parallel computer systems due to the intrinsic limit set on the per-
formance improvement (speed) regardless of the number of processors
used.

• An interesting observation to make here is that according to Amdahl’s
law, f is fixed and does not scale with the problem size, n. However, it
has been practically observed that some real parallel algorithms have
a fraction that is a function of n. Let us assume that f is a function of
n such that limn→∞f(n) = 0

limn→∞S(n) = limn→∞

n

1 + (n − 1) ∗ f(n)
= n (7)

• This is clearly in contradiction to Amdahl’s law. It is therefore possible
to achieve a linear speedup factor for large-sized problems, given that
limn→∞f(n) = 0, a condition that has been practically observed.

• For example, researchers at the Sandia National Laboratories have
shown that using a 1024-processor hypercube multiprocessor system
for a number of engineering problems, a linear speedup factor can be
achieved.

• Consider, for example, the well-known engineering problem of multi-
plying a large square matrix A(m × m) by a vector X(m) to obtain a
vector, that is, C(m). Assume further that the solution of such a prob-
lem is performed on a binary tree architecture consisting of n nodes
(processors).

– Initially, the root node stores the vector X(m) and the matrix
A(m × m) is distributed row-wise among the n processors such
that the maximum number of rows in any processor is m/n + 1.

– A simple algorithm to perform such computation consists of the
following three steps:

1. The root node sends the vector X(m) to all processors in
O(m ∗ logn)

6



2. All processors perform the product Ci =
∑m

j=1 aij ∗ xj in

O(m ∗ (m/n + 1)) = O(m) + O(
m2

n
)

3. All processors send their Ci values to the root node in O(m ∗

logn).

– According to the above algorithm, the amount of computation
needed is

O(m ∗ logn) + O(m) + O(
m2

n
) + O(m ∗ logn) = O(m2)

– The indivisible part of the computation is equal to

O(m) + O(m ∗ logn)

– Therefore, the fraction of computation that is indivisible

f(m) =
(O(m) + O(m ∗ logn))

O(m2)
= O(

(1 + logn)

m
)

– Notice that limm→∞f(m) = 0. Hence, contrary to Amdahl’s law,
a linear speedup can be achieved for such a large-sized problem.

• It should be noted that in presenting the above scenario for solving
the matrix vector multiplication problem, we have assumed that the
memory size of each processor is large enough to store the maximum
number of rows expected.

• This assumption amounts to us saying that with n processors, the
memory is n times larger. Naturally, this argument is more applicable
to message passing parallel architectures than it is to shared memory
ones.

1.2.3 Gustafson-Barsis’s Law

• In 1988, Gustafson and Barsis at Sandia Laboratories studied the para-
dox created by Amdahl’s law and the fact that parallel architectures
comprised of hundreds of processors were built with substantial im-
provement in performance.

• In introducing their law, Gustafson recognized that the fraction of in-
divisible tasks in a given algorithm might not be known a priori. They
argued that in practice, the problem size scales with the number of
processors, n. This contradicts the basis of Amdahl’s law.

7



• Recall that Amdahl’s law assumes that the amount of time spent on the
parts of the program that can be done in parallel, (1−f), is independent
of the number of processors, n.

• Gustafson and Brasis postulated that when using a more powerful pro-
cessor, the problem tends to make use of the increased resources. They
found that to a first approximation the parallel part of the program,
not the serial part, scales up with the problem size.

• They postulated that if s and p represent respectively the serial and
the parallel time spent on a parallel system, then s + p ∗ n represents
the time needed by a serial processor to perform the computation.

• They therefore, introduced a new factor, called the scaled speedup
factor, SS(n), which can be computed as:

SS(n) =
s + p ∗ n

s + p
= s + p ∗ n = s + (1 − s) ∗ n = n + (1 − n) ∗ s (8)

• This equation shows that the resulting function is a straight line with
a slope = (1 − n).

• This shows clearly that it is possible, even easier, to achieve efficient
parallel performance than is implied by Amdahl’s speedup formula.
Speedup should be measured by scaling the problem to the number of
processors, not by fixing the problem size.

1.3 Scalability of Parallel Architectures

• A parallel architecture is said to be scalable if it can be expanded (re-
duced) to a larger (smaller) system with a linear increase (decrease) in
its performance (cost). This general definition indicates the desirability
for providing equal chance for scaling up a system for improved per-
formance and for scaling down a system for greater cost-effectiveness
and/or affordability.

• Scalability is used as a measure of the system’s ability to provide in-
creased performance, for example, speed as its size is increased. In
other words, scalability is a reflection of the system’s ability to effi-
ciently utilize the increased processing resources.

• The scalability of a system can be manifested as in the forms; speed,
efficiency, size, applications, generation, and heterogeneity.

8



• In terms of speed, a scalable system is capable of increasing its speed
in proportion to the increase in the number of processors.

– Consider, for example, the case of adding m numbers on a 4-cube
(n = 16 processors) parallel system.

– Assume for simplicity that m is a multiple of n. Assume also that
originally each processor has (m = n) numbers stored in its local
memory. The addition can then proceed as follows.

∗ First, each processor can add its own numbers sequentially in
(m = n) steps. The addition operation is performed simulta-
neously in all processors.

∗ Secondly, each pair of neighboring processors can communi-
cate their results to one of them whereby the communicated
result is added to the local result.

∗ The second step can be repeated (log2n) times, until the final
result of the addition process is stored in one of the processors.

∗ Assuming that each computation and the communication takes
one unit time then the time needed to perform the addition
of these m numbers is

Tp = (m/n) + 2 ∗ log2n

∗ Recall that the time required to perform the same operation
on a single processor is Ts = m. Therefore, the speedup is
given by

S =
m

(m/n) + 2 ∗ log2n

– Figure 3a provides the speedup S for different values of m and n.
It is interesting to notice from the table that for the same number
of processors, n, a larger instance of the same problem, m, results
in an increase in the speedup, S. This is a property of a scalable
parallel system.

• In terms of efficiency, a parallel system is said to be scalable if its
efficiency can be kept fixed as the number of processors is increased,
provided that the problem size is also increased.

– Consider, for example, the above problem of adding m numbers
on an n-cube. The efficiency of such a system is defined as the
ratio between the actual speedup, S, and the ideal speedup, n.

E =
S

n
=

m

m + 2n ∗ log2n

9



Figure 3: The Possible Speedup and Efficiency for Different m and n.

– Figure 3b shows the values of the efficiency, E, for different values
of m and n. The values in the table indicate that for the same
number of processors, n, higher efficiency is achieved as the size
of the problem, m, is increased.

– However, as the number of processors, n, increases, the efficiency
continues to decrease.

– Given these two observations, it should be possible to keep the
efficiency fixed by increasing simultaneously both the size of the
problem, m, and the number of processors, n. This is a property
of a scalable parallel system.

– It should be noted that the degree of scalability of a parallel system
is determined by the rate at which the problem size must increase
with respect to n in order to maintain a fixed efficiency as the
number of processors increases.

∗ For example, in a highly scalable parallel system the size of the
problem needs to grow linearly with respect to n to maintain
a fixed efficiency.

∗ However, in a poorly scalable system, the size of the problem
needs to grow exponentially with respect to n to maintain a
fixed efficiency.

– It is useful to indicate at the outset that typically an increase in
the speedup of a parallel system (benefit), due to an increase in

10



the number of processors, comes at the expense of a decrease in
the efficiency (cost).

– In order to study the actual behavior of speedup and efficiency,
we need first to introduce a new parameter, called the average
parallelism Q.

∗ It is defined as the average number of processors that are busy
during the execution of given parallel software (program), pro-
vided that an unbounded number of processors are available.

∗ The average parallelism can equivalently be defined as the
speedup achieved assuming the availability of an unbounded
number of processors.

– It has been shown that once Q is determined, then the following
bounds are attainable for the speedup and the efficiency on an
n-processor system:

S(n) ≥ nQ
n+Q−1

limQ→∞S(n) = n limn→∞S(n) = Q

E(n) ≥ Q
n+Q−1

(9)

– The above two bounds show that the sum of the attained frac-
tion of the maximum possible speedup, S(n)/Q, and attained ef-
ficiency, must always exceed 1.

– Notice also that, given a certain average parallelism, Q, the effi-
ciency (cost) incurred to achieve a given speedup is given by

E(n) ≥
Q − S(n)

Q − 1

– It is therefore fair to say that the average parallelism of a parallel
system, Q, determines the associated speedup versus efficiency
tradeoff.

• Size scalability; measures the maximum number of processors a sys-
tem can accommodate. For example, the size scalability of the IBM
SP2 is 512, while that of the symmetric multiprocessor (SMP) is 64.

• Application scalability; refers to the ability of running application
software with improved performance on a scaled-up version of the sys-
tem.

– Consider, for example, an n-processor system used as a database
server, which can handle 10,000 transactions per second. This

11



system is said to possess application scalability if the number of
transactions can be increased to 20,000 using double the number
of processors.

• Generation scalability; refers to the ability of a system to scale up
by using nextgeneration (fast) components.

– The most obvious example for generation scalability is the IBM
PCs. A user can upgrade his/her system (hardware or software)
while being able to run their code generated on their existing
system without change on the upgraded one.

• Heterogeneous scalability; refers to the ability of a system to scale
up by using hardware and software components supplied by different
vendors.

– For example, under the IBM Parallel Operating Environment (POE)
a parallel program can run without change on any network of
RS6000 nodes; each can be a low-end PowerPC or a high-end SP2
node.

• In his vision on the scalability of parallel systems, Gordon Bell has indi-
cated that in order for a parallel system to survive, it has to satisfy five
requirements. These are size scalability, generation scalability, space

scalability, compatibility, and competitiveness. As can be seen, three
of these long-term survivability requirements have to do with different
forms of scalability.

• As can be seen, scalability, regardless of its form, is a desirable feature
of any parallel system. This is because it guarantees that with suffi-
cient parallelism in a program, the performance, for example, speedup,
can be improved by including additional hardware resources without
requiring program change.

• Owing to its importance, there has been an evolving design trend, called
design for scalability (DFS), which promotes the use of scalability as
a major design objective. Two different approaches have evolved as
DFS. These are overdesign and backward compatibility.

– Using the first approach, systems are designed with additional
features in anticipation for future system scale-up. An illustrative
example for such approach is the design of modern processors
with 64-bit address,that is, 264 bytes address space. Assume that

12



the current UNIX operating system supports only 32-bit address
space. With memory space overdesign, future transition to 64-bit
UNIX can be performed with minimum system changes.

– The other form of DFS is the backward compatibility. This ap-
proach considers the requirements for scaled-down systems. Back-
ward compatibility allows scaled-up components (hardware or soft-
ware) to be usable with both the original and the scaled-down
systems. As an example, a new processor should be able to ex-
ecute code generated by old processors. Similarly, a new version
of an operating system should preserve all useful functionality of
its predecessor such that application software that runs under the
old version must be able to run on the new version.

1.4 Assignment:

Solve 2 questions.

1. Starting from the equation for the speedup factor given by

S(n) =
1

f + 1−f
n

show the inequality that relates the fraction of serial computation, f,
and the number of processors employed, n, if a 50% efficiency is to be
achieved.

2. Consider a parallel architecture built using processors each capable of
sustaining 0.5 megaflop. Consider a supercomputer capable of sustain-
ing 100 megaflops. What is the condition (in terms of f ) under which
the parallel architecture can exceed the performance of the supercom-
puter?

3. Consider an algorithm in which (1/α) th of the time is spent execut-
ing computations that must be done in a serial fashion. What is the
maximum speedup achievable by a parallel form of the algorithm?

13


	Performance Analysis 
	Computational Models
	Equal Duration Model
	Parallel Computation with Serial Sections Model

	Skeptic Postulates For Parallel Architectures
	Grosch's Law
	Amdahl's Law
	Gustafson-Barsis's Law

	Scalability of Parallel Architectures
	Assignment:


