
Programming Shared
Memory I

Dr. Cem Özdoğan

LOGIK

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

9.1

Lecture 9
Programming Shared Memory I
Why Threads?

IKC-MH.57 Introduction to High Performance and Parallel

Computing at December 15, 2023

Dr. Cem Özdoğan
Engineering Sciences Department

İzmir Kâtip Çelebi University

Programming Shared
Memory I

Dr. Cem Özdoğan

LOGIK

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

9.2

Contents

1 Programming Shared Memory
What is a Thread?
Threads Model
Why Threads?
Thread Basics: Creation and Termination

Thread Creation
Thread Termination

Programming Shared
Memory I

Dr. Cem Özdoğan

LOGIK

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

9.3

What is Threads?
• Technically, a thread is defined as an independent

stream of instructions that can be scheduled to run by
the operating system.

• Suppose that a main program contains a number of
procedures (functions, subroutines, ...).
• Then suppose all of these procedures being able to be
scheduled to run simultaneously and/or independently.
• That would describe a "multi-threaded" program.

• Before understanding a thread , one first needs to
understand a UNIX process.

• Processes contain information about program resources
and program execution state.

• Threads use and exist within these process resources,
• To be scheduled by the OS,
• Run as independent entities.
• A thread has its own independent flow of control as long
as its parent process exists (dies if the parent dies!).
• A thread duplicates only the essential resources it needs.

• A thread is "lightweight" because most of the overhead
has already been accomplished through the creation of its
process.

Programming Shared
Memory I

Dr. Cem Özdoğan

LOGIK

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

9.4

Threads Model I

• In shared memory multiprocessor architectures, such as
SMPs, threads can be used to implement parallelism.

• In the threads model of parallel programming, a single
process can have

• multiple concurrent,
• execution paths.

• Most simple analogy for threads is the concept of a single
program that includes a number of subroutines:

Figure: Threads model.

• Main program loads and
acquires all of the
necessary system and user
resources to run.

• Main program performs
some serial work,

• and then creates a number
of tasks (threads) that can
be scheduled and run by
the OS concurrently.

Programming Shared
Memory I

Dr. Cem Özdoğan

LOGIK

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

9.5

Threads Model II

• Each thread has local data, but also, shares the entire
resources of main program.

Figure: Thread shared memory model.

• This saves the overhead associated with replicating a
program’s resources for each thread.

• Each thread also benefits from a global memory view
because it shares the memory space of program.

• Any thread can execute any subroutine at the same time
as other threads.

Programming Shared
Memory I

Dr. Cem Özdoğan

LOGIK

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

9.6

Threads Model III

• Threads communicate with each other through global
memory (updating address locations).

• Changes made by one thread to shared system resources
(such as closing a file) will be seen by all other threads.

• This requires synchronization constructs to insure that
more than one thread is not updating the same global
address at any time.

Figure: Threads Unsafe! Pointers having the same value point
to the same data.

Programming Shared
Memory I

Dr. Cem Özdoğan

LOGIK

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

9.7

Why Threads? I

• The primary motivation for using threads is to realize
potential program performance gains.

• When compared to the cost of creating and managing a
process, a thread can be created with much less OS
overhead.

• Managing threads requires fewer system resources than
managing processes.

• Threaded programming models offer significant
advantages over message-passing programming models
along with some disadvantages as well.

• Software Portability;

• Threaded applications can be developed on serial
machines and run on parallel machines without any
changes.
• This ability to migrate programs between diverse
architectural platforms is a very significant advantage of
threaded APIs.

Programming Shared
Memory I

Dr. Cem Özdoğan

LOGIK

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

9.8

Why Threads? II

• Latency Hiding;

• One of the major overheads in programs (both serial and
parallel) is the access latency for memory access, I/O, and
communication.
• By allowing multiple threads to execute on the same
processor, threaded APIs enable this latency to be hidden.
• In effect, while one thread is waiting for a communication
operation, other threads can utilize the CPU, thus masking

associated overhead.

• Scheduling and Load Balancing;

• While in many structured applications the task of
allocating equal work to processors is easily accomplished,
• In unstructured and dynamic applications (such as game
playing and discrete optimization) this task is more difficult.
• Threaded APIs allow the programmer

• to specify a large number of concurrent tasks
• and support system-level dynamic mapping of tasks to
processors with a view to minimizing idling overheads.

Programming Shared
Memory I

Dr. Cem Özdoğan

LOGIK

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

9.9

Why Threads? III
• Ease of Programming, Widespread Use

• Due to the mentioned advantages, threaded programs are
significantly easier to write (!) than corresponding programs
using message passing APIs.
• With widespread acceptance of the POSIX thread API,
development tools for POSIX threads are more widely
available and stable.

• Overlapping CPU work with I/O: For example, a program
may have sections where it is performing a long I/O
operation. While one thread is waiting for an I/O system
call to complete, CPU intensive work can be performed by
other threads.

• Priority/real-time scheduling: tasks which are more
important can be scheduled to supersede or interrupt
lower priority tasks.

• Asynchronous event handling: tasks which service
events of indeterminate frequency and duration can be
interleaved. For example, a web server can both transfer
data from previous requests and manage the arrival of
new requests.

Programming Shared
Memory I

Dr. Cem Özdoğan

LOGIK

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

9.10

Why Threads? IV

• A number of vendors provide vendor-specific thread APIs.
Standardization efforts have resulted in two very different
implementations of threads.

• Microsoft has its own implementation for threads, which is
not related to the UNIX POSIX standard or OpenMP.

1 POSIX Threads. Library based; requires parallel coding.
• C Language only. Very explicit parallelism; requires

significant programmer attention to detail.
• Commonly referred to as Pthreads.
• POSIX has emerged as the standard threads API,

supported by most vendors.

2 OpenMP. Compiler directive based; can use serial code.
• Jointly defined by a group of major computer hardware and

software vendors.
• The OpenMP C/C++ API was released in late 1998.
• Portable / multi-platform, including Unix and Windows

platforms
• Can be very easy and simple to use - provides for

“incremental parallelism“.

Programming Shared
Memory I

Dr. Cem Özdoğan

LOGIK

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

9.11

Why Threads? V

• MPI =⇒ on-node communications,
• MPI libraries usually implement on-node task

communication via shared memory, which involves at least
one memory copy operation (process to process).

• Threads =⇒ on-node data transfer.

• For Pthreads there is no intermediate memory copy
required because threads share the same address space
within a single process.
• There is no data transfer.
• It becomes more of a cache-to-CPU or memory-to-CPU
bandwidth (worst case) situation.
• These speeds are much higher.

Programming Shared
Memory I

Dr. Cem Özdoğan

LOGIK

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

9.12

Thread Basics: Creation and Termination I

• The Pthreads API subroutines can be informally grouped
into four major groups:

1 Thread management: Routines that work directly on
threads - creating, detaching, joining, set/query thread
attributes (joinable, scheduling etc.), etc.

2 Mutexes: Routines that deal with synchronization. Mutex
functions provide for creating, destroying, locking and
unlocking mutexes, setting or modifying attributes
associated with mutexes.

3 Condition variables: Routines that address
communications between threads that share a mutex.
Functions to create, destroy, wait and signal based upon
specified variable values, set/query condition variable
attributes.

4 Synchronization: Routines that manage read/write locks
and barriers.

Programming Shared
Memory I

Dr. Cem Özdoğan

LOGIK

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

9.13

Thread Basics: Creation and Termination II
Creating Threads:
• Initially, main program contains a single, default thread.
• pthread_create creates a new thread and makes it

executable.
1 # inc lude <pthread . h>
2 i n t
3 pthread_create (p thread_t * thread_handle ,
4 const p th read_a t t r _ t * a t t r i b u t e ,
5 vo id * (* t h read_ func t i on) (vo id *) ,
6 vo id * arg) ;

• Creates a single thread that corresponds to the invocation
of the function thread_function (and any other functions
called by thread_function).

• Once created, threads are peers, and may create other
threads.

• On successful creation of a thread, a unique identifier is
associated with the thread and assigned to the location
pointed to by thread_handle.

• On successful creation of a thread, pthread_create
returns 0; else it returns an error code.

Programming Shared
Memory I

Dr. Cem Özdoğan

LOGIK

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

9.14

Thread Basics: Creation and Termination III

• The thread has the attributes described by the attribute

argument.
• The arg field specifies a pointer to the argument to

function thread_function.
• This argument is typically used to pass the workspace and

other thread-specific data to a thread.
• There is no implied hierarchy or dependency between

threads.
• Unless you are using the Pthreads scheduling

mechanism, it is up to the implementation and/or OS to
decide where and when threads will execute.

• Robust programs should not depend upon threads
executing in a specific order.

Programming Shared
Memory I

Dr. Cem Özdoğan

LOGIK

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

9.15

Thread Basics: Creation and Termination IV

Terminating Threads.
• There are several ways in which a Pthread may be

terminated:

a The thread returns from its starting routine (the main
routine for the initial thread).

b The thread makes a call to the pthread_exit subroutine.

c The thread is cancelled by another thread via the
pthread_cancel routine.

d The entire process is terminated due to a call to either the
exec or exit subroutines.

• If main finishes before the threads and exits with
pthread_exit(), the other threads will continue to execute
(join function!).

• If main finishes after the threads and exits, the threads will
be automatically terminated.

Programming Shared
Memory I

Dr. Cem Özdoğan

LOGIK

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

9.16

Thread Basics: Creation and Termination V

Example Code:
• This example code creates 5 threads with the

pthread_create() routine.
• Each thread prints a ’Hello World!’ message, and then

terminates with a call to pthread_exit().

1 # inc lude <pthread . h>
2 # inc lude <s t d i o . h>
3 # inc lude < s t d l i b . h>
4 # inc lude <un i s td . h>
5

6 # def ine NUM_THREADS 5
7

8 vo id * P r i n t H e l l o (vo id * th read i d)
9 {

10 sleep (10) ;
11 long t i d ;
12 t i d = (long) th read i d ;
13 p r i n t f (" He l lo World ! I t ’ s me, thread #%l d ! \ n " , t i d) ;
14 p th read_ex i t (NULL) ;
15 }

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code13.c

Programming Shared
Memory I

Dr. Cem Özdoğan

LOGIK

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

9.17

Thread Basics: Creation and Termination VI

1 i n t main (i n t argc , char * argv [])
2 {
3 pthread_t threads [NUM_THREADS] ;
4 i n t rc ;
5 long t ;
6 f o r (t =0; t <NUM_THREADS; t ++) {
7 p r i n t f (" In main : c rea t i ng thread %l d \ n " , t) ;
8 rc = pthread_create (& threads [t] , NULL , P r i n tHe l l o , (vo id *) t)

;
9 i f (rc) {

10 p r i n t f ("ERROR; re tu rn code from pthread_create () i s %d \ n " ,
rc) ;

11 e x i t (−1) ;
12 }
13 }
14

15 / * Last t h i ng t h a t main () should do * /
16 p th read_ex i t (NULL) ;
17 }

	Programming Shared Memory
	What is a Thread?
	Threads Model
	Why Threads?
	Thread Basics: Creation and Termination

