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12 CHAPTER 1. PRELIMINARIES

1.1 First Meeting

• IKC-MH.57 Introduction to High Performance and Parallel Computing
2023-2024 Fall

• FRIDAY 16:00-18:00 (T) H1-86

• Instructor: Cem Özdoğan, Engineering Sciences Dept.
Faculty of Engineering and Architecture Building, H1-33

• TA: NA

• WEB page: http://cemozdogan.net/

• Announcements: Watch this space for the latest updates.

Wednesday, October 9, 2023 In the first lecture, there

will be first meeting. The lecture notes will be

published soon, see Course Schedule section.

• All the lecture notes will be accessible via Tentative Course Schedule & Lecture Notes.

• All the example c-files (for lecturing and hands-on sessions) will be
accessible via the link.

1.1.1 Lecture Information

• Almost all computer systems today are multi-core processors systems.
Parallel programming must be used to take benefit of the full perfor-
mance of such systems.

• Visit https://top500.org/ & https://www.truba.gov.tr/.

• Almost all computer systems today are multi-core processors systems.
Parallel programming must be used to take benefit of the full perfor-
mance of such systems.

• Parallel programming also describes the processes and instructions for
dividing a larger problem into smaller steps.

• A practical approach to parallel program design and development will
be presented in the course content.

• Awareness of potential design and performance concepts in heteroge-
neous computer architectures will be gained.

http://cemozdogan.net/index.html
http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/2023-2024Fall/index.html
http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles
https://top500.org/resources/top-systems/
https://www.truba.gov.tr/index.php/en/resources/
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• You will be expected to do significant programming assignments, as
well as run programs we supply and analyse the output.

• Since we will program in C on a UNIX environment, some experience
using C on UNIX will be important.

• In Hands-on sessions, we will concentrate upon the message-passing
method of parallel computing and use the standard parallel computing
environment called MPI (Message Passing Interface).

• Each student will complete a project based on parallel computing, (dis-
tributed computing, cluster computing) for the midterm/final exam.

• Important announcements will be posted to the Announcements section of the web page,
so please check this page frequently.

• You are responsible for all such announcements, as well as announce-
ments made in lecture.

1.1.2 Course Overview

• IKC-MH.57 is intended to provide students an introduction to paral-
lel/distributed computing and practical experiences in writing parallel
programs by using C.

• MPI (Message Passing Interface) message passing in distributed mem-
ory systems and Open MP (Open Multi-Processing) in multi-core sys-
tems will be taught for parallel programming.

– MPI is the industry standardized parallelization paradigm in high-
performance computing and enables programs to be written that
run on distributed memory machines.

– OpenMP is a thread-based approach to parallelize a program over
a single shared memory machine.

• An introduction to the basic concepts of hybrid and accelerated paradigms
as Cuda (, OpenCL) programming will be given.

• The course consists of theoretical topics and hands-on practical exer-
cises on parallel programming.

• Upon completion of this course the students will be able to under-
stand/explain/apply;
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– Learn how to work in a scientific computing environment.

– Gain awareness of Parallel and High Performance Computing con-
cepts for systems with shared/distributed memory.

– Can write parallel programs both for systems with shared memory
using threading (OpenMP ) and systems with distributed memory
using message passing (MPI).

– Gains basic knowledge of Cuda OpenCL hybrid and accelerated
paradigms.

– Gains the ability and understanding to develop parallel programs
to solve a given big numerical/engineering/ scientific problem.

1.1.3 Text Book

• Lecture material will be based on them.

• It is strongly advised that student should read textbooks rather than
only content with the lecture material supplied from the lecturer.

• Required: No & Recommended:

– An Introduction to Parallel Programming by Peter Pacheco and
Matthew Malensek, Morgan Kaufmann, 2nd edition, 2021, Elsevier.

– Paralel Algoritmalar: Modeller ve Yöntemler (Yüksek Başarımlı
Hesaplama) by Abdulsamet Haşıloğlu, 2020, Papatya Bilim.

– Parallel Programming: Techniques and Application Using Net-
worked Workstations and Parallel Computers by Barry Wilkinson
and Michael Allen, 2nd edition, 2005, Pearson.

Figure 1.1: Recommended Text Books.

https://www.elsevier.com/books/an-introduction-to-parallel-programming/pacheco/978-0-12-804605-0
http://www.papatyabilim.com.tr/paralel_algoritmalar.htm
https://www.pearson.com/en-us/subject-catalog/p/parallel-programming-techniques-and-applications-using-networked-workstations-and-parallel-computers/P200000003218/9780131405639
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1.1.4 Online Resourcess

The following (some) resources are available online.

• https://www.cs.purdue.edu/homes/ayg/book/Slides/

• https://sites.cs.ucsb.edu/ tyang/class/240a17/

• https://hpc-tutorials.llnl.gov/

1.1.5 Grading Criteria

• Midterms & Final Exams: There will be one take-home midterm and
one take-home final exam, will count 40% each and 60% of your grade,
respectively.

• Homeworks/Assignments (or Term Project): ??

1.1.6 Policies

• Attendance is not compulsory (30%), but you are responsible for ev-
erything said in class.

• Academic Regulations:
Derslere devam zorunluluğu ve denetlenmesi
MADDE 18 - (1) Öğrencilerin derslere, uygulamalara, sınavlara ve
diğer çalışmalara devamı zorunludur. Teorik derslerin % 30’undan,
uygulamaların % 20’sinden fazlasına devam etmeyen ve uygulamalarda
başarılı olamayan öğrenci, o dersin yarıyıl/yılsonu ya da varsa bütünleme
sınavına alınmaz. Tekrarlanan derslerde önceki dönemde devam şartı
yerine getirilmiş ise derslerde devam şartı aranıp aranmayacağı ilgili
birim tarafından hazırlanarak Senato onayına sunulan usul ve esaslar
ile belirlenir.

• You can use ideas from the literature (with proper citation).

• The code you submit must be written completely by you. You can use
anything from the textbook/notes.

• I encourage you to ask questions in class. You are supposed to ask
questions. Don’t guess, ask a question!

https://www.cs.purdue.edu/homes/ayg/book/Slides/
https://sites.cs.ucsb.edu/~tyang/class/240a17/
https://hpc-tutorials.llnl.gov/
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1.2 Installation of Required Tools/Programs

1.2.1 Linux System

• Assuming you are using Windows OS.

• Download & Install VirtualBox-7.0.10-158379-Win.exe

• Download & Install kubuntu-22.04.3-desktop-amd64.iso under Virtual-
Box

– Post-Installation Steps of Kubuntu

– ping google.com

– # Setup ”Display Configuration” for resolution

– cat /proc/cpuinfo

– sudo apt-get install libopenmpi-dev openmpi-bin libomp-dev

– # End of Post-Installation Steps of Kubuntu

– mpicc -o mpi helloWorld mpi helloWorld.c

– ./mpi helloWorld

– mpirun -np 2 mpi helloWorld

– mpirun –machinefile mf.txt -np 3 mpi helloWorld

– gcc -o omp helloWorld -fopenmp omp helloWorld.c

– export OMP NUM THREADS=3

– ./omp helloWorld

– export OMP NUM THREADS=8

– ./omp helloWorld

– cuda helloWorld.cu later!

– sudo apt-get update # Regular Updates

– sudo apt-get upgrade # Regular Upgrades

1.2.2 Others

• See video for Installation of Kubuntu & Parallel Tools under Virtual-
Box.

• In take-home exams:

https://download.virtualbox.org/virtualbox/7.0.10/VirtualBox-7.0.10-158379-Win.exe
https://cdimage.ubuntu.com/kubuntu/releases/22.04.3/release/kubuntu-22.04.3-desktop-amd64.iso
http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/mpi_helloWorld.c
http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/omp_helloWorld.c
http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/cuda_helloWorld.cu
http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/week1/InstallKubuntu-ParallelTools.mp4
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– Prepare your report/codes.

– Copy your files into a directory named as your ID.

– Upload/send a single file by compressing this directory.

• Check the web page: IKC-MH.57 2023-2024 Fall frequently.

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/2023-2024Fall/index.html
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2.1 View of the Field

• Data-intensive applications;

– transaction processing,

– information retrieval,

– data mining and analysis,

– multimedia services,

– computational physics/chemistry/biology and nanotechnology.

• High performance may come from

– fast dense circuitry,

– parallelism.

• Parallel processors are computer systems consisting of

– multiple processing units

– connected via some interconnection network

– plus the software needed to make the processing units work to-
gether.

• Uniprocessor – Single processor supercomputers have achieved great
speeds and have been pushing hardware technology to the physical
limit of chip manufacturing.

– Physical and architectural bounds (Lithography, µm size, destruc-
tive quantum effects.

– Proposed solutions are maskless lithography process and nanoim-
print lithography for the semiconductor).

– Uniprocessor systems can achieve to a limited computational power
and not capable of delivering solutions to some problems in rea-
sonable time.

• Multiprocessor – Multiple processors cooperate to jointly execute a sin-
gle computational task in order to speed up its execution.

• New issues arise;

– Multiple threads of control vs. single thread of control
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Figure 2.1: Abstraction Layers

Figure 2.2: View of the Field

– Partitioning for concurrent execution

– Task Scheduling

– Synchronization

– Performance

• Past Trends in Parallel Architecture (inside the box)

– Completely custom designed components; processors, memory, in-
terconnects, I/O.

– The first three are the major components for the aspects of the
parallel computation.

∗ Longer R&D time (2-3 years).

∗ Expensive systems.
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∗ Quickly becoming outdated.

– In the form of internally linked processors was the main form of
parallelism.

– Advances in computer networks ⇒ in the form of networked au-
tonomous computers.

• New Trends in Parallel Architecture (outside the box)

– Instead of putting everything in a single box and tightly couple
processors to memory, the Internet achieved a kind of parallelism
by loosely connecting everything outside of the box.

– Network of PCs and workstations connected via LAN or WAN
forms a Parallel System.

– Compete favourably (cost/performance).

– Utilize unused cycles of systems sitting idle.

2.2 Four Decades of Computing

Most computer scientists agree that there have been four distinct paradigms
or eras of computing. These are: batch, time-sharing, desktop, and network.

1. Batch Era

2. Time-Sharing Era

3. Desktop Era

4. Network Era. They can generally be classified into two main categories:

(a) shared memory,

(b) distributed memory systems.

• The number of processors in a single machine ranged from sev-
eral in a shared memory computer to hundreds of thousands in a
massively parallel system.

• Examples of parallel computers during this era include Sequent
Symmetry, Intel iPSC, nCUBE, Intel Paragon, Thinking Machines
(CM-2, CM-5), MsPar (MP), Fujitsu (VPP500), and others.

5. Current Trends: Clusters, Grids.
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2.3 Flynn’s Taxonomy of Computer Archi-

tecture

• The most popular taxonomy of computer architecture was defined by
Flynn in 1966.

• Flynn’s classification scheme is based on the notion of a stream of
information.

– Two types of information flow into a processor:

1. Instruction. The instruction stream is defined as the se-
quence of instructions performed by the processing unit.

2. Data. The data stream is defined as the data traffic ex-
changed between the memory and the processing unit.

• According to Flynn’s classification, either of the instruction or data
streams can be single or multiple.

• Computer architecture can be classified into the following four distinct
categories:

1. single instruction single data streams (SISD)

2. single instruction multiple data streams (SIMD)

3. multiple instruction single data streams (MISD)

4. multiple instruction multiple data streams (MIMD).

• SISD;

Figure 2.3: SISD Architecture.
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• SIMD;

Figure 2.4: SIMD Architecture.

• MIMD;

Figure 2.5: MIMD Architecture.

Parallel computers are either SIMD or MIMD.
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• When there is only one control unit and all processors execute the same
instruction in a synchronized fashion, the parallel machine is classified
as SIMD.

• In a MIMD machine, each processor has its own control unit and can
execute different instructions on different data.

• In the MISD category, the same stream of data flows through a linear
array of processors executing different instruction streams. In prac-
tice, there is no viable MISD machine; however, some authors have
considered pipelined machines as examples for MISD.

2.4 Parallel and Distributed Computers

• The processing units can communicate and interact with each other
using either

– shared memory

– or message passing methods.

• The interconnection network for shared memory systems can be classi-
fied as

– bus-based

– switch-based.

• SIMD Computers

• MIMD Shared Memory, MIMD Distributed Memory

• Bus based, Switch based

• CC-NUMA

• Clusters, Grid Computing

– Grids are geographically distributed platforms for computation.

– They provide dependable, consistent, general, and inexpensive ac-
cess to high end computational capabilities.
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Figure 2.6: (a) MIMD Shared Memory, (b) MIMD Distributed Memory.

Figure 2.7: (a) SIMD Distributed Computers, (b) Clusters.
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2.5 MPI Hands-On; Performance Analysis

2.5.1 Analysis of Parallel Summation with Point-to-

Point Communications

Parallel Summation; the given program adds n numbers both in sequential
and parallel.

• Take a (quick) look at the source code.

• Download the binary.

• Download the Excel file to fill the table by increasing the value of n
and the value of nproc.

• Login to the kubuntu under VirtualBox system.

• Make all the test runs by the following command;

mpirun -np XXprocXX ./code00 XXNXX

such as: mpirun -np 2 ./code00 10000

• You may erase your output files (#outputfile.dat) after your tests.

rm -f *outputfi*

• Analyse your plots.

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code00.c
http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code00
http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/parallelsumtable.xls
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Figure 2.8: Two SIMD Schemes.

2.6 SIMD Architecture

• The SIMD model of parallel computing consists of two parts:

1. a front-end computer of the usual von Neumann style,

2. a processor array.

• Each processor in the array has a small amount of local memory where
the distributed data resides while it is being processed in parallel.

• The similarity between serial and data parallel programming is one of
the strong points of data parallelism.

• Processors either do nothing or exactly the same operations at the same
time.

• In SIMD architecture, parallelism is exploited by applying simultaneous operations
across large sets of data.

• There are two main configurations that have been used in SIMD ma-
chines.

1. Each processor has its own local memory.

• Processors can communicate with each other through the inter-
connection network.

• If the interconnection network does not provide direct connection
between a given pair of processors, then this pair can exchange
data via an intermediate processor.

2. In the second SIMD scheme,

• Processors and memory modules communicate with each other via
the interconnection network.



2.7. MIMD ARCHITECTURE 29

Figure 2.9: Two MIMD Categories; Shared Memory and Message Passing
MIMD Architectures.

• Two processors can transfer data between each other via interme-
diate memory module(s) or possibly via intermediate processor(s).

2.7 MIMD Architecture

• It was apparent that distributed memory is the only way efficiently to
increase the number of processors managed by a parallel and distributed
system.

• If scalability to larger and larger systems (as measured by the number
of processors) was to continue, systems had to use distributed memory
techniques.

• Two broad categories, see Figure 2.9:

1. Shared memory. Processors exchange information through their
central shared memory.

– Because access to shared memory is balanced, these systems
are also called SMP (symmetric multiprocessor) systems.

2. Message passing. Also referred to as distributed memory. Pro-
cessors exchange information through their interconnection net-
work.

– There is no global memory, so it is necessary to move data
from one local memory to another by means of message pass-
ing.

– This is typically done by a Send/Receive pair of commands,
which must be written into the application software by a pro-
grammer

– Data copying and dealing with consistency issues.
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• Programming in the shared memory model was easier, and designing
systems in the message passing model provided scalability.

• The distributed-shared memory (DSM) architecture began to appear
in systems. In such systems,

– memory is physically distributed; for example, the hardware ar-
chitecture follows the message passing school of design,

– but the programming model follows the shared memory school of
thought.

– Thus, the DSM machine is a hybrid that takes advantage of both
design schools.

2.8 Shared Memory Organization

• A number of basic issues in the design of shared memory systems have
to be taken into consideration.

• These include access control, synchronization, protection/security.

– Access control determines which process accesses are possible
to which resources.

– Synchronization constraints limit the time of accesses from
sharing processes to shared resources.

– Protection is a system feature that prevents processes from mak-
ing arbitrary access to resources belonging to other processes.

• The simplest shared memory system consists of one memory module
that can be accessed from two processors.

• Requests arrive at the memory module through its two ports.

Depending on the interconnection network, a shared memory system leads
to systems can be classified as:

• Uniform Memory Access (UMA). A shared memory is accessible
by all processors through an interconnection network in the same way
a single processor accesses its memory.

– Therefore, all processors have equal access time to any memory
location.
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• Nonuniform Memory Access (NUMA). Each processor has part
of the shared memory attached.

– However, the access time to modules depends on the distance to
the processor. This results in a nonuniform memory access time.

• Cache-Only Memory Architecture (COMA). Similar to the NUMA,
each processor has part of the shared memory in the COMA.

– However, in this case the shared memory consists of cache memory.

– A COMA system requires that data be migrated to the processor
requesting it.

2.9 Message Passing Organization

• Message passing systems are a class of multiprocessors in which each
processor has access to its own local memory.

• Unlike shared memory systems, communications in message passing
systems are performed via send and receive operations.

• Nodes are typically able to store messages in buffers (temporary mem-
ory locations where messages wait until they can be sent or received),
and perform send/receive operations at the same time as processing.

• The processing units of a message passing system may be connected
in a variety of ways ranging from architecture-specific interconnection
structures to geographically dispersed networks.

Two important design factors must be considered in designing interconnec-
tion networks for message passing systems. These are the link bandwidth
and the network latency.

1. The link bandwidth is defined as the number of bits that can be
transmitted per unit time (bits/s).

2. The network latency is defined as the time to complete a message
transfer.
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2.10 MPI Hands-On - Introduction to MPI

2.10.1 Parallel Computing

• Separate workers or processes.

• Interact by exchanging information.

• Data-Parallel. Same operations on different data. Also called SIMD.

• SPMD. Same program, different data.

• MIMD. Different programs, different data.

2.10.2 Communicating with other processes

Data must be exchanged with other workers;

• Cooperative — all parties agree to transfer data.

– Message-passing is an approach that makes the exchange of data
cooperative.

– Data must both be explicitly sent and received.

SEND( data )

Process 0 Process 1

RECV( data )

Figure 2.10: Cooperative–Communicating with other processes.

• One sided — one worker performs transfer of data.

– One-sided operations between parallel processes include remote
memory reads and writes.

– An advantage is that data can be accessed without waiting for
another process.
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Process 0 Process 1

Process 0 Process 1

(Memory)

PUT( data )

(Memory)

GET( data )

Figure 2.11: One sided–Communicating with other processes.

2.10.3 What is MPI?

• A message-passing library specification

– message-passing model.

– not a compiler specification.

– not a specific product.

• For parallel computers, clusters, and heterogeneous networks.

• Designed to provide access to advanced parallel hardware for

– end users.

– library writers.

– tool developers.

2.10.4 MPI Implementations

• Open MPI (a project combining technologies and resources from several
other projects (FT-MPI, LA-MPI, LAM/MPI, and PACX-MPI))

• MPICH (Argonne National Laboratory).

• UNIFY (Mississippi State University).

• CHIMP (Edinburgh Parallel Computing Centre).
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• LAM (Ohio Supercomputer Center).

• MPI for the Fujitsu AP1000 (Australian National University).

• Cray MPI Product for the T3D (Cray Research and the Edinburgh
Parallel Computing Center).

• IBM’s MPI for the SP.

• SGI’s MPI for 64-bit mips3 and mips4.

• PowerMPI for Parsytec Systems.

• HP’s MPI implementation.

• . . .

2.10.5 Is MPI Large or Small?

• MPI is large (See this openMPI link)

– MPI’s extensive functionality requires many functions.

– Number of functions not necessarily a measure of complexity.

• MPI is small. Many parallel programs can be written with just 6 basic functions.

– MPI Init– Initialise MPI.

– MPI Comm size– Find out how many processes there are.

– MPI Comm rank– Find out which process I am.

– MPI Send– Send a message.

– MPI Recv– Receive a message.

– MPI Finalize– Terminate MPI.

• MPI is just right

– One can access flexibility when it is required.

– One need not master all parts of MPI to use it.

https://www.open-mpi.org/doc/current/
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2.10.6 Where to use MPI?

• You need a portable parallel program.

• You are writing a parallel library.

• You have irregular or dynamic data relationships that do not fit a
data parallel model.

Where not to use MPI:

• You can use HPF or a parallel Fortran 90.

• You don’t need parallelism at all.

• You can use libraries (which may be written in MPI).

2.10.7 How To Use MPI? Essential!!

1. When possible, start with a debugged serial version.

2. Design parallel algorithm.

3. Write code, making calls to MPI library.

4. Compile and run using implementation specific utilities.

5. Run with a few nodes first, increase number gradually.

2.10.8 Getting started

Writing MPI programs I

First program with MPI ( hello.c). Write the following code and study the
response.

1 #inc l ude ”mpi . h”
2 #inc l ude <s td i o . h>
3

4 i n t main ( argc , argv )
5 i n t argc ;
6 char ∗∗ argv ;
7 {
8 MPI Init ( &argc , &argv ) ;
9 p r i n t f ( ”He l l o world\n” ) ;

10 MPI Final i ze ( ) ;
11 r e turn 0 ;
12 }

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/hello.c


36 CHAPTER 2. INTRODUCTION

• #include "mpi.h"

provides basic MPI definitions and types.

• MPI_Init

starts MPI.

• MPI_Finalize

exits MPI.

• Note that all non-MPI routines are local; thus the

printf

run on each process.

mpicc -o hello hello.c

mpirun -np 2 hello

Writing MPI programs II

Another Example (Again no messsage-passing) ( hello1.c):

1 #inc l ude <s td i o . h>
2 #inc l ude <mpi . h>
3

4 i n t main ( argc , argv )
5 i n t argc ;
6 char ∗ argv [ ] ;
7 {
8 char name [BUFSIZ ] ;
9 i n t l ength ;

10 MPI Init (&argc , &argv ) ;
11 MPI Get processor name (name , &l ength ) ;
12 p r i n t f ( ”%s : h e l l o world\n” , name) ;
13 MPI Final i ze ( ) ;
14 }

Writing MPI programs III

Another Example (Again hello and again no messsage-passing) ( hello2.c):

1 #inc l ude ”mpi . h”
2 #inc l ude <s td i o . h>
3 #inc l ude <uni s td . h>
4

5 i n t main ( argc , argv )
6 i n t argc ;
7 char ∗∗ argv ;
8 {
9 i n t rank , s i z e ;

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/hello1.c
http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/hello2.c
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10 MPI Init ( &argc , &argv ) ;
11 MPI Comm rank ( MPICOMMWORLD, &rank ) ;
12 MPI Comm size ( MPICOMMWORLD, &s i z e ) ;
13 p r i n t f ( ”He l l o world ! I ’m %d of %d\n” , rank , s i z e ) ;
14 s l e ep (10) ;
15 MPI Final i ze ( ) ;
16 r e turn 0 ;
17 }

Two of the first questions asked in a parallel program are:

1. How many processes are there? Answered with MPI Comm size

2. Who am I? Answered with MPI Comm rank. The rank is a num-
ber between zero and size-1.

Exercise - Getting Started

• Designing, compiling, and runing a simple MPI program.

– Write a program that combines all the ”Hello world” programs
above.

– Execute several times and/or try different number of nodes. What
does the output look like? Why it does differ?
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3.1 Performance Analysis

• Analysis of the performance measures of parallel programs.

• Two computational models;

1. the equal duration processes

2. parallel computation with serial sections.

• Two measures;

1. speed-up factor

2. efficiency.

• The impact of the communication overhead on the overall speed per-
formance of multiprocessors.

• The scalability of parallel systems.

3.1.1 Computational Models

Equal Duration Model

Assume that a given computation can be divided into concurrent tasks
for execution on the multiprocessor.

• In this model (ts: execution time of the whole task using a single pro-
cessor),

– a given task can be divided into n equal subtasks,

– each of which can be executed by one processor,

– the time taken by each processor to execute its subtask is

tp =
ts
n

– since all processors are executing their subtasks simultaneously,
then the time taken to execute the whole task is

tp =
ts
n

• The speed-up factor of a parallel system can be defined as
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– the ratio between the time taken by a single processor to solve a
given problem

– to the time taken by a parallel system consisting of n processors
to solve the same problem.

• Speed Up;

S(n) =
ts
tp

=
ts

ts/n
= n (3.1)

• This equation indicates that, according to the equal duration model,
the speed-up factor resulting from using n processors is equal to the
number of processors used (n).

• One important factor has been ignored in the above derivation.

• This factor is the communication overhead, tc, which results from the
time needed for processors to communicate and possibly exchange data
while executing their subtasks.

• Then the actual time taken by each processor to execute its subtask is
given by

S(n) =
ts
tp

=
ts

ts/n + tc
=

n

1 + n ∗ tc/ts
(3.2)

• This equation indicates that the relative values of ts and tc affect
the achieved speed-up factor.

• A number of cases can then be studied:

1. if tc ≪ ts then the potential speed-up factor is approximately n

2. if tc ≫ ts then the potential speed-up factor is ts/tc ≪ 1

3. if tc = ts then the potential speed-up factor is n/n + 1 ∼= 1, for
n ≫ 1.

• In order to scale the speed-up factor to a value between 0 and 1, we
divide it by the number of processors, n.

• The resulting measure is called the efficiency, E.

• The efficiency is a measure of the speed-up achieved per processor.

• According to the simple equal duration model, the efficiency E is equal
to 1, if the communication overhead is ignored.



42 CHAPTER 3. PERFORMANCE METRICS, POSTULATES

Figure 3.1: Example program segments.

• However if the communication overhead is taken into consideration, the
efficiency can be expressed as

E =
1

1 + n ∗ tc/ts
(3.3)

• Although simple, the equal duration model is however unrealistic.

• This is because it is based on the assumption that a given task can be
divided into a number of equal subtasks.

• However, real algorithms contain some (serial) parts that cannot be
divided among processors.

• These (serial) parts must be executed on a single processor.

• In Figure program segments, we assume that we start with a value from
each of the two arrays (vectors) a and b stored in a processor of the
available n processors.

– The first program block can be done in parallel; that is, each
processor can compute an element from the array (vector) c. The
elements of array c are now distributed among processors, and
each processor has an element.

– The next program segment cannot be executed in parallel. This
block will require that the elements of array c be communicated
to one processor and are added up there.

– The last program segment can be done in parallel. Each processor
can update its elements of a and b.
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Parallel Computation with Serial Sections Model

• It is assumed (or known) that a fraction f of the given task (compu-
tation) is not dividable into concurrent subtasks.

• The remaining part (1− f) is assumed to be dividable into concurrent
subtasks.

• The time required to execute the task on n processors is

tp = ts ∗ f + (1− f) ∗ (ts/n)

• The speed-up factor is therefore given by

S(n) =
ts

ts ∗ f + (1− f) ∗ (ts/n)
=

n

1 + (n− 1) ∗ f
(3.4)

• According to this equation, the potential speed-up due to the use of n
processors is determined primarily by the fraction of code that cannot
be divided.

• If the task (program) is completely serial, that is, f = 1, then no
speed-up can be achieved regardless of the number of processors used.

• This principle is known as Amdahl’s law.

• It is interesting to note that according to this law, the maximum speed-up
factor is given by

limn→∞S(n) =
1

f

• Therefore, the improvement in performance (speed) of a parallel algo-
rithm over a sequential one is

– limited not by the number of processors employed

– but rather by the fraction of the algorithm that cannot be parallelized.

• According to Amdahl’s law, researchers were led to believe that a sub-
stantial increase in speed-up factor would not be possible by using
parallel architectures.

• NOT parallelizable;

– communication overhead,

– a sequential fraction, f
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3.1.2 Skeptic Postulates For Parallel Architectures

Amdahl’s Law

• Amdahl’s law made it so pessimistic to build parallel computer systems.

• Due to the intrinsic limit set on the performance improvement (speed)
regardless of the number of processors used.

• An interesting observation to make here is that according to Amdahl’s
law, f is fixed and does not scale with the problem size, n.

• However, it has been practically observed that some real parallel al-
gorithms have a fraction that is a function of n.

• Let us assume that f is a function of n such that limn→∞f(n) = 0

limn→∞S(n) = limn→∞
n

1 + (n− 1) ∗ f(n)
= n (3.5)

• This is clearly in contradiction to Amdahl’s law.

• It is therefore possible to achieve a linear speed-up factor for
large-sized problems, given that

limn→∞f(n) = 0

a condition that has been practically observed.
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Process 0 Process 1

A:

B:

Send Recv

Figure 3.2: MPI messages.

3.2 MPI Hands-On - Sending and Receiving

Messages I

Questions:

• To whom is data sent?

• What is sent?

• How does the receiver identify it?

3.2.1 Current Message-Passing

Message = data + envelope

Figure 3.3: Data+Envelope.

• MPI Data; Arguments

– startbuf (starting location of data)

– count (number of elements)
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∗ receive count ≥ send count

– datatype (basic or derived)

∗ receiver datatype = send datatype (unless MPI PACKED)

∗ Elementary (all C types). Specifications of elementary datatypes
allows heterogeneous communication.

∗ MPI basic datatypes for C:

Figure 3.4: MPI basic datatypes for C.

• MPI Envelope; Arguments

– destination or source

∗ rank in a communicator

∗ receive = sender or MPI ANY SOURCE

– tag

∗ integer chosen by programmer

∗ receive = sender or MPI ANY TAG (wild cards allowed)

– communicator

∗ defines communication ”space”

∗ group + context

∗ receive = send

– Collective operations typically operated on all processes.



3.2. MPI HANDS-ON - SENDING AND RECEIVING MESSAGES I 47

– All communication (not just collective operations) takes place in
groups.

– A context partitions the communication space. A message sent in
one context cannot be received in another context. Contexts are
managed by the system.

– A group and a context are combined in a communicator.

– Source/destination in send/receive operations refer to rank in group
associated with a given communicator.

3.2.2 The Buffer

Sending and receiving only a contiguous array of bytes. Specified in MPI by
starting address , datatype, and count

• hides the real data structure from hardware which might be able to
handle it directly.

• requires pre-packing dispersed data

– rows of a matrix stored columnwise.

– general collections of structures.

• prevents communications between machines with different representa-
tions (even lengths) for same data type

3.2.3 MPI Basic Send/Receive

Thus the basic send (blocking!!) has become:

MPI_Send( start, count, datatype, dest, tag, comm )

and the receive (blocking!!):

MPI_Recv(start, count, datatype, source, tag, comm, status)

The source, tag, and count of the message actually received can be retrieved
from status.

MPI_Status status;

MPI_Recv( ..., &status );

... status.MPI_TAG; ... status.MPI_SOURCE;

MPI_Get_count( &status, datatype, &count );

MPI Get count may be used to determine how much data of a particular
type was received.
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Two simple collective operations (just to introduce!):

MPI_Bcast(start, count, datatype, root, comm)

MPI_Reduce(start, result, count, datatype,

operation, root, comm)

3.2.4 Exercises/Examples

1. An example for communication world code1.c.

1 #inc l ude <s td i o . h>
2 #inc l ude <mpi . h>
3

4 i n t main ( i n t argc , char ∗∗ argv )
5 {
6 i n t s i z e , my rank ;
7 MPI Init (&argc ,&argv ) ;
8 MPI Comm size (MPICOMMWORLD,& s i z e ) ;
9 MPI Comm rank (MPICOMMWORLD,&my rank ) ;

10 // p r i n t f (” Executed by a l l p r o c e s s o r s : He l l o ! I t i s p r o c e s s o r %d .\n
” , my rank ) ;

11 i f (my rank == 0)
12 {
13 p r i n t f ( ” He l l o ! I t i s p r o c e s s o r 0 . There are %d pr oce s s o r s in t h i s

comm. world .\n” , s i z e ) ;
14 p r i n t f ( ” I am proce s s %i out o f %i : He l l o world !\n” ,my rank , s i z e )

;
15 }
16 e l s e
17 {
18 p r i n t f ( ” I am proce s s %i out o f %i : He l l o world !\n” , my rank , s i z e )

;
19 }
20 MPI Final i ze ( ) ;
21 r e turn 0 ;
22 }

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code1.c
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2. Write a program to send/receive and print out your name and age to
each processors. code2.c.

1 #inc l ude <s td i o . h>
2 #inc l ude <mpi . h>
3 #inc l ude <s t r i n g . h>
4

5 i n t main ( i n t argc , char ∗∗ argv )
6 {
7 i n t my rank ; /∗ rank o f p r o c e s s ∗/
8 i n t s i z e ; /∗ number o f p r o c e s s e s ∗/
9 i n t des t ; /∗ rank o f r e c e i v e r ∗/

10 i n t my age = 4 ; /∗ s t o r age f o r my age ∗/
11 char message [ 1 0 0 ] ; /∗ s t o r age f o r message ∗/
12 i n t recv my age = 0 ; /∗ s t o r age f o r r e c e i v ed my age ∗/
13 MPI Status s ta tu s ; /∗ r e turn s ta tu s f o r r e c e i v e ∗/
14

15 MPI Init (&argc , &argv ) ; /∗ Star t up MPI ∗/
16 MPI Comm size (MPICOMMWORLD,& s i z e ) ; /∗ Find out number o f p r o c e s s e s

∗/
17 MPI Comm rank(MPICOMMWORLD,&my rank ) ; /∗ Find out p r o c e s s rank ∗/
18 i f ( my rank == 0) /∗ rank o f sender ∗/
19 {
20 s p r i n t f (message , ”IKC−MH.57 ” ) ; /∗ Create message ∗/
21 f o r ( des t =1; dest<s i z e ; des t++)
22 {
23 p r i n t f ( ” Sending to worker num:%d\n” , des t ) ;
24 MPI Send(&my age , 1 , MPI INT , dest , 1 , MPICOMMWORLD) ;
25 MPI Send (message , s t r l e n ( message )+1, MPI CHAR, dest , 2 ,

MPICOMMWORLD) ;
26 }
27 }
28 e l s e
29 {
30 MPI Recv(&recv my age , 1 , MPI INT , 0 , 1 , MPICOMMWORLD, &s ta tu s ) ;
31 MPI Recv(message , s i z e o f ( message ) , MPI CHAR, 0 , 2 , MPICOMMWORLD,

&s ta tu s ) ;
32 p r i n t f ( ”===========================\n” ) ;
33 p r i n t f ( ” I am node : %d\n” , my rank ) ;
34 p r i n t f ( ”My age : %d\n” , recv my age ) ;
35 p r i n t f ( ”My name : %s \n” , message ) ;
36 p r i n t f ( ”===========================\n” ) ;
37 }
38 MPI Final i ze ( ) ; /∗ Shut down MPI ∗/
39 r e turn 0 ;
40 }

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code2.c
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4.1 Programming Using the Message-Passing

Paradigm

4.1.1 Principles of Message-Passing Programming

Set of Primitives: Allows processes to communicate with each other.

• A message passing architecture uses a set of primitives that allows
processes to communicate with each other.

• i.e., send, receive, broadcast, and barrier.

There are two key attributes that characterize the message -passing program-
ming paradigm.

1. the first is that it assumes a partitioned address space,

2. the second is that it supports only explicit parallelization.

• Each data element must belong to one of the partitions of the
space;

– hence, data must be explicitly partitioned and placed.

– Adds complexity, encourages data locality.

• All interactions (read-only or read/write) require cooperation of two
processes:

1. the process that has the data,

2. the process that wants to access the data.

• Primary advantage of explicit two-way interactions is that the programmer
is fully aware of all the costs of non-local interactions

• The programmer is responsible for analyzing the underlying serial al-
gorithm/application.

• As a result, programming using the message-passing paradigm tends
to be hard and intellectually demanding.

• However, on the other hand, properly written message-passing pro-
grams can often achieve very high performance and scale to a very large
number of processes.
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4.1.2 Structure of Message-Passing Programs

• Message-passing programs are often written using the asynchronous or
loosely synchronous paradigms.

• In the asynchronous paradigm, all concurrent tasks execute asyn-
chronously.

– However, such programs can be harder and can have non-deterministic behavior
due to race conditions.

• Loosely synchronous programs are a good compromise between two
extremes.

– In such programs, tasks or subsets of tasks synchronize to perform
interactions.

– However, between these interactions, tasks execute completely
asynchronously.

• Most message-passing programs are written using the single program
multiple data (SPMD).

• SPMD programs can be loosely synchronous or completely asynchronous.

4.1.3 The Building Blocks: Send and Receive Opera-

tions

• Since interactions are accomplished by sending and receiving messages,
the basic operations in the message-passing programming paradigm are
send and receive.

• In their simplest form, the prototypes of these operations are defined
as follows:

send(void *sendbuf, int nelems, int dest)

receive(void *recvbuf, int nelems, int source)

• sendbuf points to a buffer that stores the data to be sent,
• recvbuf points to a buffer that stores the data to be received,
• nelems is the number of data units to be sent and received,.
• dest is the identifier of the process that receives the data,.
• source is the identifier of the process that sends the data.
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1 P0 P1

2

3 a = 100; receive(&a, 1, 0)

4 send(&a, 1, 1); printf("%d\n", a);

5 a=0;

• Process P0 sends a message to process P1 which receives and prints
the message.
• The important thing to note is that process P0 changes the value of
a to 0 immediately following the send.
• The semantics of the send operation require that the value received
by process P1 must be 100 (not 0).
• That is, the value of a at the time of the send operation must be the
value that is received by process P1.
• It may seem that it is quite straightforward to ensure the semantics
of the send and receive operations.
• However, based on how the send and receive operations are imple-
mented this may not be the case.

Blocking Message Passing Operations

• As a result, if the send operation programs the communication hardware
and returns before the communication operation has been accomplished,
process P1 might receive the value 0 in a instead of 100!

• A simple solution to the problem presented in the code fragment above
is for the send operation to return only when it is semantically safe to
do so.

• Note that this is not the same as saying that the send operation returns
only after the receiver has received the data.

• It simply means that the sending operation blocks until it can guarantee
that the semantics will not be violated on return irrespective of what
happens in the program subsequently.

• There are two mechanisms by which this can be achieved.
1. Blocking Non-Buffered Send/Receive

2. Blocking Buffered Send/Receive

1 Blocking Non-Buffered Send/Receive
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• The send operation does not return until the matching receive has been
encountered at the receiving process.

• When this happens, the message is sent and the send operation returns
upon completion of the communication operation.

• Typically, this process involves a handshake between the sending and
receiving processes (see Figure 4.1).

Figure 4.1: Handshake for a blocking non-buffered send/receive operation.

• The sending process sends a request to communicate to the receiving
process.
• When the receiving process encounters the target receive, it responds
to the request.
• The sending process upon receiving this response initiates a transfer
operation.
• Since there are no buffers used at either sending or receiving ends,
this is also referred to as a non-buffered blocking operation.

• Idling Overheads in Blocking Non-Buffered Operations: It is clear from
the figure that a blocking non-buffered protocol is suitable when the
send and receive are posted at roughly the same time (see Figure(b)).

• However, in an asynchronous environment, this may be impossible to
predict.

• This idling overhead is one of the major drawbacks of this protocol.
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• Deadlocks in Blocking Non-Buffered Operations: Consider the following
simple exchange of messages that can lead to a deadlock:

1 P0 P1

2

3 send(&a, 1, 1); send(&a, 1, 0);

4 receive(&b, 1, 1); receive(&b, 1, 0);

• The code fragment makes the values of a available to both processes
P0 and P1.

• However, if the send and receive operations are implemented using a
blocking non-buffered protocol,

• the send at P0 waits for the matching receive at P1

• whereas the send at process P1 waits for the corresponding re-
ceive at P0,
• resulting in an infinite wait.

• Deadlocks are very easy in blocking protocols and care must be taken
to break cyclic waits.

2 Blocking Buffered Send/Receive

• A simple solution to the idling and deadlocking problems outlined above
is to rely on buffers at the sending and receiving ends.

• On a send operation, the sender simply copies the data into the desig-
nated buffer and returns after the copy operation has been completed.

• The sender process can now continue with the program knowing that
any changes to the data will not impact program semantics.

• Note that at the receiving end, the data cannot be stored directly at
the target location since this would violate program semantics.

• Instead, the data is copied into a buffer at the receiver as well.

• When the receiving process encounters a receive operation, it checks
to see if the message is available in its receive buffer. If so, the data is
copied into the target location.
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Figure 4.2: Blocking buffered transfer protocols: Left: in the presence of
communication hardware with buffers at send and receive ends; and Right:
in the absence of communication hardware, sender interrupts receiver and
deposits data in buffer at receiver end.

• In general, if the parallel program is highly synchronous, non-buffered
sends may perform better than buffered sends.

• However, generally, this is not the case and buffered sends are desirable
unless buffer capacity becomes an issue.

• Deadlocks in Buffered Send and Receive Operations:

• While buffering relieves many of the deadlock situations, it is still pos-
sible to write code that deadlocks.

• This is due to the fact that as in the non-buffered case, receive calls
are always blocking (to ensure semantic consistency).

• Thus, a simple code fragment such as the following deadlocks since
both processes wait to receive data but nobody sends it.

1 P0 P1

2

3 receive(&a, 1, 1); receive(&a, 1, 0);

4 send(&b, 1, 1); send(&b, 1, 0);

• Once again, such circular waits have to be broken.

• However, deadlocks are caused only by waits on receive operations in
this case.
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Non-Blocking Message Passing Operations

• In blocking protocols, the overhead of guaranteeing semantic correctness
was paid in the form of idling (non-buffered) or buffer management
(buffered).

• It is possible to require the programmer

– to ensure semantic correctness,

– to provide a fast send/receive operation that incurs little overhead.

• This class of non-blocking protocols returns from the send or receive
operation before it is semantically safe to do so.

• Consequently, the user must be careful not to alter data that may be
potentially participating in communication.

• Non-blocking operations are generally accompanied by a check-status operation,

• which indicates whether the semantics of a previously initiated transfer
may be violated or not.

• Upon return from a non-blocking operation, the process is free to per-
form any computation that does not depend upon the completion of the operation.

• Later in the program, the process can check whether or not the non-
blocking operation has completed,

• and, if necessary, wait for its completion.

• Non-blocking operations can be buffered or non-buffered.

• In the non-buffered case, a process wishing to send data to another
simply posts a pending message and returns to the user program.

• The program can then do other useful work.

• At some point in the future, when the corresponding receive is posted,
the communication operation is initiated.

• When this operation is completed, the check-status operation indicates
that it is safe to touch this data.

• This transfer is indicated in Figure 4.3Left.
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Figure 4.3: Non-blocking non-buffered send and receive operations Left: in
absence of communication hardware; Right: in presence of communication
hardware.

• Comparing Figures 4.3Left and 4.1a, it is easy to see that the idling
time when the process is waiting for the corresponding receive in a
blocking operation can now be utilized for computation.

• This removes the major bottleneck associated with the former at the
expense of some program restructuring.

• Blocking operations facilitate safe and easier programming.

• Non-blocking operations are useful for performance optimization by
masking communication overhead.

• One must, however, be careful using non-blocking protocols since errors
can result from unsafe access to data that is in the process of being
communicated.
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4.2 MPI Hands-On; Sending and Receiving

Messages II

1. The code3.c consists of one receiver process and N-1 sender processes.

• The sender processes send a message consisting of their process
identifier (id) and the total number of processes (ntasks) to the
receiver.

• The receiver process prints out the values it receives in the messeges
from the senders.

1 /∗ A simple SPMD example program using MPI ∗/
2

3 /∗ The program c on s i s t s o f on r e c e i v e r p r o c e s s and N−1 sender ∗/
4 /∗ pr oc e s s e s . The sender p r o c e s s e s send a message c on s i s t i n g ∗/
5 /∗ o f t h e i r p r o c e s s i d e n t i f i e r ( i d ) and the t o t a l number o f ∗/
6 /∗ pr oc e s s e s ( ntasks ) to the r e c e i v e r . The r e c e i v e r p r o c e s s ∗/
7 /∗ pr i n t s out the va lues i t r e c e i v e s in the messeges from the ∗/
8 /∗ s ender s . ∗/
9

10 /∗ Compile the program with ’ mpicc code3 . c −o code3 ’ ∗/
11 /∗ To run the program , us ing f our o f the computers s p e c i f i e d in ∗/
12 /∗ your h o s t f i l e , do ’mpirun −mach i ne f i l e mf . txt −np 4 code3 ∗/
13 /∗ An example mf . txt i s j u s t conta in ing the f o l l ow i ng l i n e s ∗/
14 /∗ l e c t u r e . ikcu . edu . t r ∗/
15 /∗ l e c t u r e . ikcu . edu . t r ∗/
16 /∗ l e c t u r e . ikcu . edu . t r ∗/
17 /∗ l e c t u r e . ikcu . edu . t r ∗/
18

19 #inc l ude <s td i o . h>
20 #inc l ude <mpi . h>
21 #inc l ude <s t d l i b . h>
22 i n t main ( i n t argc , char ∗ argv [ ] )
23 {
24 const i n t tag = 42 ; /∗ Message tag ∗/
25 i n t id , ntasks , sour ce id , d e s t i d , er r , i ;
26 MPI Status s ta tu s ;
27 i n t msg [ 2 ] ; /∗ Message array ∗/
28

29 e r r = MPI Init (&argc , &argv ) ; /∗ I n i t i a l i z e MPI ∗/
30 i f ( e r r != MPI SUCCESS) {
31 p r i n t f ( ”MPI i n i t i a l i z a t i o n f a i l e d !\n” ) ;
32 e x i t (1) ;
33 }
34 e r r = MPI Comm size (MPICOMMWORLD, &ntasks ) ; /∗ Get nr o f tasks ∗/
35 e r r = MPI Comm rank (MPICOMMWORLD, &id ) ; /∗ Get id o f t h i s p r o c e s s

∗/
36 i f ( ntasks < 2) {
37 p r i n t f ( ”You have to use at l e a s t 2 p r o c e s s o r s to run th i s program\

n” ) ;
38 MPI Final i ze ( ) ; /∗ Quit i f ther e i s only one p r oc e s s o r ∗/
39 e x i t (0) ;
40 }
41

42 i f ( i d == 0) { /∗ Process 0 ( the r e c e i v e r ) does t h i s ∗/
43 f o r ( i =1; i<ntasks ; i++) {

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code3.c
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44 e r r = MPI Recv (msg , 2 , MPI INT , MPI ANY SOURCE, tag ,
MPICOMMWORLD, &s ta tu s ) ; /∗ Receive a message ∗/

45 s ou r c e i d = s ta tu s .MPI SOURCE; /∗ Get id o f sender ∗/
46 p r i n t f ( ”Received message %d of %d from proce s s %d\n” , msg [ 0 ] ,

msg [ 1 ] , s ou r c e i d ) ;
47 }
48 }
49 e l s e { /∗ Proces s es 1 to N−1 ( the sender s ) do t h i s ∗/
50 msg [ 0 ] = id ; /∗ Put own i d e n t i f i e r i n the message ∗/
51 msg [ 1 ] = ntasks ; /∗ and t o t a l number o f p r o c e s s e s ∗/
52 d e s t i d = 0 ; /∗ Dest inat i on addres s ∗/
53 e r r = MPI Send (msg , 2 , MPI INT , de s t i d , tag , MPICOMMWORLD) ;
54 }
55

56 e r r = MPI Final i ze ( ) ; /∗ Terminate MPI ∗/
57 i f ( i d==0) p r i n t f ( ”Ready\n” ) ;
58 e x i t (0) ;
59 }

2. Sending in a ring. A code4.c that takes data from process zero and
sends it to all of the other processes by sending it in a ring.

• That is, process i should receive the data and send it to process
i+1, until the last process is reached.

• Assume that the data consists of a single integer. Process zero
reads the data from the user.

1 #inc l ude <s td i o . h>
2 #inc l ude ”mpi . h”
3

4 i n t main ( i n t argc , char ∗∗ argv )
5 {
6 i n t rank , value , s i z e ;
7 MPI Status s ta tu s ;
8

9 MPI Init ( &argc , &argv ) ;
10

11 MPI Comm rank ( MPICOMMWORLD, &rank ) ;
12 MPI Comm size ( MPICOMMWORLD, &s i z e ) ;
13 do {
14 i f ( rank == 0) {
15 s can f ( ”%d” , &value ) ;
16 MPI Send ( &value , 1 , MPI INT , rank + 1 , 0 , MPICOMMWORLD ) ;
17 }
18 e l s e {
19 MPI Recv ( &value , 1 , MPI INT , rank − 1 , 0 , MPICOMMWORLD, &

s ta tu s ) ;
20 i f ( rank < s i z e − 1)
21 MPI Send ( &value , 1 , MPI INT , rank + 1 , 0 , MPICOMMWORLD ) ;
22 }
23 p r i n t f ( ”Process %d got %d\n” , rank , value ) ;
24 } whi le ( value >= 0) ;
25

26 MPI Final i ze ( ) ;
27 r e turn 0 ;
28 }

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code4.c
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3. Analyse the example code5.c for sending/receiving.

1 /∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

2 ∗ FILE : mpl . ex1 . c
3 ∗ DESCRIPTION:
4 ∗ In t h i s s imple example , the master task i n i t i a t e s numtasks−1

number o f
5 ∗ worker tasks . I t then d i s t r i b u t e s an equal por t i on o f an array

to each
6 ∗ worker task . Each worker task r e c e i v e s i t s por t i on o f the array ,

and
7 ∗ per forms a s imple value assignment to each o f i t s e l ements . The

value
8 ∗ as s i gned to each element i s s imply that element ’ s index in the

array+1.
9 ∗ Each worker task then sends i t s por t i on o f the array back to the

master
10 ∗ task . As the master r e c e i v e s back each por t i on o f the array ,

s e l e c t e d
11 ∗ e lements are d i sp l ayed .
12 ∗ AUTHOR: B l a i s e Barney
13 ∗ LAST REVISED: 09/14/93 f o r l a t e s t API changes B l a i s e Barney
14 ∗ LAST REVISED: 01/10/94 changed API to MPL Stacy Pende l l
15 ∗ CONVERTED TO MPI: 11/12/94 by Xianneng Shen
16

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗/
17

18 #inc l ude <s td i o . h>
19 #inc l ude ”mpi . h”
20 #de f i n e ARRAYSIZE 60000
21 #de f i n e MASTER 0 /∗ t a s k i d o f f i r s t p r o c e s s ∗/
22

23 MPI Status s ta tu s ;
24 main ( i n t argc , char ∗∗ argv )
25 {
26 i n t numtasks , /∗ t o t a l number o f MPI p r oc e s s in

p a r t i t i i o n ∗/
27 numworkers , /∗ number o f worker tasks ∗/
28 taskid , /∗ task i d e n t i f i e r ∗/
29 dest , /∗ de s t i na t i on task id to send message

∗/
30 index , /∗ index i n to the array ∗/
31 i , /∗ l oop va r i ab l e ∗/
32 arraymsg = 1 , /∗ s e t t i n g a message type ∗/
33 indexmsg = 2 , /∗ s e t t i n g a message type ∗/
34 source , /∗ o r i g i n task id o f message ∗/
35 chunks ize ; /∗ f o r p a r t i t i o n i n g the array ∗/
36 f l o a t data [ARRAYSIZE ] , /∗ the i n t i a l ar ray ∗/
37 r e s u l t [ARRAYSIZE ] ; /∗ f o r ho ld ing r e s u l t s o f ar ray ope r a t i on s ∗/
38

39 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ i n i t i a l i z a t i o n s
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

40 ∗ Find out how many tasks are in t h i s p a r t i t i o n and what my task id
i s . Then

41 ∗ de f i n e the number o f worker tasks and the array pa r t i t i o n s i z e as
chunks ize .

42 ∗ Note : For t h i s example , the MP PROCS environment va r i ab l e should
be s e t

43 ∗ to an odd number . . . to i n su r e even d i s t r i b u t i o n o f the array to

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code5.c
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numtasks−1
44 ∗ worker tasks .
45

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗/
46 MPI Init (&argc , &argv ) ;
47 MPI Comm rank(MPICOMMWORLD, &ta sk i d ) ;
48 MPI Comm size (MPICOMMWORLD, &numtasks ) ;
49 numworkers = numtasks−1;
50 chunks ize = (ARRAYSIZE / numworkers ) ;
51

52 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ master task
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

53 i f ( t a s k i d == MASTER) {
54 p r i n t f ( ”\n∗∗∗∗∗∗∗∗∗∗∗ Sta r t i ng MPI Example 1 ∗∗∗∗∗∗∗∗∗∗∗∗\n” ) ;
55 p r i n t f ( ”MASTER: number o f worker tasks w i l l be= %d\n” , numworkers ) ;
56 f f l u s h ( stdout ) ;
57

58 /∗ I n i t i a l i z e the array ∗/
59 f o r ( i =0; i<ARRAYSIZE ; i++)
60 data [ i ] = 0 . 0 ;
61 index = 0 ;
62

63 /∗ Send each worker task i t s por t i on o f the array ∗/
64 f o r ( des t =1; dest<= numworkers ; des t++) {
65 p r i n t f ( ” Sending to worker task= %d\n” , des t ) ;
66 f f l u s h ( stdout ) ;
67 MPI Send(&index , 1 , MPI INT , dest , 0 , MPICOMMWORLD) ;
68 MPI Send(&data [ index ] , chunks ize , MPI FLOAT, dest , 0 ,

MPICOMMWORLD) ;
69 index = index + chunks ize ;
70 }
71

72 /∗ Now wait to r e c e i v e back the r e s u l t s from each worker task and
pr i n t ∗/

73 /∗ a few sample va lues ∗/
74 f o r ( i =1; i<= numworkers ; i++) {
75 sour ce = i ;
76 MPI Recv(&index , 1 , MPI INT , source , 1 , MPICOMMWORLD, &s ta tu s )

;
77 MPI Recv(& r e s u l t [ index ] , chunks ize , MPI FLOAT, source , 1 ,

MPICOMMWORLD,
78 &sta tu s ) ;
79

80 p r i n t f ( ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n” ) ;
81 p r i n t f ( ”MASTER: Sample r e s u l t s from worker task = %d\n” , sour ce ) ;
82 p r i n t f ( ” r e s u l t [%d]=%f \n” , index , r e s u l t [ index ] ) ;
83 p r i n t f ( ” r e s u l t [%d]=%f \n” , index+100 , r e s u l t [ index+100]) ;
84 p r i n t f ( ” r e s u l t [%d]=%f \n\n” , index+1000 , r e s u l t [ index+1000]) ;
85 f f l u s h ( stdout ) ;
86 }
87

88 p r i n t f ( ”MASTER: Al l Done ! \n” ) ;
89 }
90

91

92 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ worker task
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

93 i f ( t a s k i d > MASTER) {
94 /∗ Receive my por t i on o f array from the master task ∗/
95 sour ce = MASTER;
96 MPI Recv(&index , 1 , MPI INT , source , 0 , MPICOMMWORLD, &s ta tu s ) ;
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97 MPI Recv(& r e s u l t [ index ] , chunks ize , MPI FLOAT, source , 0 ,
98 MPICOMMWORLD, &s ta tu s ) ;
99 /∗ Do a s imple value assignment to each o f my array elements ∗/

100 f o r ( i=index ; i < index + chunks ize ; i++)
101 r e s u l t [ i ] = i + 1 ;
102

103 /∗ Send my r e s u l t s back to the master task ∗/
104

105 MPI Send(&index , 1 , MPI INT , MASTER, 1 , MPICOMMWORLD) ;
106 MPI Send(& r e s u l t [ index ] , chunks ize , MPI FLOAT, MASTER, 1 ,

MPICOMMWORLD) ;
107

108 }
109 MPI Final i ze ( ) ;
110 }
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4.3 MPI: the Message Passing Interface

• Many early generation commercial parallel computers were based on
the message-passing architecture due to its lower cost relative to shared-
address-space architectures.

• Message-passing became the modern-age form of assembly language, in
which every hardware vendor provided its own library.

• Performed very well on its own hardware, but was incompatible with
the parallel computers offered by other vendors.

• Many of the differences between the various vendor-specific message-
passing libraries were only syntactic.

• However, often enough there were some serious semantic differences
that required significant re-engineering to port a message-passing pro-
gram from one library to another.

• The message-passing interface (MPI) was created to essen-
tially solve this problem.

• MPI defines

– a standard library for message-passing,

– can be used to develop portable message-passing programs.

• The MPI standard defines both the syntax as well as the semantics of
a core set of library routines.

• The MPI library contains many routines, but the number of key con-
cepts is much smaller.

• In fact, it is possible to write fully-functional message-passing programs
by using only six routines (see Table 5.5.1).

4.3.1 Starting and Terminating the MPI Library

• MPI Init is called prior to any calls to other MPI routines.

– Its purpose is to initialize the mpi environment.

– Calling MPI Init more than once during the execution of a pro-
gram will lead to an error.
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Table 4.1: The minimal set of MPI routines.

MPI Init Initializes MPI
MPI Finalize Terminates MPI
MPI Comm size Determines the number of processes
MPI Comm rank Determines the label of the calling process
MPI Send Sends a message
MPI Recv Receives a message

• MPI Finalize is called at the end of the computation.

– It performs various clean-up tasks to terminate the MPI environ-
ment.

– No MPI calls may be performed after MPI Finalize has been
called, not even MPI Init.

• Upon successful execution, MPI Init andMPI Finalize returnMPI SUCCESS ;
otherwise they return an implementation-defined error code.

4.3.2 Communicators

• A key concept used throughout MPI is that of the communication domain.

• A communication domain is a set of processes that are allowed to communicate
with each other.

• Information about communication domains is stored in variables of
type MPI Comm, that are called communicators.

• These communicators are used as arguments to all message transfer
MPI routines.

• They uniquely identify the processes participating in the message trans-
fer operation.

• In general, all the processes may need to communicate with
each other.

• For this reason, MPI defines a default communicator calledMPI COMM WORLD
which includes all the processes involved.
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4.3.3 Getting Information

• MPI Comm size function =⇒ number of processes

• MPI Comm rank function =⇒ label of the calling process

• The calling sequences of these routines are as follows:

int MPI_Comm_size(MPI_Comm comm, int *size)

int MPI_Comm_rank(MPI_Comm comm, int *rank)

• The function MPI Comm size returns in the variable size the number
of processes that belong to the communicator comm.

• Every process that belongs to a communicator is uniquely identified by
its rank.

• The rank of a process is an integer that ranges from zero up to the size
of the communicator minus one.

• Up on return, the variable rank stores the rank of the process.

4.3.4 Sending and Receiving Messages

• The basic functions for sending and receiving messages in MPI are the
MPI Send and MPI Recv, respectively.

• The calling sequences of these routines are as follows:

int MPI_Send(void *buf, int count,

MPI_Datatype datatype,

int dest, int tag,

MPI_Comm comm)

int MPI_Recv(void *buf, int count,

MPI_Datatype datatype,

int source, int tag,

MPI_Comm comm,

MPI_Status *status)

1 MPI Send sends the data stored in the buffer pointed by buf.

• This buffer consists of consecutive entries of the type specified by the
parameter datatype.
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Table 4.2: Correspondence between the datatypes supported by MPI and
those supported by C.

MPI Datatype C Datatype
MPI CHAR signed char
MPI SHORT signed short int
MPI INT signed int
MPI LONG signed long int
MPI UNSIGNED CHAR unsigned char
MPI UNSIGNED SHORT unsigned short int
MPI UNSIGNED unsigned int
MPI UNSIGNED LONG unsigned long int
MPI FLOAT float
MPI DOUBLE double
MPI LONG DOUBLE long double
MPI BYTE
MPI PACKED

• The number of entries in the buffer is given by the parameter count.

Note that for all C datatypes, an equivalent MPI datatype is provided.

• MPI allows two additional datatypes that are not part of the C lan-
guage.

• These are MPI BYTE and MPI PACKED.

– MPI BYTE corresponds to a byte (8 bits)

– MPI PACKED corresponds to a collection of data items that has
been created by packing non-contiguous data.

• Note that the length of the message in MPI Send, as well as in other
MPI routines, is specified in terms of the number of entries being sent
and not in terms of the number of bytes.

• The destination of the message sent byMPI Send is uniquely specified
by

– dest argument. This argument is the rank of the destination pro-
cess in the communication domain specified by the communicator
comm.
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– comm argument.

• Each message has an integer-valued tag associated with it.

• This is used to distinguish different types of messages.

2 MPI Recv receives a message sent by a process whose rank is given
by the source in the communication domain specified by the comm
argument.

• The tag of the sent message must be that specified by the tag argument.

• If there are many messages with identical tag from the same process,
then any one of these messages is received.

• MPI allows specification of wild card arguments for both source and
tag.

– If source is set to MPI ANY SOURCE, then any process of the
communication domain can be the source of the message.

– Similarly, if tag is set to MPI ANY TAG, then messages with
any tag are accepted.

• The received message is stored in continuous locations in the buffer
pointed to by buf.

• The count and datatype arguments of MPI Recv are used to specify
the length of the supplied buffer.

• The received message should be of length equal to or less than this
length.

• If the received message is larger than the supplied buffer, then an
overflow error will occur, and the routine will return the errorMPI ERR TRUNCATE.

• After a message has been received, the status variable can be used to
get information about the MPI Recv operation.

• In C, status is stored using the MPI Status data-structure.

• This is implemented as a structure with three fields, as follows:
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typedef struct MPI_Status {

int MPI_SOURCE;

int MPI_TAG;

int MPI_ERROR;

};

• MPI SOURCE and MPI TAG store the source and the tag of the
received message.

• They are particularly useful whenMPI ANY SOURCE andMPI ANY TAG
are used for the source and tag arguments.

• MPI ERROR stores the error-code of the received message.

• The status argument also returns information about the length of the
received message.

• This information is not directly accessible from the status variable, but
it can be retrieved by calling the MPI Get count function.

• The calling sequence:

int MPI_Get_count(MPI_Status *status,

MPI_Datatype datatype,

int *count)

• MPI Get count takes as arguments the status returned byMPI Recv
and the type of the received data in datatype, and returns the number
of entries that were actually received in the count variable.

• The MPI Recv returns only after the requested message has been
received and copied into the buffer.

• That is, MPI Recv is a blocking receive operation.

• However, MPI allows two different implementations for MPI Send.

1 MPI Send returns only after the correspondingMPI Recv have been
issued and the message has been sent to the receiver.

2 MPI Send first copies the message into a buffer and then returns,
without waiting for the corresponding MPI Recv to be executed.
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• MPI programs must be able to run correctly regardless of which of the
two methods is used for implementing MPI Send. Such programs are
called safe.

• In writing safe MPI programs, sometimes it is helpful to forget about
the alternate implementation of MPI Send and just think of it as
being a blocking send operation.

4.3.5 Avoiding Deadlocks

• The semantics of MPI Send and MPI Recv place some restrictions
on how we can mix and match send and receive operations.

• Consider the following not complete code in which process 0 sends two
messages with different tags to process 1, and process 1 receives them
in the reverse order.

1 i n t a [ 1 0 ] , b [ 1 0 ] , myrank ;
2 MPI Status s ta tu s ;
3 . . .
4 MPI Comm rank (MPICOMMWORLD, &myrank) ;
5 i f (myrank == 0) {
6 MPI Send (a , 10 , MPI INT , 1 , 1 , MPICOMMWORLD) ;
7 MPI Send (b , 10 , MPI INT , 1 , 2 , MPICOMMWORLD) ;
8 }
9 e l s e i f (myrank == 1) {

10 MPI Recv (b , 10 , MPI INT , 0 , 2 , MPICOMMWORLD) ;
11 MPI Recv (a , 10 , MPI INT , 0 , 1 , MPICOMMWORLD) ;
12 }
13 . . .

• If MPI Send is implemented using buffering, then this code will run
correctly (if sufficient buffer space is available).

• However, if MPI Send is implemented by blocking until the matching
receive has been issued, then neither of the two processes will be able
to proceed.

• This code fragment is not safe, as its behavior is implementation de-
pendent.

• The problem in this program can be corrected by matching the order
in which the send and receive operations are issued.

• Similar deadlock situations can also occur when a process sends a mes-
sage to itself.
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• Improper use of MPI Send andMPI Recv can also lead to deadlocks
in situations when each processor needs to send and receive a message
in a circular fashion.

• Consider the following not complete code, in which

– process i sends a message to process i+1 (modulo the number of
processes),

– process i receives a message from process i−1 (module the number
of processes).

1 i n t a [ 1 0 ] , b [ 1 0 ] , npes , myrank ;
2 MPI Status s ta tu s ;
3 . . .
4 MPI Comm size (MPICOMMWORLD, &npes ) ;
5 MPI Comm rank(MPICOMMWORLD, &myrank) ;
6 MPI Send (a , 10 , MPI INT , ( myrank+1)%npes , 1 , MPICOMMWORLD) ;
7 MPI Recv (b , 10 , MPI INT , ( myrank−1+npes )%npes , 1 , MPICOMMWORLD) ;
8 . . .

• When MPI Send is implemented using buffering, the program will
work correctly,

– since every call toMPI Send will get buffered, allowing the call of
the MPI Recv to be performed, which will transfer the required
data.

• However, if MPI Send blocks until the matching receive has been
issued,

– all processes will enter an infinite wait state, waiting for the neigh-
bouring process to issue a MPI Recv operation.

• Note that the deadlock still remains even when we have only two pro-
cesses.

• Thus, when pairs of processes need to exchange data, the above method
leads to an unsafe program.

• The above example can be made safe, by rewriting:

1 i n t a [ 1 0 ] , b [ 1 0 ] , np , myrank ;
2 MPI Status s ta tu s ;
3 . . .
4 MPI Comm size (MPICOMMWORLD, &np) ;
5 MPI Comm rank(MPICOMMWORLD, &myrank) ;
6 i f (myrank%2 == 1) {
7 MPI Send ( a , 10 ,MPI INT , ( myrank+1)%np , 1 ,MPICOMMWORLD) ;
8 MPI Recv(b , 10 ,MPI INT , ( myrank−1+np)%np , 1 ,MPICOMMWORLD) ;
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9 }
10 e l s e {
11 MPI Recv (b , 10 ,MPI INT , ( myrank−1+np)%np , 1 ,MPICOMMWORLD) ;
12 MPI Send (a , 10 ,MPI INT , ( myrank+1)%np , 1 ,MPICOMMWORLD) ;
13 }
14 . . .

• This version partitions the processes into two groups.

• One consists of the odd-numbered processes and the other of the even-
numbered processes.

4.3.6 Sending and Receiving Messages Simultaneously

• The above communication pattern appears frequently in many message-
passing programs,

• For this reason MPI provides the MPI Sendrecv function that both
sends and receives a message.

• MPI Sendrecv does not suffer from the circular deadlock problems
of MPI Send and MPI Recv.

• You can think of MPI Sendrecv as allowing data to travel for both
send and receive simultaneously.

• The calling sequence of MPI Sendrecv is as the following:

i n t MPI Sendrecv ( void ∗ sendbuf , i n t sendcount , MPI Datatype
senddatatype , i n t dest , i n t sendtag ,
void ∗ recvbuf , i n t recvcount , MPI Datatype recvdatatype , i n t
source , i n t recvtag ,
MPI Comm comm, MPI Status ∗ s t a tu s )

• The arguments of MPI Sendrecv are essentially the combination of
the arguments of MPI Send and MPI Recv.

• The safe version of our previous example using MPI Sendrecv is as
the following;

1 i n t a [ 1 0 ] , b [ 1 0 ] , npes , myrank ;
2 MPI Status s ta tu s ;
3 . . .
4 MPI Comm size (MPICOMMWORLD, &npes ) ;
5 MPI Comm rank (MPICOMMWORLD, &myrank) ;
6 MPI SendRecv ( a , 10 , MPI INT , (myrank+1)%npes , 1 , b , 10 , MPI INT , (

myrank−1+npes )%npes , 1 , MPICOMMWORLD, &s ta tu s ) ;
7 . . .
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4.4 MPI Hands-On; Sending and Receiving

Messages III

1. Synchronous sending. MPI example code6.c using synchronous
send. Modify the code and try to see what may cause to deadlock.

1 /∗ A simple MPI example program using synchronous send ∗/
2

3 /∗ The program c on s i s t s o f one sender p r o c e s s and one r e c e i v e r ∗/
4 /∗ The sender p r o c e s s sends a message conta in ing i t s i d e n t i f i e r ∗/
5 /∗ to the r e c e i v e r . This r e c e i v e s the message and sends i t back ∗/
6 /∗ Both pr oc e s s e s use synchronous send ope r a t i on s (MPI Ssend ) ∗/
7

8 /∗ Compile the program with ’ mpicc −o code6 code6 . c ’ ∗/
9 /∗ Run the program with ’mpirun −np 2 code6 ∗/

10

11 #inc l ude <s td i o . h>
12 #inc l ude ”mpi . h”
13

14 i n t main ( i n t argc , char ∗ argv [ ] ) {
15 i n t x , y , np , me ;
16 i n t tag = 42 ;
17 MPI Status s ta tu s ;
18

19 MPI Init (&argc , &argv ) ; /∗ I n i t i a l i z e MPI ∗/
20 MPI Comm size (MPICOMMWORLD, &np) ; /∗ Get number o f p r o c e s s e s ∗/
21 MPI Comm rank (MPICOMMWORLD, &me) ; /∗ Get own i d e n t i f i e r ∗/
22

23 x = me ;
24 i f (me == 0) { /∗ Process 0 does t h i s ∗/
25 p r i n t f ( ” Sending to p r oc e s s 1\n” ) ;
26 MPI Ssend(&x , 1 , MPI INT , 1 , tag , MPICOMMWORLD) ; /∗ Synchronous

send ∗/
27 p r i n t f ( ”Receiv ing from proce s s 1\n” ) ;
28 MPI Recv (&y , 1 , MPI INT , 1 , tag , MPICOMMWORLD, &s ta tu s ) ;
29 p r i n t f ( ”Process %d r e c e i v ed a message conta in ing value %d\n” , me,

y ) ;
30 }
31 e l s e
32 { /∗ Process 1 does t h i s ∗/
33 /∗ Since we use synchronous send , we have to do the r e c e i v e−

operat i on ∗/
34 /∗ f i r s t , o therw i s e we w i l l get a deadlock ∗/
35 MPI Recv (&y , 1 , MPI INT , 0 , tag , MPICOMMWORLD, &s ta tu s ) ;
36 MPI Ssend (&x , 1 , MPI INT , 0 , tag , MPICOMMWORLD) ; /∗

Synchronous send ∗/
37 }
38 MPI Final i ze ( ) ;
39 }

2. Buffered sending. MPI example code7.c using buffered send to pass
a message between two processes.

1 /∗ A simple MPI example program using bu f f e r ed send ∗/
2 /∗ The program does exac t l y the same as code6 . c ∗/
3

4 /∗ The program c on s i s t s o f one sender p r o c e s s and one r e c e i v e r ∗/
5 /∗ The sender p r o c e s s sends a message conta in ing i t s i d e n t i f i e r ∗/

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code6.c
http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code7.c
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6 /∗ to the r e c e i v e r . This r e c e i v e s the message and sends i t back ∗/
7 /∗ Both pr oc e s s e s use bu f f e r ed send ope r a t i on s (MPI Bsend ) ∗/
8

9 /∗ Compile the program with ’mpicc −o code7 code7 . c ’ ∗/
10 /∗ Run the program with ’mpirun −np 2 code7 ∗/
11

12 #inc l ude <s td i o . h>
13 #inc l ude ”mpi . h”
14 #inc l ude <s t d l i b . h>
15

16 #de f i n e BUFFSIZE 100 /∗ S i z e o f the message bu f f e r ∗/
17

18 i n t main ( i n t argc , char ∗ argv [ ] ) {
19 i n t x , y , np , me ;
20 i n t bu f f [BUFFSIZE ] ; /∗ Buf f e r to be used in the communication ∗/
21 i n t s i z e = BUFFSIZE;
22 i n t tag = 42 ;
23 MPI Status s ta tu s ;
24

25 MPI Init (&argc , &argv ) ; /∗ I n i t i a l i z e MPI ∗/
26 MPI Comm size (MPICOMMWORLD, &np) ; /∗ Get number o f p r o c e s s e s ∗/
27 MPI Comm rank(MPICOMMWORLD, &me) ; /∗ Get own i d e n t i f i e r ∗/
28

29 MPI Buf fer attach ( buf f , s i z e ) ; /∗ Create a bu f f e r ∗/
30

31 x = me ;
32

33 i f (me == 0) { /∗ Process 0 does t h i s ∗/
34 p r i n t f ( ”Sending to p r oc e s s 1\n” ) ;
35 MPI Bsend(&x , 1 , MPI INT , 1 , tag , MPICOMMWORLD) ; /∗ Buf f e r ed

send ∗/
36 p r i n t f ( ”Receiv ing from proce s s 1\n” ) ;
37 MPI Recv (&y , 1 , MPI INT , 1 , tag , MPICOMMWORLD, &s ta tu s ) ;
38 p r i n t f ( ”Process %d r e c e i v ed a message conta in ing value %d\n” , me ,

y ) ;
39 }
40 e l s e
41 { /∗ Process 1 does t h i s ∗/
42 /∗ This program would work even though we changed the order o f

∗/
43 /∗ the send and r e c e i v e c a l l s here , because the messages are

∗/
44 /∗ bu f f e r ed and the p r oc e s s e s can continue the execut i on without

∗/
45 /∗ wai t ing f o r the other p r o c e s s to r e c e i v e the message

∗/
46 MPI Recv (&y , 1 , MPI INT , 0 , tag , MPICOMMWORLD, &s ta tu s ) ;
47 MPI Bsend (&x , 1 , MPI INT , 0 , tag , MPICOMMWORLD) ; /∗ Buf f e r ed

send ∗/
48

49 }
50 MPI Buf fer detach(&buf f , &s i z e ) ; /∗ Detach the bu f f e r ∗/
51 MPI Final i ze ( ) ;
52 e x i t (0) ;
53 }

3. Non-blocking sending I. MPI example code8.c using non-blocking
send and receive to pass a message between two processes.

1 /∗ A simple MPI example program using non−block ing send
∗/

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code8.c
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2 /∗ The program does exac t l y the same as code6 . c
∗/

3

4 /∗ The program c on s i s t s o f one sender p r o c e s s and one r e c e i v e r
∗/

5 /∗ The sender p r o c e s s sends a message conta in ing i t s i d e n t i f i e r
∗/

6 /∗ to the r e c e i v e r . This r e c e i v e s the message and sends i t back
∗/

7 /∗ Both pr oc e s s e s use non−block ing send and r e c e i v e ope r a t i on s
∗/

8 /∗ (MPI Isend and MPI Irecv , and MPI Wait to wait un t i l the message
∗/

9 /∗ has a r r i v ed )
∗/

10

11 /∗ Compile the program with ’ mpicc −o code8 code8 . c ’
∗/

12 /∗ Run the program with ’mpirun −np 2 code8
∗/

13

14 #inc l ude <s td i o . h>
15 #inc l ude ”mpi . h”
16 #inc l ude <s t d l i b . h>
17

18 i n t main ( i n t argc , char ∗ argv [ ] ) {
19 i n t x , y , np , me ;
20 i n t tag = 42 ;
21 MPI Status s ta tu s ;
22 MPI Request send req , r e cv r eq ; /∗ Request ob j e c t f o r send and

r e c e i v e ∗/
23

24 MPI Init (&argc , &argv ) ; /∗ I n i t i a l i z e MPI ∗/
25 MPI Comm size (MPICOMMWORLD, &np) ; /∗ Get number o f p r o c e s s e s ∗/
26 MPI Comm rank (MPICOMMWORLD, &me) ; /∗ Get own i d e n t i f i e r ∗/
27

28 x = me ;
29 i f (me == 0) { /∗ Process 0 does t h i s ∗/
30 p r i n t f ( ”Process %d sending \n” ,me) ;
31 MPI Isend(&x , 1 , MPI INT , 1 , tag , MPICOMMWORLD, &send req ) ;
32 p r i n t f ( ”Process %d r e c e i v i n g \n” , me) ;
33 MPI Irecv (&y , 1 , MPI INT , 1 , tag , MPICOMMWORLD, &r ecv r eq ) ;
34 /∗ We could do computations here whi le we are wa i t ing f o r

communication ∗/
35 MPI Wait(&send req , &s ta tu s ) ;
36 MPI Wait(&recv r eq , &s ta tu s ) ;
37 p r i n t f ( ”Process %d r e c e i v ed a message conta in ing value %d\n” , me,

y ) ;
38 }
39 e l s e
40 {
41 MPI Irecv (&y , 1 , MPI INT , 0 , tag , MPICOMMWORLD, &r ecv r eq ) ;
42 MPI Isend (&x , 1 , MPI INT , 0 , tag , MPICOMMWORLD, &send req ) ;
43 /∗ We could do computations here whi le we are wa i t ing f o r

communication ∗/
44 MPI Wait(&recv r eq , &s ta tu s ) ;
45 MPI Wait(&send req , &s ta tu s ) ;
46

47 }
48 MPI Final i ze ( ) ;
49 e x i t (0) ;
50 }
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4. Non-blocking sending II. A simple MPI example code9.c using non-
blocking send and receive. The sender process sends a message to all
other processes. They receive the message and send an answer back.

1 /∗ pr oc e s s e s . The sender p r o c e s s sends a message conta in ing i t s
∗/

2 /∗ i d e n t i f i e r to a l l the other p r o c e s s e s . These r e c e i v e the message
∗/

3 /∗ and r e p l i e s with a message conta in ing t h e i r own i d e n t i f i e r
∗/

4 /∗ Both pr oc e s s e s use non−block ing send and r e c e i v e ope r a t i on s
∗/

5 /∗ (MPI Isend and MPI Irecv , and MPI Waitall )
∗/

6

7 /∗ Compile the program with ’mpicc −o code9 code9 . c ’
∗/

8 /∗ Run the program with ’mpirun −np 4 code9
∗/

9

10 #inc l ude <s td i o . h>
11 #inc l ude ”mpi . h”
12 #inc l ude <s t d l i b . h>
13

14 #de f i n e MAXPROC 8 /∗ Max number o f p r o c s s e s ∗/
15

16 i n t main ( i n t argc , char ∗ argv [ ] ) {
17 i n t i , x , np , me ;
18 i n t tag = 42 ;
19

20 MPI Status s ta tu s [MAXPROC] ;
21 /∗ Request ob j e c t s f o r non−block ing send and r e c e i v e ∗/
22 MPI Request s end req [MAXPROC] , r e cv r eq [MAXPROC] ;
23 i n t y [MAXPROC] ; /∗ Array to r e c e i v e va lues in ∗/
24

25 MPI Init (&argc , &argv ) ; /∗ I n i t i a l i z e ∗/
26 MPI Comm size (MPICOMMWORLD, &np) ; /∗ Get nr o f p r o c e s s e s ∗/
27 MPI Comm rank(MPICOMMWORLD, &me) ; /∗ Get own i d e n t i f i e r ∗/
28

29 x = me ; /∗ This i s the value we send , the p r o c e s s id ∗/
30 i f (me == 0) { /∗ Process 0 does t h i s ∗/
31 /∗ F i r s t check that we have at l e a s t 2 and at most MAXPROC

proce s s e s ∗/
32 i f (np<2 | | np>MAXPROC) {
33 p r i n t f ( ”You have to use at l e s t 2 and at most %d pr oce s s e s \n” ,

MAXPROC) ;
34 MPI Final i ze ( ) ;
35 e x i t (0) ;
36 }
37 p r i n t f ( ”Process %d sending to a l l other p r o c e s s e s \n” ,me) ;
38 /∗ Send a message conta in ing the p r oc e s s id to a l l other p r o c e s s e s

∗/
39 f o r ( i =1; i<np ; i++) {
40 MPI Isend(&x , 1 , MPI INT , i , tag , MPICOMMWORLD, &send req [ i ] ) ;
41 }
42 /∗ While the messages are de l i v e r ed , we could do computations here

∗/
43 /∗ Wait un t i l a l l messages have been sent ∗/
44 /∗ Note that we use r eque s t s and s ta tu s e s s t a r t i n g from po s i t i o n 1

∗/
45 MPI Waitall (np−1, &send req [ 1 ] , &s ta tu s [ 1 ] ) ;

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code9.c
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46 p r i n t f ( ”Process %d r e c e i v i n g from a l l other p r o c e s s e s \n” , me) ;
47 /∗ Receive a message from a l l other p r o c e s s e s ∗/
48 f o r ( i =1; i<np ; i++) {
49 MPI Irecv (&y [ i ] , 1 , MPI INT , i , tag , MPICOMMWORLD, &r ecv r eq [

i ] ) ;
50 }
51 /∗ While the messages are de l i v e r ed , we could do computations here

∗/
52 /∗ Wait un t i l a l l messages have been r e c e i v ed ∗/
53 /∗ Requests and s ta tu s e s s t a r t from po s i t i o n 1 ∗/
54 MPI Waitall (np−1, &r e cv r eq [ 1 ] , &s ta tu s [ 1 ] ) ;
55

56 /∗ Print out one l i n e f o r each message we r e c e i v ed ∗/
57 f o r ( i =1; i<np ; i++) {
58 p r i n t f ( ”Process %d r e c e i v ed message from proce s s %d\n” , me , y [ i

] ) ;
59 }
60 p r i n t f ( ”Process %d ready \n” , me) ;
61 }
62 e l s e
63 { /∗ a l l other p r o c e s s e s do t h i s ∗/
64

65 /∗ Check s an i ty o f the user ∗/
66 i f ( np<2 | | np>MAXPROC) {
67 MPI Final i ze ( ) ;
68 e x i t (0) ;
69 }
70 MPI Irecv (&y , 1 , MPI INT , 0 , tag , MPICOMMWORLD, &r ecv r eq [ 0 ] ) ;
71 MPI Wait(& r ecv r eq [ 0 ] , &s ta tu s [ 0 ] ) ;
72 MPI Isend (&x , 1 , MPI INT , 0 , tag , MPICOMMWORLD, &send req [ 0 ] ) ;
73 /∗ Lots o f computations here ∗/
74 MPI Wait(&send req [ 0 ] , &s ta tu s [ 0 ] ) ;
75 }
76

77 MPI Final i ze ( ) ;
78 e x i t (0) ;
79 }
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4.5 Parallelization Application Example

4.5.1 Pi Computation

• π by numerically evaluating the integral

∫ 1

0

1

1 + x2
dx =

π

4

• Midpoint Rule for
∫ b

a
f(x)dx ≈ (b− a)f(xm)

Figure 4.4: Midpoint Rule.

• Midpoint Rule becomes

∫ 1

0

1

1 + x2
dx ≈

n
∑

i=1

1

1 +
(

i−0.5
n

)2

Sequential Code:

1 #inc l ude <s td i o . h>
2 #inc l ude <math . h>
3 i n t main ( i n t argc , char ∗ argv [ ] )
4 {
5 i n t done = 0 , n , i ;
6 double PI25DT = 3.141592653589793238462643;
7 double mypi , h , sum , x ;
8 whi le ( ! done )
9 {

10 p r i n t f ( ”Enter the number o f i n t e r v a l s : (0 qu i t s ) ” ) ;
11 s can f ( ”%d”,&n) ;
12 i f (n == 0) break ; /∗ Quit when ”0” enter ed ∗/
13 /∗ I n t e g r a l l im i t s are from 0 to 1 ∗/
14 h = (1.0 −0.0) /( double )n ; /∗ Step l ength ∗/
15 sum = 0 . 0 ; /∗ I n i t i a l i z e sum var i ab l e ∗/
16 /∗ l oop over i n t e r v a l f o r i n t e g r a t i o n ∗/
17 f o r ( i = 1 ; i <= n ; i += 1)
18 {
19 x = h ∗ ( ( double ) i − 0 . 5 ) ; /∗ Middle point at s tep ∗/
20 sum += 4.0 / (1 . 0 + x∗x ) ; /∗ Sum up at each s tep ∗/
21 // (” i=%d x=%f sum=%f \n” , i , x , sum) ; /∗ pr i n t intermed iate s t ep s ∗/
22 }

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/sequential_pi.c
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23 mypi = h ∗ sum ; /∗ Obtain r e s u l t i n g p i number ∗/
24 p r i n t f ( ” p i i s approximately %.16 f , Error i s %.16 f \n” ,mypi , \\
25 f abs (mypi − PI25DT) ) ;
26 }
27 }

Figure 4.5: Sequential Code Output.

• Parallel Code:

– The master process reads number of intervals from standard input,
this number is then sent to the processes.

– Having received the number of intervals, each process evaluates
the total area of n/size rectangles under the curve.

– The contributions to the total area under the curve are collected
from participating processes by the master process, which then
adds them up, and prints the result on standard output.

1 #inc l ude <s td i o . h>
2 #inc l ude <math . h>
3 #inc l ude ”mpi . h”
4

5 i n t main ( i n t argc , char ∗ argv [ ] )
6 {
7 i n t done = 0 , n , i ;
8 double PI25DT = 3.141592653589793238462643;
9 double mypi , h , sum , x ;

10 i n t s i z e , rank , me ;
11 i n t tag =11;
12 MPI Status s ta tu s ;
13 double mysum ;
14 double p i ;
15

16 MPI Init (&argc , &argv ) ; /∗ I n i t i a l i z e MPI ∗/
17 MPI Comm size (MPICOMMWORLD, &s i z e ) ; /∗ Get number o f p r o c e s s e s ∗/
18 MPI Comm rank (MPICOMMWORLD, &rank ) ; /∗ Get own i d e n t i f i e r ∗/
19

20 whi le ( ! done )
21 {
22 i f ( rank == 0) { /∗ Process 0 does t h i s ∗/
23 p r i n t f ( ”Enter the number o f i n t e r v a l s : (0 qu i t s ) ” ) ;
24 s can f ( ”%d”,&n) ;

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/parallel_pi.c
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25 /∗ Send a message conta in ing number o f i n t e r v a l s to a l l other p r o c e s s e s ∗/
26 f o r ( i =1; i<s i z e ; i++) {
27 MPI Send(&n , 1 , MPI INT , i , tag , MPICOMMWORLD) ; /∗ Blocking send ∗/
28 }
29 i f ( n == 0) break ; /∗ Quit when ”0” enter ed ∗/
30 /∗ Computing l o c a l p i number f o r rank 0 p r oc e s s ∗/
31 /∗ I n t e g r a l l im i t s are from 0 to 1 ∗/
32 h = (1.0 −0.0) /( double )n ; /∗ Step l ength ∗/
33 mysum = 0 . 0 ; /∗ I n i t i a l i z e sum var i ab l e ∗/
34 f o r ( i = rank+1; i <= n ; i += s i z e ) /∗ Loop over i n t e r v a l f o r i n t e g r a t i o n

∗/
35 {
36 x = h ∗ ( ( double ) i − 0 . 5 ) ; /∗ Middle point at s tep ∗/
37 mysum += 4.0 / (1 . 0 + x∗x ) ; /∗ Sum up at each s tep ∗/
38 // p r i n t f (” i=%d x=%f sum=%f \n” , i , x , sum) ; /∗ Intermed iate s t ep s ∗/
39 }
40 mypi = h ∗ mysum ; /∗ Obtain l o c a l r e s u l t i n g p i number ∗/
41 /∗ Receive a message conta in ing l o c a l r e s u l t i n g p i number from a l l other

p r o c e s s e s ∗/
42 f o r ( i =1; i<s i z e ; i++) {
43 MPI Recv (&pi , 1 , MPI DOUBLE, i , tag , MPICOMMWORLD, &s ta tu s ) ; /∗

Blocking r e c i e v e ∗/
44 p r i n t f ( ”Process 0 : Received l o c a l r e s u l t i n g p i number : %.16 f from

pr oce s s %d \n” , pi , i ) ;
45 mypi=mypi+pi ; /∗ Reduce a l l l o c a l va lues to mypi va r i ab l e ∗/
46 }
47 p r i n t f ( ” p i i s approximately %.16 f , Error i s %.16 f \n” ,mypi , f abs (mypi −

PI25DT) ) ;
48 }
49 e l s e /∗ Other p r o c e s s e s do t h i s ∗/
50 {
51 MPI Recv (&n , 1 , MPI INT , 0 , tag , MPICOMMWORLD, &s ta tu s ) ; /∗ Blocking

r e c i e v e ∗/
52 p r i n t f ( ”Process %d : Received number o f i n t e r v a l s as %d from proce s s 0 \

n” , rank , n) ;
53 i f (n == 0) break ; /∗ Quit when ”0” enter ed ∗/
54 /∗ Computing l o c a l p i number f o r other p r o c e s s e s ∗/
55 /∗ I n t e g r a l l im i t s are from 0 to 1 ∗/
56 h = (1.0 −0.0) /( double )n ; /∗ Step l ength ∗/
57 mysum = 0 . 0 ; /∗ I n i t i a l i z e sum var i ab l e ∗/
58 f o r ( i = rank+1; i <= n ; i += s i z e ) /∗ Loop over i n t e r v a l f o r

i n t e g r a t i o n ∗/
59 {
60 x = h ∗ ( ( double ) i − 0 . 5 ) ; /∗ Middle point at s tep ∗/
61 mysum += 4.0 / (1 . 0 + x∗x ) ; /∗ Sum up at each s tep ∗/
62 // p r i n t f (” i=%d x=%f sum=%f \n” , i , x , sum) ; /∗ Intermed iate s t ep s ∗/
63 }
64 mypi = h ∗ mysum ; /∗ Obtain l o c a l r e s u l t i n g p i number ∗/
65 /∗ Send a message conta in ing l o c a l r e s u l t i n g p i number to master

p r o c e s s e s ∗/
66 MPI Send(&mypi , 1 , MPI DOUBLE, 0 , tag , MPICOMMWORLD) ; /∗ Blocking send

∗/
67 }
68 }
69 MPI Final i ze ( ) ;
70 }
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Figure 4.6: Parallel Code Output.
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4.6 Overlapping Communication with Com-

putation

• The MPI programs we developed so far used blocking send and receive
operations whenever they needed to perform point-to-point communi-
cation.

• Recall that a blocking send operation remains blocked until the
message has been copied out of the send buffer

– either into a system buffer at the source process

– or sent to the destination process.

• Similarly, a blocking receive operation returns only after the mes-
sage has been received and copied into the receive buffer.

• It will be preferable if we can overlap the transmission of the data
with the computation.

4.6.1 Non-Blocking Communication Operations

• In order to overlap communication with computation, MPI provides a
pair of functions for performing non-blocking send and receive opera-
tions.

– MPI Isend =⇒ starts a send operation but does not complete,
that is, it returns before the data is copied out of the buffer.

– MPI Irecv =⇒ starts a receive operation but returns before the
data has been received and copied into the buffer.

i n t MPI Isend ( void ∗buf , i n t count , MPI Datatype datatype , i n t
dest , i n t tag , MPI Comm comm, MPI Request ∗ r eques t )

i n t MPI Irecv ( void ∗buf , i n t count , MPI Datatype datatype , i n t
source , i n t tag , MPI Comm comm, MPI Request ∗ r eques t )

• MPI Isend and MPI Irecv functions allocate a request object
and return a pointer to it in the request variable.

• At a later point in the program, a process that has started a non-
blocking send or receive operationmust make sure that this operation
has completed before it proceeds with its computations.

• This is because a process that has started a non-blocking send operation
may want to

https://www.open-mpi.org/doc/current/man3/MPI_Isend.3.php
https://www.open-mpi.org/doc/current/man3/MPI_Irecv.3.php
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– overwrite the buffer that stores the data that are being sent,

– or a process that has started a non-blocking receive operation
may want to use the data.

• To check the completion of non-blocking send and receive operations,
MPI provides a pair of functions

1. MPI Test =⇒ tests whether or not a non-blocking operation has
finished

2. MPI Wait =⇒ waits (i.e., gets blocked) until a non-blocking op-
eration actually finishes.

i n t MPI Test (MPI Request ∗ request , i n t ∗ f l a g , MPI Status ∗ s t a tu s )
i n t MPI Wait (MPI Request ∗ request , MPI Status ∗ s t a tu s )

• The request object is used as an argument in the MPI Test and
MPI Wait functions to identify the operation whose status we want
to query or to wait for its completion.

• MPI Test tests whether or not the non-blocking send or receive oper-
ation identified by its request has finished.

True It returns flag = true (non-zero value in C) if it is completed.

– The request object pointed to by request is deallocated and request
is set to MPI REQUEST NULL.

– Also the status object is set to contain information about the
operation.

False It returns flag = false (a zero value in C) if it is not completed.

– The request is not modified and the value of the status object is
undefined.

– The MPI Wait function blocks until the non-blocking operation
identified by request completes.

• A non-blocking communication operation can be matched with a cor-
responding blocking operation.

• For example, a process can send a message using a non-blocking send
operation and this message can be received by the other process using
a blocking receive operation.

https://www.open-mpi.org/doc/current/man3/MPI_Test.3.php
https://www.open-mpi.org/doc/current/man3/MPI_Wait.3.php
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• Avoiding Deadlocks; by using non-blocking communication operations
we can remove most of the deadlocks associated with their blocking
counterparts.

• For example, the following piece of code is not safe.

1 i n t a [ 1 0 ] , b [ 1 0 ] , myrank ;
2 MPI Status s ta tu s ;
3 . . .
4 MPI Comm rank (MPICOMMWORLD, &myrank) ;
5 i f (myrank == 0) {
6 MPI Send (a , 10 , MPI INT , 1 , 1 , MPICOMMWORLD) ;
7 MPI Send (b , 10 , MPI INT , 1 , 2 , MPICOMMWORLD) ;
8 }
9 e l s e i f (myrank == 1) {

10 MPI Recv (b , 10 , MPI INT , 0 , 2 , &status , MPICOMMWORLD) ;
11 MPI Recv (a , 10 , MPI INT , 0 , 1 , &status , MPICOMMWORLD) ;
12 }
13 . . .

• However, if we replace either the send or receive operations with their
non-blocking counterparts, then the code will be safe, and will correctly
run on any MPI implementation.

• Safe with non-blocking communication operations;

1 i n t a [ 1 0 ] , b [ 1 0 ] , myrank ;
2 MPI Status s ta tu s ;
3 MPI Request r eque s t s [ 2 ] ;
4 . . .
5 MPI Comm rank (MPICOMMWORLD, &myrank) ;
6 i f (myrank == 0) {
7 MPI Send (a , 10 , MPI INT , 1 , 1 , MPICOMMWORLD) ;
8 MPI Send (b , 10 , MPI INT , 1 , 2 , MPICOMMWORLD) ;
9 }

10 e l s e i f (myrank == 1) {
11 MPI Irecv (b , 10 , MPI INT , 0 , 2 , &r eque s t s [ 0 ] , MPICOMMWORLD) ;
12 MPI Irecv (a , 10 , MPI INT , 0 , 1 , &r eque s t s [ 1 ] , MPICOMMWORLD) ;
13 } //Non−Blocking Communication Operat ions
14 . . .

• This example also illustrates that the non-blocking operations started
by any process can finish in any order depending on the transmission
or reception of the corresponding messages.

• For example, the second receive operation will finish before the first
does.
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4.7 Collective Communication and Compu-

tation Operations

• MPI provides an extensive set of functions for performing commonly
used collective communication operations.

– All of the collective communication functions provided by MPI
take as an argument a communicator that defines the group of pro-
cesses that participate in the collective operation.

– All the processes that belong to this communicator participate
in the operation,

– and all of them must call the collective communication function.

• Even though collective communication operations do not act like barriers,

• act like a virtual synchronization step.

• Barrier; the barrier synchronization operation is performed in MPI
using the MPI Barrier function.

i n t MPI Barr ier (MPI Comm comm)

• The call to MPI Barrier returns only after all the processes in the
group have called this function.

4.7.1 Broadcast

• Broadcast; the one-to-all broadcast operation is performed in MPI
using the MPI Bcast function.

i n t MPI Bcast ( void ∗buf , i n t count , MPI Datatype datatype , i n t source ,
MPI Comm comm)

• MPI Bcast sends the data stored in the buffer buf of process source
to all the other processes in the group.

• The data that is broadcast consist of count entries of type datatype.

• The data received by each process is stored in the buffer buf.

• Since the operations are virtually synchronous, they do not require tags.

https://www.open-mpi.org/doc/current/man3/MPI_Barrier.3.php
https://www.open-mpi.org/doc/current/man3/MPI_Bcast.3.php
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Figure 4.7: Diagram for Broadcast.

4.7.2 Reduction

• Reduction; the all-to-one reduction operation is performed in MPI
using the MPI Reduce function.
i n t MPI Reduce ( void ∗ sendbuf , void ∗ recvbuf , i n t count , MPI Datatype

datatype , MPI Op op , i n t target , MPI Comm comm)

– combines the elements stored in the buffer sendbuf of each pro-
cess in the group,

– using the operation specified in op,

– returns the combined values in the buffer recvbuf of the process
with rank target.

• Both the sendbuf and recvbuf must have the same number of count
items of type datatype.

• When count is more than one, then the combine operation is applied
element-wise on each entry of the sequence.

• Note that all processes must provide a recvbuf array, even if they are
not the target of the reduction operation.

• MPI provides a list of predefined operations that can be used to
combine the elements stored in sendbuf (See Table).

• MPI also allows programmers to define their own operations.

https://www.open-mpi.org/doc/current/man3/MPI_Reduce.3.php
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Figure 4.8: Diagram for Reduce.

Table 4.3: Predefined reduction operations.

Operation Meaning Datatypes
MPI MAX Maximum C integers and floating point
MPI MIN Minimum C integers and floating point
MPI SUM Sum C integers and floating point
MPI PROD Product C integers and floating point
MPI LAND Logical AND C integers
MPI BAND Bit-wise AND C integers and byte
MPI LOR Logical OR C integers
MPI BOR Bit-wise OR C integers and byte
MPI LXOR Logical XOR C integers
MPI BXOR Bit-wise XOR C integers and byte
MPI MAXLOC max-min value-location Data-pairs
MPI MINLOC min-min value-location Data-pairs

4.7.3 Gather

• Gather; the all-to-one gather operation is performed in MPI using the
MPI Gather function.

i n t MPI Gather ( void ∗ sendbuf , i n t sendcount , MPI Datatype senddatatype
, void ∗ recvbuf , i n t recvcount , MPI Datatype recvdatatype , i n t
target , MPI Comm comm)

https://www.open-mpi.org/doc/current/man3/MPI_Gather.3.php
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• Each process, including the target process, sends the data stored in the
array sendbuf to the target process.

• As a result, the target process receives a total of p buffers (p is the
number of processors in the communication comm).

• The data is stored in the array recvbuf of the target process, in a rank
order.

• That is, the data from process with rank i are stored in the recvbuf
starting at location i * sendcount (assuming that the array recvbuf is
of the same type as recvdatatype).

• The data sent by each process must be of the same size and type.

• That is, MPI Gather must be called with the sendcount and send-
datatype arguments having the same values at each process.

• The information about the receive buffer, its length and type applies
only for the target process and is ignored for all the other processes.

• The argument recvcount specifies the number of elements received by
each process and not the total number of elements it receives.

• So, recvcount must be the same as sendcount and their datatypes must
be matching.

• MPI also provides the MPI Allgather function in which the data are
gathered to all the processes and not only at the target process.

i n t MPI Allgather ( void ∗ sendbuf , i n t sendcount , MPI Datatype
senddatatype , void ∗ recvbuf , i n t recvcount , MPI Datatype
recvdatatype , MPI Comm comm)

• The meanings of the various parameters are similar to those forMPI Gather;

• However, each process must now supply a recvbuf array that will store
the gathered data.

https://www.open-mpi.org/doc/current/man3/MPI_Allgather.3.php
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Figure 4.9: Diagram for Gather.

Figure 4.10: Diagram for All Gather.

4.7.4 Scatter

• Scatter; the one-to-all scatter operation is performed in MPI using the
MPI Scatter function.

https://www.open-mpi.org/doc/current/man3/MPI_Scatter.3.php
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i n t MPI Scatter ( void ∗ sendbuf , i n t sendcount , MPI Datatype
senddatatype , void ∗ recvbuf , i n t recvcount , MPI Datatype
recvdatatype , i n t source , MPI Comm comm)

• The source process sends a different part of the send buffer sendbuf to
each processes, including itself.

• The data that are received are stored in recvbuf.

• Process i receives sendcount contiguous elements of type senddatatype
starting from the i * sendcount location of the sendbuf of the source
process (assuming that sendbuf is of the same type as senddatatype).

Figure 4.11: Diagram for Scatter.

4.7.5 All-to-All

• Alltoall; the all-to-all communication operation is performed in MPI
by using the MPI Alltoall function.

i n t MPI Al l toa l l ( void ∗ sendbuf , i n t sendcount , MPI Datatype
senddatatype , void ∗ recvbuf , i n t recvcount , MPI Datatype
recvdatatype , MPI Comm comm)

https://www.open-mpi.org/doc/current/man3/MPI_Alltoall.3.php
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• Each process sends a different portion of the sendbuf array to each
other process, including itself.

• Each process sends to process i sendcount contiguous elements of type
senddatatype starting from the i * sendcount location of its sendbuf
array.

• The data that are received are stored in the recvbuf array.

• Each process receives from process i recvcount elements of type recv-
datatype and stores them in its recvbuf array starting at location i *
recvcount.

Figure 4.12: Diagram for Alltoall.
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4.8 MPI Hands-On; Collective Communica-

tions I

1. Broadcasting an integer value to all of the MPI processes, A
program code10.c that reads an integer value from the terminal and
distributes the value to all of the MPI processes.

• Each process should print out its rank and the value it received.
Values should be read until a negative integer is given as input.

• You may find it helpful to include a fflush( stdout) to the code;
after the printf calls in your program. Without this, output may
not appear when you expect it.

1 #inc l ude <s td i o . h>
2 #inc l ude ”mpi . h”
3

4 i n t main ( i n t argc , char ∗∗ argv )
5 {
6 i n t rank , value ;
7 MPI Init ( &argc , &argv ) ;
8

9 MPI Comm rank( MPICOMMWORLD, &rank ) ;
10 do {
11 i f ( rank == 0)
12 s can f ( ”%d” , &value ) ;
13

14 MPI Bcast ( &value , 1 , MPI INT , 0 , MPICOMMWORLD ) ;
15

16 p r i n t f ( ”Process %d got %d\n” , rank , value ) ;
17 f f l u s h ( stdout ) ;
18

19 } whi le ( value >= 0) ;
20

21 MPI Final i ze ( ) ;
22 r e turn 0 ;
23 }

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code10.c
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2. Broadcasting the name of the master process, A program code11.c
that first broadcasts the name of the master process then each nodes
send hello messages to master node.

1 #inc l ude <s td i o . h>
2 #inc l ude <s t r i n g . h>
3 #inc l ude <mpi . h>
4

5 #de f i n e TRUE 1
6 #de f i n e FALSE 0
7 #de f i n e MASTERRANK 0
8

9 i n t main ( i n t argc , char ∗argv [ ] )
10 {
11 i n t count , p o o l s i z e , my rank , my name length , i am the master =

FALSE;
12 char my name [BUFSIZ/2 ] , master name [BUFSIZ/2 ] , s end bu f f e r [ 2∗BUFSIZ

] ,
13 r e c v bu f f e r [ 2∗BUFSIZ ] ;
14 MPI Status s ta tu s ;
15

16 MPI Init (&argc , &argv ) ;
17 MPI Comm size (MPICOMMWORLD, &p o o l s i z e ) ;
18 MPI Comm rank (MPICOMMWORLD, &my rank ) ;
19 MPI Get processor name (my name , &my name length ) ;
20

21 i f (my rank == MASTERRANK) {
22 i am the master = TRUE;
23 s t r cpy (master name , my name) ;
24 }
25

26 MPI Bcast (master name , BUFSIZ , MPI CHAR, MASTERRANK, MPICOMMWORLD
) ;

27

28 s p r i n t f ( s end buf f e r , ” h e l l o %s , g r e e t i n g s from %s , rank = %d” ,
29 master name , my name , my rank ) ;
30 MPI Send ( send buf f e r , s t r l e n ( s end bu f f e r ) + 1 , MPI CHAR,
31 MASTERRANK, 0 , MPICOMMWORLD) ;
32

33 i f ( i am the master ) {
34 f o r ( count = 1 ; count <= po o l s i z e ; count++) {
35 MPI Recv ( r e cv bu f f e r , BUFSIZ , MPI CHAR, MPI ANY SOURCE,

MPI ANY TAG,
36 MPICOMMWORLD, &s ta tu s ) ;
37 p r i n t f ( ”%s \n” , r e c v bu f f e r ) ;
38 }
39 }
40

41 MPI Final i ze ( ) ;
42 }

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code11.c
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3. Computation of PI number with collective communications.
This example code12.c evaluates π by numerically evaluating the in-
tegral

∫ 1

0

1

1 + x2
dx =

π

4

This code computes PI (with a very simple method) but does not use
MPI Send and MPI Recv. Instead, it uses collective operations to
send data to and from all of the running processes.

• The routineMPI Bcast sends data from one process to all others.

• The routine MPI Reduce combines data from all processes (by
adding them in this case), and returning the result to a single
process.

1 #inc l ude <s td i o . h>
2 #inc l ude ”mpi . h”
3 #inc l ude <math . h>
4

5 i n t main ( i n t argc , char ∗ argv [ ] )
6 {
7 i n t done = 0 , n , myid , numprocs , i , r c ;
8 double PI25DT = 3.141592653589793238462643;
9 double mypi , pi , h , sum , x , a ;

10

11 MPI Init (&argc ,&argv ) ;
12 MPI Comm size (MPICOMMWORLD,&numprocs ) ;
13 MPI Comm rank(MPICOMMWORLD,&myid ) ;
14 whi le ( ! done )
15 {
16 i f (myid == 0) {
17 p r i n t f ( ”Enter the number o f i n t e r v a l s : (0 qu i t s ) ” ) ;
18 s can f ( ”%d”,&n) ;
19 }
20 MPI Bcast(&n , 1 , MPI INT , 0 , MPICOMMWORLD) ;
21 i f (n == 0) break ;
22

23 h = 1.0 / ( double ) n ;
24 sum = 0 . 0 ;
25 f o r ( i = myid + 1 ; i <= n ; i += numprocs ) {
26 x = h ∗ ( ( double ) i − 0 . 5 ) ;
27 sum += 4.0 / (1 . 0 + x∗x ) ;
28 }
29 mypi = h ∗ sum ;
30

31 MPI Reduce(&mypi , &pi , 1 , MPI DOUBLE, MPI SUM, 0 , MPICOMMWORLD) ;
32

33 i f (myid == 0)
34 p r i n t f ( ” p i i s approximately %.16 f , Error i s %.16 f \n” ,
35 pi , f abs ( p i − PI25DT) ) ;
36 }
37 MPI Final i ze ( ) ;
38 }

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code12.c
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5.1 Programming Shared Memory

5.1.1 What is a Thread?

• Technically, a thread is defined as an independent stream of in-
structions that can be scheduled to run by the operating system.

– Suppose that a main program contains a number of procedures
(functions, subroutines, ...).

– Then suppose all of these procedures being able to be scheduled
to run simultaneously and/or independently.

– That would describe a ”multi-threaded” program.

• Before understanding a thread , one first needs to understand a UNIX
process.

• Processes contain information about program resources and program
execution state.

– Threads use and exist within these process resources,

– To be scheduled by the OS,

– Run as independent entities.

– A thread has its own independent flow of control as long as its
parent process exists (dies if the parent process dies!).

– A thread duplicates only the essential resources it needs.

• A thread is ”lightweight” because most of the overhead has already
been accomplished through the creation of its process.

5.1.2 Threads Model

• In shared memory multiprocessor architectures, such as SMPs, threads
can be used to implement parallelism.

• In the threads model of parallel programming, a single process can have

– multiple concurrent,

– execution paths.

• Most simple analogy for threads is the concept of a single program that
includes a number of subroutines:



5.1. PROGRAMMING SHARED MEMORY 99

Figure 5.1: Threads model.

• Main program loads and ac-
quires all of the necessary system
and user resources to run.

• Main program performs some se-
rial work,

• and then creates a number of
tasks (threads) that can be
scheduled and run by the OS
concurrently.

• Each thread has local data, but also, shares the entire resources of main
program.

Figure 5.2: Thread shared memory model.

• This saves the overhead associated with replicating a program’s re-
sources for each thread.

• Each thread also benefits from a global memory view because it shares
the memory space of program.

• Any thread can execute any subroutine at the same time as other
threads.

• Threads communicate with each other through global memory (updat-
ing address locations).

• Changes made by one thread to shared system resources (such as closing
a file) will be seen by all other threads.

• This requires synchronization constructs to insure that more than
one thread is not updating the same global address at any time.
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Figure 5.3: Threads Unsafe! Pointers having the same value point to the
same data.

5.1.3 Why Threads?

• The primary motivation for using threads is to realize potential program
performance gains.

• When compared to the cost of creating and managing a process, a
thread can be created with much less OS overhead.

• Managing threads requires fewer system resources than managing pro-
cesses.

• Threaded programming models offer significant advantages over message-
passing programming models along with some disadvantages as well.

• Software Portability;

– Threaded applications can be developed on serial machines and
run on parallel machines without any changes.

– This ability to migrate programs between diverse architectural
platforms is a very significant advantage of threaded APIs.

• Latency Hiding;

– One of the major overheads in programs (both serial and parallel)
is the access latency for memory access, I/O, and communication.

– By allowing multiple threads to execute on the same processor,
threaded APIs enable this latency to be hidden.

– In effect, while one thread is waiting for a communication opera-
tion, other threads can utilize the CPU, thus masking associated
overhead.
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• Scheduling and Load Balancing;

– While in many structured applications the task of allocating equal
work to processors is easily accomplished,

– In unstructured and dynamic applications (such as game playing
and discrete optimization) this task is more difficult.

– Threaded APIs allow the programmer

∗ to specify a large number of concurrent tasks

∗ and support system-level dynamic mapping of tasks to pro-
cessors with a view to minimizing idling overheads.

• Ease of Programming, Widespread Use

– Due to the mentioned advantages, threaded programs are signifi-
cantly easier to write (!) than corresponding programs using mes-
sage passing APIs.

– With widespread acceptance of the POSIX thread API, devel-
opment tools for POSIX threads are more widely available and
stable.

• Overlapping CPU work with I/O: For example, a program may
have sections where it is performing a long I/O operation. While one
thread is waiting for an I/O system call to complete, CPU intensive
work can be performed by other threads.

• Priority/real-time scheduling: tasks which are more important can
be scheduled to supersede or interrupt lower priority tasks.

• Asynchronous event handling: tasks which service events of inde-
terminate frequency and duration can be interleaved. For example, a
web server can both transfer data from previous requests and manage
the arrival of new requests.

• A number of vendors provide vendor-specific thread APIs. Standard-
ization efforts have resulted in two very different implementations of
threads.

• Microsoft has its own implementation for threads, which is not related
to the UNIX POSIX standard or OpenMP.

1. POSIX Threads. Library based; requires parallel coding.
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• C Language only. Very explicit parallelism; requires significant
programmer attention to detail.

• Commonly referred to as Pthreads .

• POSIX has emerged as the standard threads API, supported by
most vendors.

2. OpenMP. Compiler directive based; can use serial code.

• Jointly defined by a group of major computer hardware and soft-
ware vendors.

• The OpenMP C/C++ API was released in late 1998.

• Portable / multi-platform, including Unix and Windows platforms

• Can be very easy and simple to use - provides for “incremental
parallelism“.

• MPI =⇒ on-node communications,

– MPI libraries usually implement on-node task communication via
shared memory, which involves at least one memory copy operation
(process to process).

• Threads =⇒ on-node data transfer.

– For Pthreads there is no intermediate memory copy required
because threads share the same address space within a single pro-
cess.

– There is no data transfer.

– It becomes more of a cache-to-CPU or memory-to-CPU band-
width (worst case) situation.

– These speeds are much higher.

5.1.4 Thread Basics: Creation and Termination

Thread Creation

• The Pthreads API subroutines can be informally grouped into four
major groups:

1. Thread management: Routines that work directly on threads -
creating, detaching, joining, set/query thread attributes (joinable,
scheduling etc.), etc.
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2. Mutexes: Routines that deal with synchronization. Mutex func-
tions provide for creating, destroying, locking and unlocking mu-
texes, setting or modifying attributes associated with mutexes.

3. Condition variables: Routines that address communications
between threads that share a mutex. Functions to create, destroy,
wait and signal based upon specified variable values, set/query
condition variable attributes.

4. Synchronization: Routines that manage read/write locks and
barriers.

Creating Threads:

• Initially, main program contains a single, default thread.

• pthread create creates a new thread and makes it executable.
1 #inc l ude <pthread . h>
2 i n t
3 pth r ead c r ea t e ( pthr ead t ∗ thread handle ,
4 const p t h r e ad a t t r t ∗ a t t r i bu t e ,
5 void ∗ (∗ th r ead f unc t i on ) ( void ∗) ,
6 void ∗ arg ) ;

• Creates a single thread that corresponds to the invocation of the func-
tion thread function (and any other functions called by thread function).

• Once created, threads are peers, and may create other threads.

• On successful creation of a thread, a unique identifier is associated with
the thread and assigned to the location pointed to by thread handle.

• On successful creation of a thread, pthread create returns 0; else it
returns an error code.

• The thread has the attributes described by the attribute argument.

• The arg field specifies a pointer to the argument to function thread function.

• This argument is typically used to pass the workspace and other thread-specific
data to a thread.

• There is no implied hierarchy or dependency between threads.

• Unless you are using the Pthreads scheduling mechanism, it is up to
the implementation and/or OS to decide where and when threads will
execute.

• Robust programs should not depend upon threads executing in a spe-
cific order.
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Thread Termination

Terminating Threads.

• There are several ways in which a Pthread may be terminated:

a The thread returns from its starting routine (the main routine for the
initial thread).

b The thread makes a call to the pthread exit subroutine.

c The thread is cancelled by another thread via the pthread cancel
routine.

d The entire process is terminated due to a call to either the exec or exit
subroutines.

– Ifmain finishes before the threads and exits with pthread exit(),
the other threads will continue to execute (join function!).

– If main finishes after the threads and exits, the threads will be
automatically terminated.

Example Code:

• This example code creates 5 threads with the pthread create() rou-
tine.

• Each thread prints a ’Hello World!’ message, and then terminates with
a call to pthread exit().

1 #inc l ude <pthread . h>
2 #inc l ude <s td i o . h>
3 #inc l ude <s t d l i b . h>
4 #inc l ude <uni s td . h>
5

6 #de f i n e NUMTHREADS 5
7

8 void ∗Pr intHe l l o ( void ∗ thr ead id )
9 {

10 s l e ep (10) ;
11 l ong t i d ;
12 t i d = ( long ) thr ead id ;
13 p r i n t f ( ”He l l o World ! I t ’ s me, thread #%ld !\n” , t i d ) ;
14 pth r ead ex i t (NULL) ;
15 }
16

17 i n t main ( i n t argc , char ∗ argv [ ] )
18 {
19 pthr ead t thr eads [NUMTHREADS ] ;
20 i n t r c ;
21 l ong t ;

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code13.c
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22 f o r ( t=0; t<NUMTHREADS; t++){
23 p r i n t f ( ” In main : c r ea t i ng thread %ld \n” , t ) ;
24 r c = pth r ead c r ea t e (&threads [ t ] , NULL, Pr intHe l l o , ( void ∗) t ) ;
25 i f ( r c ) {
26 p r i n t f ( ”ERROR; r eturn code from pth r ead c r ea t e ( ) i s %d\n” , r c ) ;
27 e x i t (−1) ;
28 }
29 }
30

31 /∗ Last thing that main ( ) should do ∗/
32 pth r ead ex i t (NULL) ;
33 }
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5.2 Hands-on; Shared Memory I; Threads

1. Creation and Termination Threads, This example code13.c cre-
ates 5 threads with the pthread create() routine. Each thread prints
a “Hello World!” message, and then terminates with a call to pthread exit().
Compile as

gcc -o code13 code13.c -lpthread /* libpthread as a part of

Unix/Linux operating systems */

./code13

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

2 ∗ FILE : h e l l o . c
3 ∗ DESCRIPTION:
4 ∗ A ” h e l l o world” Pthreads program . Demonstrates thread c r ea t i on

and
5 ∗ te rminat i on .
6 ∗ AUTHOR: B l a i s e Barney
7 ∗ LAST REVISED: 08/09/11
8 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗/
9 #inc l ude <pthread . h>

10 #inc l ude <s td i o . h>
11 #inc l ude <s t d l i b . h>
12 #inc l ude <uni s td . h>
13

14 #de f i n e NUMTHREADS 5
15

16 void ∗Pr intHe l l o ( void ∗ thr ead id )
17 {
18 s l e ep (10) ;
19 l ong t i d ;
20 t i d = ( long ) thr ead id ;
21 p r i n t f ( ”He l l o World ! I t ’ s me, thread #%ld !\n” , t i d ) ;
22 pth r ead ex i t (NULL) ;
23 }
24

25 i n t main ( i n t argc , char ∗ argv [ ] )
26 {
27 pthr ead t thr eads [NUMTHREADS] ;
28 i n t r c ;
29 l ong t ;
30 f o r ( t=0; t<NUMTHREADS; t++){
31 p r i n t f ( ” In main : c r ea t i ng thread %ld \n” , t ) ;
32 r c = pth r ead c r ea t e(&threads [ t ] , NULL, Pr intHe l l o , ( void ∗) t ) ;
33 i f ( r c ) {
34 p r i n t f ( ”ERROR; r eturn code from pth r ead c r ea t e ( ) i s %d\n” , r c ) ;
35 e x i t (−1) ;
36 }
37 }
38

39 /∗ Last thing that main ( ) should do ∗/
40 pth r ead ex i t (NULL) ;
41 }

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code13.c
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2. Passing Arguments to Threads 1, This example code14.c demon-
strates how to pass a simple integer to each thread.

gcc -o code14 code14.c -lpthread

./code14

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

2 ∗ FILE : h e l l o a r g 1 . c
3 ∗ DESCRIPTION:
4 ∗ A ” he l l o world” Pthreads program which demonstrates one s a f e way
5 ∗ to pass arguments to thr eads dur ing thread c r ea t i on .
6 ∗ AUTHOR: B l a i s e Barney
7 ∗ LAST REVISED: 08/04/15
8 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗/
9 #inc l ude <pthread . h>

10 #inc l ude <s td i o . h>
11 #inc l ude <s t d l i b . h>
12 #inc l ude <uni s td . h>
13

14 #de f i n e NUMTHREADS 8
15 char ∗messages [NUMTHREADS] ;
16

17 void ∗Pr intHe l l o ( void ∗ thr ead id )
18 {
19 s l e ep (1) ;
20 l ong ta s k i d ;
21 t a s k i d = ( long ) thr ead id ;
22 p r i n t f ( ”Thread %ld : %s \n” , taskid , messages [ t a s k i d ] ) ;
23 pth r ead ex i t (NULL) ;
24 }
25

26 i n t main ( i n t argc , char ∗argv [ ] )
27 {
28 pthr ead t thr eads [NUMTHREADS ] ;
29 l ong ta s k i d s [NUMTHREADS] ;
30 i n t rc , t ;
31

32 messages [ 0 ] = ”Engl i sh : He l l o World ! ” ;
33 messages [ 1 ] = ”French : Bonjour , l e monde ! ” ;
34 messages [ 2 ] = ”Spanish : Hola a l mundo” ;
35 messages [ 3 ] = ”Klingon : Nuq neH ! ” ;
36 messages [ 4 ] = ”German : Guten Tag , Welt ! ” ;
37 messages [ 5 ] = ”Russian : Zdravstvuyte , mir ! ” ;
38 messages [ 6 ] = ”Japan : Sekai e konnichiwa ! ” ;
39 messages [ 7 ] = ”Latin : Orbis , t e s a l u to ! ” ;
40

41 f o r ( t =0; t<NUMTHREADS; t++) {
42 t a s k i d s [ t ] = t ;
43 p r i n t f ( ”Creat ing thread %d\n” , t ) ;
44 r c = pth r ead c r ea t e (&threads [ t ] , NULL, Pr intHe l l o , ( void ∗)

t a s k i d s [ t ] ) ;
45 i f ( r c ) {
46 p r i n t f ( ”ERROR; r eturn code from pth r ead c r ea t e ( ) i s %d\n” , r c ) ;
47 e x i t (−1) ;
48 }
49 }
50

51 pth r ead ex i t (NULL) ;
52 }

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code14.c
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3. Passing Arguments to Threads 2, This example code15.c shows
how to setup/pass multiple arguments via a structure. Each thread
receives a unique instance of the structure.

gcc -o code15 code15.c -lpthread

./code15

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

2 ∗ FILE : h e l l o a r g 2 . c
3 ∗ DESCRIPTION:
4 ∗ A h e l l o world Pthreads program which demonstrates another s a f e way
5 ∗ to pass arguments to thr eads dur ing thread c r ea t i on . In t h i s case ,
6 ∗ a s t r u c tu r e i s used to pass mul t ip l e arguments .
7 ∗ AUTHOR: B l a i s e Barney
8 ∗ LAST REVISED: 01/29/09
9 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗/
10 #inc l ude <pthread . h>
11 #inc l ude <s td i o . h>
12 #inc l ude <s t d l i b . h>
13 #inc l ude <uni s td . h>
14

15 #de f i n e NUMTHREADS 8
16

17 char ∗messages [NUMTHREADS ] ;
18

19 s t r u c t thr ead data
20 {
21 i n t th r ead i d ;
22 i n t sum ;
23 char ∗message ;
24 } ;
25

26 s t r u c t thr ead data thr ead data ar ray [NUMTHREADS] ;
27

28 void ∗Pr intHe l l o ( void ∗ threadarg )
29 {
30 // s l e ep (1) ;
31 i n t taskid , sum ;
32 char ∗he l l o msg ;
33 s t r u c t thr ead data ∗my data ;
34

35 s l e ep (1) ;
36 my data = ( s t r u c t thr ead data ∗) threadarg ;
37 t a s k i d = my data−>th r ead i d ;
38 sum = my data−>sum ;
39 he l l o msg = my data−>message ;
40 p r i n t f ( ”Thread %d : %s Sum=%d\n” , taskid , hel lo msg , sum) ;
41 pth r ead ex i t (NULL) ;
42 }
43

44 i n t main ( i n t argc , char ∗ argv [ ] )
45 {
46 pthr ead t thr eads [NUMTHREADS] ;
47 i n t ∗ t a s k i d s [NUMTHREADS ] ;
48 i n t rc , t , sum ;
49

50 sum=0;
51 messages [ 0 ] = ”Engl i sh : He l l o World ! ” ;

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code15.c
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52 messages [ 1 ] = ”French : Bonjour , l e monde ! ” ;
53 messages [ 2 ] = ”Spanish : Hola a l mundo” ;
54 messages [ 3 ] = ”Klingon : Nuq neH ! ” ;
55 messages [ 4 ] = ”German : Guten Tag , Welt ! ” ;
56 messages [ 5 ] = ”Russian : Zdravstvytye , mir ! ” ;
57 messages [ 6 ] = ”Japan : Sekai e konnichiwa ! ” ;
58 messages [ 7 ] = ”Latin : Orbis , t e s a l u to ! ” ;
59

60 f o r ( t =0; t<NUMTHREADS; t++) {
61 sum = sum + t ;
62 thr ead data ar ray [ t ] . t h r ead i d = t ;
63 thr ead data ar ray [ t ] . sum = sum ;
64 thr ead data ar ray [ t ] . message = messages [ t ] ;
65 p r i n t f ( ”Creat ing thread %d\n” , t ) ;
66 r c = pth r ead c r ea t e (&threads [ t ] , NULL, Pr intHe l l o , ( void ∗) &

thread data ar ray [ t ] ) ;
67

68 i f ( r c ) {
69 p r i n t f ( ”ERROR; r eturn code from pth r ead c r ea t e ( ) i s %d\n” , r c ) ;
70 e x i t (−1) ;
71 }
72 }
73

74 pth r ead ex i t (NULL) ;
75 }
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4. Passing Arguments to Threads 3 - Incorrectly, This example
code16.c performs argument passing incorrectly.

• It passes the address of variable t, which is shared memory space
and visible to all threads.

• The loop which creates threads modifies the contents of the ad-
dress passed as an argument, possibly before the created threads
can access it.

gcc -o code16 code16.c -lpthread

./code16

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

2 ∗ FILE : bug3 . c
3 ∗ DESCRIPTION:
4 ∗ This ” h e l l o world” Pthreads program demonstrates an unsa f e (

i n c o r r e c t )
5 ∗ way to pass thread arguments at thread c r ea t i on . Compare with

h e l l o a r g 1 . c .
6 ∗ In t h i s case , the argument va r i ab l e i s changed by the main thread

as i t
7 ∗ c r e a t e s new threads .
8 ∗ AUTHOR: B l a i s e Barney
9 ∗ LAST REVISED: 07/16/14

10 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗/
11 #inc l ude <pthread . h>
12 #inc l ude <s td i o . h>
13 #inc l ude <s t d l i b . h>
14 #inc l ude <uni s td . h>
15

16 #de f i n e NUMTHREADS 8
17 void ∗Pr intHe l l o ( void ∗ thr ead id )
18 {
19 // s l e ep (1) ;
20 l ong ta s k i d ;
21 t a s k i d = ∗( long ∗) thr ead id ;
22 p r i n t f ( ”He l l o from thread %ld \n” , t a s k i d ) ;
23 pth r ead ex i t (NULL) ;
24 }
25

26 i n t main ( i n t argc , char ∗ argv [ ] )
27 {
28 pthr ead t thr eads [NUMTHREADS] ;
29 i n t r c ;
30 l ong t ;
31

32 f o r ( t=0; t<NUMTHREADS; t++) {
33 p r i n t f ( ”Creat ing thread %ld \n” , t ) ;
34 r c = pth r ead c r ea t e(&threads [ t ] , NULL, Pr intHe l l o , ( void ∗) &t ) ;
35 i f ( r c ) {
36 p r i n t f ( ”ERROR; r eturn code from pth r ead c r ea t e ( ) i s %d\n” , r c ) ;
37 e x i t (−1) ;
38 }
39 }
40 pth r ead ex i t (NULL) ;
41 }

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code16.c
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5. Joining Threads, This example code17.c demonstrates how to “wait”
for thread completions by using the Pthread join routine. Since some
implementations of Pthreads may not create threads in a joinable state,
the threads in this example are explicitly created in a joinable state so
that they can be joined later. Compile as

gcc -o code17 code17.c -lpthread -lm

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

2 ∗ FILE : j o i n . c
3 ∗ DESCRIPTION:
4 ∗ This example demonstrates how to ”wait ” f o r thread complet ions by
5 ∗ us ing the Pthread j o i n r ou t i n e . Threads are e x p l i c i t l y cr eated in
6 ∗ a j o i n ab l e s t a t e f o r p o r t a b i l i t y r easons . Use o f the p th r ead ex i t
7 ∗ s t a tu s argument i s a l s o shown .
8 ∗ AUTHOR: 8/98 B l a i s e Barney
9 ∗ LAST REVISED: 01/30/09

10 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
11 #inc l ude <pthread . h>
12 #inc l ude <s td i o . h>
13 #inc l ude <s t d l i b . h>
14 #inc l ude <math . h>
15 #inc l ude <uni s td . h>
16

17 #de f i n e NUMTHREADS 4
18 void ∗BusyWork ( void ∗ t )
19 {
20 // s l e ep (1) ;
21 i n t i ;
22 l ong t i d ;
23 double r e s u l t =0.0;
24 t i d = ( long ) t ;
25 p r i n t f ( ”Thread %ld s t a r t i n g . . . \ n” , t i d ) ;
26 f o r ( i =0; i <1000000; i++)
27 {
28 r e s u l t = r e s u l t + s i n ( i ) ∗ tan ( i ) ;
29 }
30 p r i n t f ( ”Thread %ld done . Resul t = %e\n” , t id , r e s u l t ) ;
31 pth r ead ex i t ( ( void ∗) t ) ;
32 }
33

34 i n t main ( i n t argc , char ∗ argv [ ] )
35 {
36 pthr ead t thread [NUMTHREADS] ;
37 p th r e ad a t t r t a t t r ;
38 i n t r c ;
39 l ong t ;
40 void ∗ s t a tu s ;
41 /∗ I n i t i a l i z e and s e t thread detached a t t r i b u t e ∗/
42 p t h r e a d a t t r i n i t (&at t r ) ;
43 p th r e ad a t t r s e t d e t a ch s t a t e (&attr , PTHREADCREATE JOINABLE) ;
44

45 f o r ( t =0; t<NUMTHREADS; t++) {
46 p r i n t f ( ”Main : c r ea t i ng thread %ld \n” , t ) ;
47 r c = pth r ead c r ea t e (&thread [ t ] , &attr , BusyWork , ( void ∗) t ) ;
48 i f ( r c ) {
49 p r i n t f ( ”ERROR; r eturn code from pth r ead c r ea t e ( ) i s %d\n” , r c ) ;
50 e x i t (−1) ;
51 }
52 }

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code17.c
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5.3 OpenMP: a Standard for Directive Based

Parallel Programming

• Although standardization and support for the threaded APIs has a con-
siderable progress, their use is still restricted to system programmers
as opposed to application programmers.

• One of the reasons for this is that APIs such as Pthreads are considered
to be low-level primitives.

• A large class of applications can be efficiently supported by higher
level constructs (or directives)

• Which rid the programmer of the mechanics of manipulating threads.

• Such directive-based languages have standardization efforts suc-
ceeded in the form of OpenMP.

• OpenMP is an API that can be used with FORTRAN, C,
and C++ for programming shared address space machines.

• Standard API for defining multi-threaded shared-memory programs.

• Allow a programmer to separate a program into serial regions and
parallel regions, rather than concurrently-executing threads.

• NOT parallelize automatically and NOT guarantee speedup.

• General structure:

1 #inc l ude <omp . h>
2 main ( ) {
3 i n t var1 , var2 , var3 ;
4 S e r i a l code
5 Beginning o f p a r a l l e l s e c t i o n . Fork a team of thr eads
6 Spec i f y va r i ab l e s cop ing
7 #pragma omp p a r a l l e l p r i va t e ( var1 , var2 ) shared ( var3 )
8 {
9 Pa r a l l e l s e c t i o n executed by a l l thr eads

10 Al l thr eads j o i n master thread and disband
11 }
12 Resume s e r i a l code
13 }

https://www.openmp.org/
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5.3.1 The OpenMP Programming Model

• OpenMP directives provide support for concurrency, synchroniza-
tion, and data handling while avoiding the need for explicitly setting
up mutexes, condition variables, data scope, and initialization.

• OpenMP directives in C is based on the #pragma compiler directives.

• The directive itself consists of a directive name followed by clauses.

#pragma omp d i r e c t i v e [ c l a u s e l i s t ]

• OpenMP programs execute serially until they encounter the parallel
directive.

• This directive is responsible for creating a group of threads.

• The exact number of threads can be

– specified in the directive (num threads(4)),

– set using an environment variable (export OMP NUM THREADS=4
[sh, ksh, bash]),

– defined at runtime using OpenMP functions (omp set num threads(4)).

• The main thread that encounters the parallel directive becomes the
master of this group of threads with id 0.

• The parallel directive has the following prototype:

#pragma omp p a r a l l e l [ c l a u s e l i s t ]
/∗ s t ruc tu r ed block ∗/

• Each thread created by this directive executes the structured block spec-
ified by the parallel directive (SPMD).

1 i n t main ( ) {
2 omp set num threads (4) ;
3 // Do th i s part in p a r a l l e l
4 #pragma omp p a r a l l e l
5 {
6 p r i n t f ( ”Hel lo , World !\n” ) ;
7 }
8 r e turn 0 ; Figure 5.4: Creating four threads for

”printf” function.
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Figure 5.5: A sample OpenMP program along with its Pthreads translation
that might be performed by an OpenMP compiler.

• The clause list is used to specify conditional parallelization, num-
ber of threads, and data handling.

1 Conditional Parallelization: The clause if (scalar expression) de-
termines whether the parallel construct results in creation of threads.

2 Degree of Concurrency: The clause num threads (integer expression)
specifies the number of threads that are created by the parallel direc-
tive.

3 Data Handling: The clause private (variable list) indicates that the
set of variables specified is local to each thread.

– Each thread has its own copy of each variable in the list.

– The clause firstprivate (variable list) is similar to the private clause,
except the values of variables on entering the threads are initialized
to corresponding values before the parallel directive.

– The clause shared (variable list) indicates that all variables in the
list are shared across all the threads,
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Figure 5.6: Fork-Join Model.

FORK Master thread then creates a team of parallel threads.

Statements in program that are enclosed by the parallel region con-
struct are executed in parallel among the various threads.

JOIN When the team threads complete the statements in the parallel region
construct, they synchronize and terminate, leaving only the master
thread.

Shared Variables. OpenMP default is shared variables. To make private,
need to declare with pragma:

1 #inc l ude <s td i o . h>
2 #inc l ude <omp . h>
3 #inc l ude <uni s td . h>
4 i n t a , b , x , y , num threads , thread num ;
5 i n t main ( )
6 {
7 p r i n t f ( ” I am in s equen t i a l part .\n” ) ;
8 #pragma omp p a r a l l e l num threads (8) p r i va t e ( a ) shared (b )
9 {

10 num threads=omp get num threads ( ) ;
11 thread num=omp get thread num () ;
12 x=thread num ;
13 // s l e ep (1) ;
14 y=x+1;
15 p r i n t f ( ” I am openMP pa r e l l i z e d part and thread %d . \n X and Y va lues are

%d and %d . \n” , omp get thread num () ,x , y ) ;
16 }
17 p r i n t f ( ” I am in s equen t i a l part again .\n” ) ;
18 }

X and y are shared variables. There is a risk of data race.

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code19.c
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Table 5.1: Correct and Wrong outputs of the program.

Using the parallel directive;

1 pragma omp p a r a l l e l i f ( i s p a r a l l e l == 1) num threads (8 ) p r i v a t e
( a ) shared (b) f i r s t p r i v a t e ( c )

2 {
3 /∗ s t ruc tur ed block ∗/
4 }

• Here, if the value of the variable is parallel equals one, eight threads
are created.

• Each of these threads gets private copies of variables a and c, and
shares a single value of variable b.

• Furthermore, the value of each copy of c is initialized to the value of c
before the parallel directive.

• The clause default (shared) implies that, by default, a variable is shared
by all the threads.

• The clause default (none) implies that the state of each variable used
in a thread must be explicitly specified.

– This is generally recommended, to guard against errors arising
from unintentional concurrent access to shared data.

The reduction clause :

• Specifies how multiple local copies of a variable at different threads
are combined into a single copy at the master when threads exit.
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• The usage of the reduction clause is reduction (operator: variable list).

– This clause performs a reduction on the scalar variables specified
in the list using the operator.

– The variables in the list are implicitly specified as being private
to threads.

• The operator can be one of

+ * - & | ^ && ||

• Each of the eight threads gets a copy of the variable sum.

1 #pragma omp p a r a l l e l r educ t i on (+: sum) num threads (8 )
2 {
3 /∗ compute l o c a l sums here ∗/
4 }
5 /∗ sum here conta in s sum o f a l l l o c a l i n s t an c e s o f sums ∗/

Parallel Loop:

• Compiler calculates loop bounds for each thread directly from serial
source (computation decomposition).

• Compiler also manages data partitioning.

• Synchronization also automatic (barrier).

• Preprocessor calculates loop bounds and divide iterations among par-
allel threads.

Loop Scheduling in Parallel for pragma
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• Master thread creates additional
threads, each with a separate execution
context.

• All variables declared outside for loop
are shared by default, except for loop
index which is private per thread.

• Implicit ”barrier” synchronization at
end of for loop.

• Divide index regions sequentially per
thread

– Thread 0 gets 0, 1, . . . (max/n)− 1

– Thread 1 gets max/n,max/n +
1, . . . 2 ∗ (max/n)− 1

–
...

Example:

#pragma omp p a r a l l e l f o r
f o r ( i =0; i<max ; i++) zero [ i ] = 0 ;

• Breaks for loop into chunks,
and allocate each to a separate
thread.

• if max = 1000 with 2 threads:
assign 0-499 to thread 0, and
500-999 to thread 1.

5.3.2 The OpenMP Design Concepts

• Load balance, Scheduling overhead, Data locality, Data sharing, Syn-
chronization.

• OpenMP is a compiler-based technique to create concurrent code from
(mostly) serial code.

• OpenMP can enable (easy) parallelization of loop-based code with fork-
join parallelism.

1 pragma omp p a r a l l e l
2 pragma omp p a r a l l e l f o r
3 pragma omp p a r a l l e l p r i v a t e ( i , x )
4 pragma omp atomic
5 pragma omp c r i t i c a l
6 pragma omp f o r r educ t i on(+ : sum)
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• OpenMP performs comparably to manually-coded threading.
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5.4 Hands-on; Shared Memory II; OpenMP

1. Hello world: code18.c

• In this example, the master thread forks a parallel region.

• All threads in the team obtain their unique thread number and
print it.

• The master thread only prints the total number of threads.

• Two OpenMP library routines are used to obtain the number of
threads and each thread’s number.

Follow the steps below for executing OpenMP code;

export OMP_NUM_THREADS=8

gcc -o code18 code18.c -fopenmp

./code18

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

2 ∗ FILE : omp hel lo . c
3 ∗ DESCRIPTION:
4 ∗ OpenMP Example − Hel l o World − C/C++ Vers ion
5 ∗ In t h i s s imple example , the master thread f o r k s a p a r a l l e l r eg i on .
6 ∗ Al l thr eads in the team obtain t h e i r unique thread number and
7 ∗ pr i n t i t . The master thread only p r i n t s the t o t a l number o f

thr eads .
8 ∗ Two OpenMP l i b r a r y r ou t i n e s are used to obtain the number o f
9 ∗ thr eads and each thread ’ s number .

10 ∗ AUTHOR: B l a i s e Barney 5/99
11 ∗ LAST REVISED: 04/06/05
12 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗/
13 #inc l ude <omp . h>
14 #inc l ude <s td i o . h>
15 #inc l ude <s t d l i b . h>
16

17 i n t main ( i n t argc , char ∗argv [ ] ) {
18

19 i n t nthreads , t i d ;
20 /∗ Fork a team of thr eads g i v i ng them th e i r own cop i e s o f v a r i a b l e s ∗/
21 #pragma omp p a r a l l e l p r i va t e ( nthreads , t i d )
22 {
23 t i d = omp get thread num () ; /∗ Obtain thread number ∗/
24 p r i n t f ( ” He l l o World from thread : %d\n” , t i d ) ;
25

26 /∗ Only master thread does t h i s ∗/
27 i f ( t i d == 0)
28 {
29 nthreads = omp get num threads ( ) ;
30 p r i n t f ( ”Number o f thr eads = %d\n” , nthreads ) ;
31 }
32

33 } /∗ Al l thr eads j o i n master thread and disband ∗/
34 r e turn 0 ;
35 }

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code18.c
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2. Shared Variables: code19.c

• OpenMP default is shared variables.

• To make private, need to declare with pragma:

Follow the steps below for executing OpenMP code;

export OMP_NUM_THREADS=8

gcc -o code19 code19.c -fopenmp

./code19

1 #inc l ude <s td i o . h>
2 #inc l ude <omp . h>
3 #inc l ude <uni s td . h>
4

5 i n t a , b , x , y , num threads , thread num ;
6 i n t main ( )
7 {
8 p r i n t f ( ” I am in s equen t i a l part .\n” ) ;
9 #pragma omp p a r a l l e l num threads (8) p r i va t e ( a ) shared (b )

10 {
11 num threads=omp get num threads ( ) ;
12 thread num=omp get thread num () ;
13 x=thread num ;
14 // s l e ep (1) ;
15 y=x+1;
16 p r i n t f ( ” I am openMP pa r e l l i z e d part and thread %d . \n X and Y

va lues are %d and %d . \n” , omp get thread num () ,x , y ) ;
17 }
18 p r i n t f ( ” I am in s equen t i a l part again .\n” ) ;
19 r e turn 0 ;
20 }

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code19.c


122 CHAPTER 5. SHARED MEMORY PARADIGM

3. Loop work-sharing: code20.c

• The iterations of a loop are scheduled dynamically across the team
of threads.

• A thread will perform CHUNK iterations at a time before being
scheduled for the next CHUNK of work.

Follow the steps below for executing OpenMP code;

gcc -o code20 code20.c -fopenmp

./code20

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

2 ∗ FILE : omp workshare1 . c
3 ∗ DESCRIPTION:
4 ∗ OpenMP Example − Loop Work−shar ing − C/C++ Vers ion
5 ∗ In t h i s example , the i t e r a t i o n s o f a loop are scheduled dynamical ly
6 ∗ ac r o s s the team of thr eads . A thread w i l l perform CHUNK i t e r a t i o n s
7 ∗ at a time be f o r e being scheduled f o r the next CHUNK of work .
8 ∗ AUTHOR: B l a i s e Barney 5/99
9 ∗ LAST REVISED: 04/06/05

10 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗/
11 #inc l ude <omp . h>
12 #inc l ude <s td i o . h>
13 #inc l ude <s t d l i b . h>
14 #de f i n e CHUNKSIZE 10
15 #de f i n e N 100
16

17 i n t main ( i n t argc , char ∗argv [ ] ) {
18

19 i n t nthreads , t id , i , chunk ;
20 f l o a t a [N] , b [N] , c [N ] ;
21

22 f o r ( i =0; i < N; i++) /∗ Some i n i t i a l i z a t i o n s ∗/
23 a [ i ] = b [ i ] = i ∗ 1 . 0 ;
24 chunk = CHUNKSIZE;
25

26 #pragma omp p a r a l l e l shared ( a , b , c , nthreads , chunk ) p r i va t e ( i , t i d )
27 {
28 t i d = omp get thread num () ;
29 i f ( t i d == 0) {
30 nthreads = omp get num threads ( ) ;
31 p r i n t f ( ”Number o f thr eads = %d\n” , nthreads ) ;
32 }
33 p r i n t f ( ”Thread %d s t a r t i n g . . . \ n” , t i d ) ;
34

35 // #pragma omp f o r s chedu l e ( s t a t i c , chunk )
36 #pragma omp f o r s chedu l e ( dynamic , chunk )
37 f o r ( i =0; i<N; i++) {
38 c [ i ] = a [ i ] + b [ i ] ;
39 p r i n t f ( ”Thread %d : c[%d]= %f \n” , t id , i , c [ i ] ) ;
40 }
41 } /∗ end o f p a r a l l e l s e c t i o n ∗/
42 r e turn 0 ;
43 }

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code20.c
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5.5 Parallelization Application Example-OpenMP

5.5.1 Computing π

Computing PI using Sequential Code
An OpenMP version of a threaded program to compute PI number using random
numbers.
Computing PI using OpenMP directives - Random Numbers. Follow the
steps below for executing OpenMP code;

gcc -o code21 code21.c -fopenmp

./code21

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

2 An OpenMP ver s i on o f a threaded program to compute PI .
3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
4 #pragma omp p a r a l l e l d e f au l t ( none ) p r i va t e ( rand no x , rand no y , num threads

, s amp l e po i n t s pe r th r ead ) shared ( npo ints ) r educt i on (+: sum)
num threads (8)

5 {
6 num threads = omp get num threads ( ) ;
7 s amp l e po i n t s pe r th r ead = npo ints / num threads ;
8

9 sum = 0 ;
10 f o r ( i n t i = 0 ; i < s amp l e po i n t s pe r th r ead ; i++) {
11 rand no x = ( double ) rand ( ) / ( double )RANDMAX;
12 rand no y = ( double ) rand ( ) / ( double )RANDMAX;
13 i f ( ( ( rand no x − 0 . 5 ) ∗ ( rand no x − 0 . 5 ) + ( rand no y − 0 . 5 ) ∗

( rand no y − 0 . 5 ) ) < 0 . 25 ) {
14 sum = sum + 1 ;
15 }
16 }
17 }

• Note that this program is much easier to write in terms of specifying
creation and termination of threads compared to the corresponding
POSIX threaded program.

• The omp get num threads() function returns the number of threads in
the parallel region

• The omp get thread num() function returns the integer id of each thread
(recall that the master thread has an id 0).

• The parallel directive specifies that all variables except npoints, the
total number of random points in two dimensions across all threads,
are local.

• Furthermore, the directive specifies that there are eight threads, and
the value of sum after all threads complete execution is the sum of local
values at each thread.

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/sequential_pi.c
http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code21.c
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• A for loop generates the required number of random points (in two di-
mensions) and determines how many of them are within the prescribed
circle of unit diameter.

An OpenMP version of a threaded program t o compute PI number by numerical
integration without reduction clause.
Computing PI using OpenMP directives - Numerical Integration. Follow
the steps below;

export OMP_NUM_THREADS=4

gcc -o code22 code22.c -fopenmp

./code22

1 #inc l ude <s td i o . h>
2 #inc l ude <math . h>
3 i n t main ( i n t argc , char ∗ argv [ ] )
4 {
5 i n t done = 0 , n , i ;
6 double PI25DT = 3.141592653589793238462643;
7 double mypi , h , sum , x ;
8 whi le ( ! done )
9 {

10 p r i n t f ( ”Enter the number o f i n t e r v a l s : (0 qu i t s ) ” ) ;
11 s can f ( ”%d”,&n) ;
12

13 i f (n == 0) break ; /∗ Quit when ”0” enter ed ∗/
14 /∗ I n t e g r a l l i m i t s are from 0 to 1 ∗/
15 h = (1.0 −0.0) /( double )n ; /∗ Step l ength ∗/
16 sum = 0 . 0 ; /∗ I n i t i a l i z e sum var i ab l e ∗/
17 f o r ( i = 1 ; i <= n ; i += 1) /∗ l oop over i n t e r v a l f o r i n t e g r a t i o n ∗/

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code22.c
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18 {
19 x = h ∗ ( ( double ) i − 0 . 5 ) ; /∗ Middle point at s tep ∗/
20 sum += 4.0 / (1 . 0 + x∗x ) ; /∗ Sum up at each s tep ∗/
21 // p r i n t f (” i=%d x=%f sum=%f \n” , i , x , sum) ; /∗ pr i n t intermed iate

s t ep s ∗/
22 }
23 mypi = h ∗ sum ; /∗ Obtain r e s u l t i n g p i number ∗/
24 p r i n t f ( ” p i i s approximately %.16 f , Error i s %.16 f \n” ,mypi , f abs (mypi

− PI25DT) ) ;
25 }
26 }

1 #inc lude <s t d i o . h>
2 #inc lude <math . h>
3 #inc lude <omp . h>
4 #de f i n e NUMTHREADS 4
5
6 in t main ( i n t argc , char ∗ argv [ ] )
7 {
8 in t done = 0 , n , i ;
9 double PI25DT = 3.141592653589793238462643;

10 double mypi , h , sum [NUMTHREADS] , x ;
11
12 whi l e ( ! done )
13 {
14 p r i n t f ( ”Enter the number o f i n t e r v a l s : (0 qu i t s ) ” ) ;
15 scan f ( ”%d”,&n) ;
16
17 i f (n == 0) break ; /∗ Quit when ”0” entered ∗/
18 /∗ I n t e g r a l l im i t s are from 0 to 1 ∗/
19 h = (1.0 −0.0) /( double )n ; /∗ Step l ength∗/
20 #pragma omp p a r a l l e l p r i va t e ( i , x )
21 {
22 in t id = omp get thread num () ;
23 sum [ id ]=0 . 0 ; /∗ I n i t i a l i z e sum va r i ab l e ∗/
24 f o r ( i = id+1; i <= n ; i += NUMTHREADS) /∗ l oop over i n t e r v a l f o r

i n t e g r a t i on ∗/
25 {
26 x = h ∗ ( ( double ) i − 0 . 5 ) ; /∗ Middle point at step ∗/
27 sum [ id ] += 4.0 / ( 1 . 0 + x∗x) ; /∗ Sum up at each step ∗/
28 }
29 }
30 f o r ( i =1; i<NUMTHREADS; i++)
31 sum [ 0 ] += sum [ i ] ;
32 mypi = h ∗ sum [ 0 ] ; /∗ Obtain r e s u l t i n g p i number ∗/
33 p r i n t f ( ” p i i s approximately %.16 f , Error i s %.16 f \n” ,mypi , f ab s (mypi − PI25DT) ) ;
34 }
35 }

Access to Sequential Code & OpenMP Parallel Code An OpenMP version
of a threaded program to compute PI number by numerical integration with
reduction clause.
Computing PI using OpenMP directives - Reduction. Follow the steps
below for executing OpenMP code;

export OMP_NUM_THREADS=8

gcc -o code23 code23.c -fopenmp

./code23

1 #inc l ude <s td i o . h>
2 #inc l ude <math . h>
3 #inc l ude <omp . h>
4 i n t main ( i n t argc , char ∗ argv [ ] )
5 {
6 i n t done = 0 , n , i ;
7 double PI25DT = 3.141592653589793238462643;
8 double mypi , h , sum , x ;

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/sequential_pi.c
http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/parallel_OpenMP_pi.c
http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code23.c
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Table 5.2: Sequential and OpenMP outputs for computing π number.

9 whi le ( ! done )
10 {
11 p r i n t f ( ”Enter the number o f i n t e r v a l s : (0 qu i t s ) ” ) ;
12 s can f ( ”%d”,&n) ;
13 i f (n == 0) break ; /∗ Quit when ”0” enter ed ∗/
14 /∗ I n t e g r a l l i m i t s are from 0 to 1 ∗/
15 h = (1.0 −0.0) /( double )n ; /∗ Step l ength ∗/
16 sum = 0 . 0 ; /∗ I n i t i a l i z e sum var i ab l e ∗/
17 #pragma omp p a r a l l e l f o r p r i va t e (x ) r educt i on (+:sum)
18 f o r ( i = 1 ; i <= n ; i += 1) /∗ l oop over i n t e r v a l f o r i n t e g r a t i o n ∗/
19 {
20 x = h ∗ ( ( double ) i − 0 . 5 ) ; /∗Middle point at s tep ∗/
21 sum += 4.0 / (1 . 0 + x∗x ) ; /∗Sum up at each s tep ∗/
22 // p r i n t f (” i=%d x=%f sum=%f \n” , i , x , sum) ; /∗ i n te rmed iate s t ep s ∗/
23 }
24 mypi = h ∗ sum ; /∗ Obtain r e s u l t i n g p i number ∗/
25 p r i n t f ( ” p i i s approximately %.16 f , Error i s %.16 f \n” ,mypi , f abs (mypi

− PI25DT) ) ;
26 }
27 }



Chapter 6

GPU parallelization

127



128 CHAPTER 6. GPU PARALLELIZATION

6.1 Exploring the GPU Architecture

• CPUs are latency ori-

ented (minimize execu-
tion of serial code).

• If the CPU has n cores,
each core processes 1/n el-
ements.

• Launching, scheduling
threads adds overhead.

• GPUs are throughput oriented

(maximize number of floating point
operations).

• GPUs process one element per
thread.

• Scheduled by GPU hardware, not
by OS.

• A Graphics Processor Unit (GPU) is mostly known for the hardware
device used when running applications that weigh heavy on graphics.

• Highly parallel, highly multithreaded multiprocessor optimized for graphic
computing and other applications.

1 GPU Programming API: CUDA (Compute Unified Device Ar-
chitecture) : parallel GPU programming API created by NVIDA

– NVIDIA GPUs can be programmed by CUDA, extension of C
language

– API libaries with C/C++/Fortran language

– CUDA C is compiled with nvcc

– Numerical libraries: cuBLAS, cuFFT, Magma, ...
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2 GPU Programming API: OpenGL - an open standard for GPU pro-
gramming.

3 GPU Programming API: DirectX - a series of Microsoft multimedia
programming interfaces.

• https://developer.nvidia.com/ Download: CUDA Toolkit, NVIDIA
HPC SDK (Software Development Kit)

• SP: Scalar Processor ’CUDA core’. Exe-
cutes one thread.

• SM: Streaming Multiprocessor 32xSP (or
16, 48 or more).

• Fast local ’shared memory’ (shared be-
tween SPs) 16 KiB (or 64 KiB)

• For example: NVIDIA Maxwell GeForce
GTX 750 Ti.

– 32 SP, 20 SM : 640 CUDA Cores

• Parallelization: Decomposition to
threads.

• Memory: Shared memory, global mem-
ory.

• Thread communication: Synchroniza-
tion

• Threads grouped in thread blocks: 128,
192 or 256 threads in a block

• One thread block executes on one SM.

– All threads sharing the ’shared
memory’.

– Each thread block is divided in
scheduled units known as a warp.

https://developer.nvidia.com/
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• Blocks form a GRID.

• Thread ID: unique
within block.

• Block ID: unique
within grid.

• A kernel is executed as a
grid of thread blocks. All
threads share data mem-
ory space.

• A thread block is a batch
of threads that can coop-
erate with each other by:

– Synchronizing their
execution.

– Efficiently sharing
data through a
low latency shared
memory.

• Two threads from two
different blocks cannot
cooperate.

6.2 Execution and Programming Models

• Computation partitioning (where to run)

– Declarations on functions

__host__, __global__, __device__

g l o b a l void cuda he l l o ( ) {
}

– Mapping of thread programs to device:

compute <<<gs,bs>>>(<args>)
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cuda he l l o <<<b l o ck s pe r g r i d , thr eads per b l ock>>> ( ) ;

• Data partitioning (where does data reside, who may access it and how?)

– Declarations on data

__shared__, __device__, __constant__, ...

d e v i c e const char ∗STR = ”HELLO WORLD! ” ;

• Data management and orchestration

– Copying to/from host: e.g.,

cudaMemcpy(h_obj,d_obj, cudaMemcpyDevicetoHost)

cudaMemcpy ( d a , h a , bytes , cudaMemcpyHostToDevice ) ;
cudaMemcpy ( h c , d c , bytes , cudaMemcpyDeviceToHost ) ;

• Concurrency management. e.g..

__synchthreads()

cudaDeviceSynchronize ( ) ;

Kernel

• a simple C function

• executes on GPU in parallel as many times as there are threads

• The keyword

__global__

tells the compiler nvcc to make a function a kernel (and compile/run
it for the GPU, instead of the CPU)

• It’s the functions that you may call from the host side using CUDA
kernel call semantics (<<< ... >>>).

Setup and data transfer

• cudaMemcpy : Transfer data to and from GPU (global memory)
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• cudaMalloc : Allocate memory on GPU (global memory)

1 double ∗h a ; // Host input vec to r s
2 double ∗d a ; // Device input vec to r s
3 h a = ( double ∗) mal loc ( bytes ) ; // A l l o ca t e memory f o r each vector on

host
4 cudaMalloc(&d a , bytes ) ; // A l l o ca t e memory f o r each vector on GPU
5 cudaMemcpy ( d a , h a , bytes , cudaMemcpyHostToDevice ) ; // Copy data

from host array h a to dev i ce ar rays d a
6 add vectors<<<b l k i n g r i d , th r pe r b l k>>>(d a , d b , d c ) ; // Execute

the ke r ne l
7 cudaMemcpy ( h c , d c , bytes , cudaMemcpyDeviceToHost ) ; // Copy data

from dev i ce array d c to host array h c

• GPU is the ’device’, CPU is the ’host’. They do not share memory!

• The HOST launches a kernel that execute on the DEVICE.

• Threads and blocks have IDs

– So each thread can decide
what data to work on

– Block ID: 1D or 2D
(blockIdx.x, blockIdx.y)

– Thread ID: 1D, 2D, or 3D
(threadIdx.x,y,z)

• Simplifies memory addressing
when processing multi- dimen-
sional data.

• Compiler nvcc takes as input a .cu program and produces

– C Code for host processor (CPU), compiled by native C compiler

– Code for device processor (GPU), compiled by nvcc compiler

Cuda Code:

1 #inc l ude <s td i o . h>
2 #inc l ude <uni s td . h>
3 d e v i c e const char ∗STR = ”HELLO WORLD! ” ;
4 const i n t STR LENGTH = 12;
5 g l o b a l void cuda he l l o ( ) {
6 // blockIdx . x : Block index within the g r i d in x−d i r e c t i o n
7 // threadIdx . x : Thread index within the block
8 // blockDim . x : # of thr eads in a block
9 p r i n t f ( ” He l l o World from GPU! (%d ,%d) : %c ThreadID %d \n” , blockIdx . x ,

threadIdx . x , STR[ threadIdx . x % STR LENGTH] , ( threadIdx . x +blockIdx . x∗

blockDim . x ) ) ;

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code24.cu
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10 }
11 i n t main ( ) {
12 p r i n t f ( ”He l l o World from CPU!\n” ) ;
13 s l e ep (2) ;
14 i n t th r ead s pe r b l o ck =12;
15 i n t b l o c k s p e r g r i d =2;
16 cuda he l l o <<<b l o ck s pe r g r i d , thr eads per b l ock>>> ( ) ;
17 cudaDeviceSynchronize ( ) ; /∗ Halt host thread execut i on on CPU un t i l the

dev i ce has f i n i s h ed p r oc e s s i ng a l l p r ev i ou s l y r eques ted tasks ∗/
18 r e turn 0 ;
19 }

Cuda Code:
1 #inc lude <s t d i o . h>
2 #inc lude <cuda . h>
3 #inc lude <cuda runtime . h>
4 #de f i n e N 720 // number o f computations
5 #de f i n e GRID D1 20 // constan t s f o r gr i d and block s i z e s
6 #de f i n e GRID D2 3 // constan t s f o r gr i d and block s i z e s
7 #de f i n e BLOCK D1 12 // constan t s f o r gr i d and block s i z e s
8 #de f i n e BLOCK D2 1 // constan t s f o r gr i d and block s i z e s
9 #de f i n e BLOCK D3 1 // constan t s f o r gr i d and block s i z e s

10
11 g l o b a l void h e l l o ( void ) // th i s i s the kerne l funct i on ca l l e d f o r each thread
12 {
13 // CUDA var i a b l e s { threadIdx , blockIdx , blockDim , gridDim} to determine a unique thread

ID
14 in t myblock = blockIdx . x + blockIdx . y ∗ gridDim . x ; // id o f the b lock
15 in t b l o ck s i z e = blockDim . x ∗ blockDim . y ∗ blockDim . z ; // s i z e o f each block
16 in t subthread = threadIdx . z ∗( blockDim . x ∗ blockDim . y ) + threadIdx . y∗blockDim . x +

threadIdx . x ; // id o f thread in a given block
17 in t idx = myblock ∗ b l o ck s i z e + subthread ; // a s s i gn o v e r a l l id / index o f the thread
18 in t nthreads=b l o c k s i z e ∗gridDim . x∗gridDim . y ; // Total # of threads
19 in t chunk=20; // Vary th i s value to see the changes at the output
20 i f ( idx < chunk | | idx > nthreads−chunk ) { // only p r i n t f i r s t and l a s t chunks o f

threads
21 i f ( idx < N){
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22 p r i n t f ( ”He l l o world ! My block index i s (%d,%d) [ Grid dims=(%d,%d) ] , 3D−
thread index with in b lock=(%d,%d,%d) => thread index=%d \n” , b lockIdx . x , b lockIdx . y ,
gridDim . x , gridDim . y , threadIdx . x , threadIdx . y , threadIdx . z , idx ) ;

23 }
24 e l s e
25 {
26 p r i n t f ( ”He l l o world ! My block index i s (%d,%d) [ Grid dims=(%d,%d) ] , 3D−

thread index with in b lock=(%d,%d,%d) => thread index=%d [### th i s thread would not
be used f o r N=%d ###]\n” , b lockIdx . x , b lockIdx . y , gridDim . x , gridDim . y , threadIdx . x ,
threadIdx . y , threadIdx . z , idx , N) ;

27 }
28 }
29 }

30 in t main ( i n t argc , char ∗∗ argv )
31 {
32 // ob j ec t s con ta in i ng the b lock and gr i d i n f o
33 const dim3 b l ockS i ze (BLOCK D1, BLOCK D2, BLOCK D3) ;
34 const dim3 g r i dS i z e (GRID D1 , GRID D2 , 1) ;
35 i n t nthreads = BLOCK D1∗BLOCK D2∗BLOCK D3∗GRID D1∗GRID D2 ; // Total # of threads
36 i f ( nthreads < N){
37 p r i n t f ( ”\n============ NOT ENOUGH THREADS TO COVER N=%d ===============\n\n” ,N) ;
38 }
39 e l s e
40 {
41 p r i n t f ( ”Launching %d threads (N=%d)\n” , nthreads ,N) ;
42 }
43 he l l o<<<gr i dS i ze , b lockS ize >>>() ; // launch the kerne l on the s p e c i f i e d gr i d o f

thread b l ocks
44 cudaError t cudaerr = cudaDeviceSynchronize ( ) ; // Need to f l u sh p r i n t s , o therwi se

none o f the p r i n t s from with in the kerne l w i l l show up as program ex i t does not
f l u s h the p r in t bu f f e r

45 i f ( cudaerr ){
46 p r i n t f ( ” kerne l launch f a i l e d with e r r o r \”%s \”.\n” ,
47 cudaGetErrorStr ing( cudaerr ) ) ;
48 }
49 e l s e
50 {
51 p r i n t f ( ” kerne l launch suc ce s s !\n” ) ;
52 }
53 p r i n t f ( ”That ’ s a l l !\n” ) ;
54 r e tu rn 0 ;
55 }
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6.3 Hands-on; GPU parallelization

$ lspci | grep -i nvidia

01:00.0 VGA compatible controller: NVIDIA Corporation GP108

[GeForce GT 1030] (rev a1)

01:00.1 Audio device: NVIDIA Corporation GP108 High Definition

Audio Controller (rev a1)

Installation Instructions:

$ wget https://developer.download.nvidia.com/compute/cuda/repos/

ubuntu2204/x86_64/cuda-keyring_1.0-1_all.deb

$ sudo dpkg -i cuda-keyring_1.0-1_all.deb

$ sudo apt-get update

$ sudo apt-get -y install cuda

$ sudo reboot

$ export PATH=/usr/local/cuda-12.0/bin${PATH:+:${PATH}}

$ export LD_LIBRARY_PATH=/usr/local/cuda-12.0/lib64${LD_LIBRARY_PATH:

+:${LD_LIBRARY_PATH}}

1. Hello world I: code24.cu Follow the steps below for executing Cuda
code;

nvcc -o code24 code24.cu

./code24

1 #inc l ude <s td i o . h>
2 #inc l ude <uni s td . h>
3 d e v i c e const char ∗STR = ”HELLO WORLD! ” ;
4 const i n t STR LENGTH = 12;
5 g l o b a l void cuda he l l o ( ) {
6 // blockIdx . x : Block index within the g r i d in the x d i r e c t i o n
7 // threadIdx . x : Thread index within the block
8 // blockDim . x , y , z # of thr eads in a block
9 p r i n t f ( ”He l l o World from GPU! (%d ,%d) : %c ThreadID %d \n” ,

blockIdx . x , threadIdx . x , STR[ threadIdx . x % STR LENGTH] , ( threadIdx
. x +blockIdx . x∗blockDim . x ) ) ;

10 }
11 /∗

12 . / deviceQuery S ta r t i ng . . .
13

14 CUDA Device Query (Runtime API) ve r s i on (CUDART s t a t i c l i n k i n g )
15

16 Detected 3 CUDA Capable dev i ce ( s )
17

18 Device 2 : ”NVIDIA GeForce GT 1030”
19 CUDA Driver Vers ion / Runtime Vers ion 12 . 0 / 11 . 8
20 CUDA Capab i l i ty Major/Minor ve r s i on number : 6 . 1
21 Total amount o f g l oba l memory : 1998 MBytes

(2095185920 bytes )
22 (003) Mul t iproces sor s , (128) CUDA Cores /MP: 384 CUDA Cores
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23 GPU Max Clock r a t e : 1468 MHz (1 . 47 GHz)
24 Memory Clock r a t e : 3004 Mhz
25 Memory Bus Width : 64−b i t
26 L2 Cache S i z e : 524288 bytes
27 Maximum Texture Dimension S i z e (x , y , z ) 1D=(131072) , 2D

=(131072 , 65536) , 3D=(16384 , 16384 , 16384)
28 Maximum Layered 1D Texture Size , (num) l a y e r s 1D=(32768) , 2048

l a y e r s
29 Maximum Layered 2D Texture Size , (num) l a y e r s 2D=(32768 , 32768) ,

2048 l a y e r s
30 Total amount o f constant memory : 65536 bytes
31 Total amount o f shared memory per block : 49152 bytes
32 Total shared memory per mu l t i p r o c e s s o r : 98304 bytes
33 Total number o f r e g i s t e r s a v a i l a b l e per block : 65536
34 Warp s i z e : 32
35 Maximum number o f thr eads per mu l t i p r o c e s s o r : 2048
36 Maximum number o f thr eads per block : 1024
37 Max dimension s i z e o f a thread block (x , y , z ) : (1024 , 1024 , 64)
38 Max dimension s i z e o f a g r i d s i z e (x , y , z ) : (2147483647 , 65535 ,

65535)
39 Maximum memory p i tch : 2147483647 bytes
40 Texture al ignment : 512 bytes
41 Concurrent copy and ke rne l execut i on : Yes with 2 copy

engine ( s )
42 Run time l im i t on ke r ne l s : Yes
43 Integrated GPU shar ing Host Memory : No
44 Support host page−l ocked memory mapping : Yes
45 Alignment requi rement f o r Sur f aces : Yes
46 Device has ECC support : Disabled
47 Device supports Uni f i ed Address ing (UVA) : Yes
48 Device supports Managed Memory : Yes
49 Device supports Compute Preemption : Yes
50 Supports Cooperat ive Kernel Launch : Yes
51 Supports Mult iDevice Co−op Kernel Launch : Yes
52 Device PCI Domain ID / Bus ID / l o c a t i o n ID : 0 / 4 / 0
53 Compute Mode :
54 < Defau l t ( mul t ip l e host thr eads can use : : cudaSetDevice ( ) with

dev i ce s imul taneous ly ) >

55 deviceQuery , CUDA Driver = CUDART, CUDA Driver Vers ion = 12 . 0 , CUDA
Runtime Vers ion = 11 . 8 , NumDevs = 3

56 Resul t = PASS
57 ∗/
58 i n t main ( ) {
59 p r i n t f ( ”He l l o World from CPU!\n” ) ;
60 s l e ep (2) ;
61 i n t th r ead s pe r b l o ck =12;
62 i n t b l o c k s p e r g r i d =2;
63 cuda he l l o <<< b l o ck s pe r g r i d , th r ead s pe r b l o ck >>> ( ) ;
64 cudaDeviceSynchronize ( ) ; /∗ Halt host thread execut i on on CPU un t i l

the dev i ce has f i n i s h e d p r oc e s s i ng a l l p r ev i ou s l y r eques ted tasks
∗/

65 r e turn 0 ;
66 }



6.3. HANDS-ON; GPU PARALLELIZATION 137

2. Hello world II: code25.cu Follow the steps below for executing Cuda
code;

nvcc -o code25 code25.cu

./code25

1 #inc l ude <s td i o . h>
2 #inc l ude <cuda . h>
3 #inc l ude <cuda runtime . h>
4

5 #de f i n e N 720 // number o f computations
6 #de f i n e GRID D1 20 // cons tants f o r g r i d and block s i z e s
7 #de f i n e GRID D2 3 // cons tants f o r g r i d and block s i z e s
8 #de f i n e BLOCK D1 12 // cons tants f o r g r i d and block s i z e s
9 #de f i n e BLOCK D2 1 // cons tants f o r g r i d and block s i z e s

10 #de f i n e BLOCK D3 1 // cons tants f o r g r i d and block s i z e s
11

12 g l o b a l void h e l l o ( void ) // t h i s i s the ke r ne l f unc t i on c a l l e d f o r
each thread

13 {
14 // we use the CUDA va r i a b l e s { threadIdx , blockIdx , blockDim , gridDim

} to determine a unique ID f o r each thread
15 i n t myblock = blockIdx . x + blockIdx . y ∗ gridDim . x ; // id o f the

block
16 i n t b l o c k s i z e = blockDim . x ∗ blockDim . y ∗ blockDim . z ; // s i z e o f

each block ( within g r i d o f b l ocks )
17 i n t subthread = threadIdx . z ∗( blockDim . x ∗ blockDim . y ) + threadIdx . y∗

blockDim . x + threadIdx . x ; // id o f thread in a given block
18 i n t idx = myblock ∗ b l o c k s i z e + subthread ; // a s s i gn o v e r a l l i d /

index o f the thread
19 i n t nthreads=b l o c k s i z e ∗gridDim . x∗gridDim . y ; // Total # of thr eads
20 i n t chunk=20; // Vary th i s value to see the changes at the output
21 i f ( idx < chunk | | idx > nthreads−chunk ) { // p r i n t bu f f e r from

within the ke r ne l i s l im i t ed so only p r i n t f o r f i r s t and l a s t
chunks o f thr eads

22 i f ( idx < N) {
23 p r i n t f ( ” He l l o world ! My block index i s (%d,%d) [ Grid dims=(%d,%d

) ] , 3D−thread index within block=(%d,%d,%d) => thread index=%d \n”
, blockIdx . x , blockIdx . y , gridDim . x , gridDim . y , threadIdx . x ,
threadIdx . y , threadIdx . z , idx ) ;

24 }
25 e l s e
26 {
27 p r i n t f ( ”He l l o world ! My block index i s (%d,%d) [ Grid dims=(%d,%d) ] ,

3D−thread index within block=(%d,%d,%d) => thread index=%d [###
th i s thread would not be used f o r N=%d ###]\n” , blockIdx . x ,
blockIdx . y , gridDim . x , gridDim . y , threadIdx . x , threadIdx . y ,
threadIdx . z , idx , N) ;

28 }
29 }
30 }
31

32 i n t main ( i n t argc , char ∗∗ argv )
33 {
34 // ob j e c t s conta in ing the block and g r i d i n f o
35 const dim3 b l o ckS i z e (BLOCK D1, BLOCK D2, BLOCK D3) ;
36 const dim3 g r i d S i z e (GRID D1 , GRID D2 , 1) ;
37 i n t nthreads = BLOCK D1∗BLOCK D2∗BLOCK D3∗GRID D1∗GRID D2 ; // Total

# of thr eads

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code25.cu


138 CHAPTER 6. GPU PARALLELIZATION

38 i f ( nthreads < N) {
39 p r i n t f ( ”\n============ NOT ENOUGH THREADS TO COVER N=%d

===============\n\n” ,N) ;
40 }
41 e l s e
42 {
43 p r i n t f ( ”Launching %d threads (N=%d) \n” , nthreads ,N) ;
44 }
45 he l l o<<<g r i dS i z e , b l ockS i ze >>>() ; // launch the ke r ne l on the

s p e c i f i e d g r i d o f thread b locks
46 // Need to f l u s h pr ints , o therw i s e none o f the p r i n t s from within

the ke r ne l w i l l show up
47 // as program ex i t does not f l u s h the p r i n t bu f f e r .
48 cudaEr ror t cudaerr = cudaDeviceSynchronize ( ) ;
49 i f ( cudaerr ) {
50 p r i n t f ( ” ke r ne l launch f a i l e d with e r r o r \”%s \” .\n” ,
51 cudaGetErrorStr ing ( cudaerr ) ) ;
52 }
53 e l s e
54 {
55 p r i n t f ( ” ke r ne l launch succ e s s !\n” ) ;
56 }
57 p r i n t f ( ”That ’ s a l l !\n” ) ;
58 r e turn 0 ;
59 }
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3. Vector Addition: code26.cu Follow the steps below for executing
Cuda code;

nvcc -o code26 code26.cu

./code26

1 // https : //www. o l c f . o r n l . gov/ t u t o r i a l s /cuda−vector−add i t i on /
2 // https : // gi thub . com/ o l c f −t u t o r i a l s / v e c to r add i t i on cuda
3 #inc l ude <s td i o . h>
4 #inc l ude <s t d l i b . h>
5 #inc l ude <math . h>
6

7 #de f i n e n 100000 // S i z e o f array
8

9 /∗ CUDA KERNEL Compute the sum of two vec to r s
10 ∗ Each thread takes car e o f one element o f C
11 ∗ C[ i ] = A[ i ] + B[ i ]
12 ∗/
13 g l o b a l void add vector s ( double ∗a , double ∗b , double ∗c )
14 {
15 i n t id = blockIdx . x∗blockDim . x+threadIdx . x ; // Get our g l oba l thread

ID
16 i f ( i d < n) // Make sur e we do not go out o f bounds
17 c [ i d ] = a [ id ] + b [ id ] ; /∗ Compute the element o f C ∗/
18 }
19

20 i n t main ( i n t argc , char ∗ argv [ ] )
21 {
22 double ∗h a ; // Host input vec to r s
23 double ∗h b ;
24 double ∗h c ;
25

26 double ∗d a ; // Device input vec to r s
27 double ∗d b ;
28 double ∗d c ;
29

30 s i z e t bytes = n∗ s i z e o f ( double ) ; // Size , i n bytes , o f each vector
31

32 h a = ( double ∗) mal loc ( bytes ) ; // A l l o ca t e memory f o r each vector on
host

33 h b = ( double ∗) mal loc ( bytes ) ;
34 h c = ( double ∗) mal loc ( bytes ) ;
35

36 cudaMalloc(&d a , bytes ) ; // A l l o ca t e memory f o r each vector on GPU
37 cudaMalloc(&d b , bytes ) ;
38 cudaMalloc(&d c , bytes ) ;
39

40 i n t i ;
41 f o r ( i = 0 ; i < n ; i++ ) { // I n i t i a l i z e v e c to r s on host
42 h a [ i ] = s i n ( i )∗ s i n ( i ) ;
43 h b [ i ] = cos ( i )∗ cos ( i ) ;
44 }
45

46 // Copy data from host ar rays h a and h b to dev i ce ar rays d a and
d b

47 cudaMemcpy ( d a , h a , bytes , cudaMemcpyHostToDevice ) ;
48 cudaMemcpy ( d b , h b , bytes , cudaMemcpyHostToDevice ) ;
49

50 i n t t h r p e r b l k = 1024; // b l o ckS i z e . Number o f thr eads in each
thread block

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code26.cu


140 CHAPTER 6. GPU PARALLELIZATION

51 i n t b l k i n g r i d = c e i l ( ( f l o a t ) n/ t h r p e r b l k ) ; // g r i d S i z e . Number
o f thread b locks in g r i d

52

53 add vectors<<<b l k i n g r i d , th r pe r b l k>>>(d a , d b , d c ) ; // Execute
the ke r ne l

54

55 cudaMemcpy ( h c , d c , bytes , cudaMemcpyDeviceToHost ) ; // Copy data
from dev i ce array d c to host array h c

56

57 // Sum up vector c and pr i n t r e s u l t d iv ided by n , t h i s should equal
1 within e r r o r

58 double sum = 0 ;
59 f o r ( i =0; i<n ; i++)
60 sum += h c [ i ] ;
61 p r i n t f ( ” f i n a l r e s u l t : %f \n” , sum/n) ;
62

63 cudaFree ( d a ) ; // Free dev i ce memory
64 cudaFree ( d b ) ;
65 cudaFree ( d c ) ;
66

67 f r e e ( h a ) ; // Free host memory
68 f r e e ( h b ) ;
69 f r e e ( h c ) ;
70

71 p r i n t f ( ”−−−−−−−−−−−−−−−−−−−−−−−−−−−\n” ) ;
72 p r i n t f ( ” ENDED \n” ) ;
73 p r i n t f ( ”−−−−−−−−−−−−−−−−−−−−−−−−−−−\n” ) ;
74 p r i n t f ( ”N = %d\n” , n) ;
75 p r i n t f ( ”Threads Per Block = %d\n” , t h r p e r b l k ) ;
76 p r i n t f ( ”Blocks In Grid = %d\n” , b l k i n g r i d ) ;
77 p r i n t f ( ”−−−−−−−−−−−−−−−−−−−−−−−−−−−\n\n” ) ;
78

79 r e turn 0 ;
80 }
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