
Programming Shared
Memory II

Dr. Cem Özdoğan

LOGIK

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

The OpenMP Design
Concepts

10.1

Lecture 10
Programming Shared Memory II
OpenMP (Open Multi-Processing)

IKC-MH.57 Introduction to High Performance and Parallel

Computing at December 22, 2023

Dr. Cem Özdoğan
Engineering Sciences Department

İzmir Kâtip Çelebi University

Programming Shared
Memory II

Dr. Cem Özdoğan

LOGIK

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

The OpenMP Design
Concepts

10.2

Contents

1 OpenMP: a Standard for Directive Based Parallel Programming
The OpenMP Programming Model
The OpenMP Design Concepts

Programming Shared
Memory II

Dr. Cem Özdoğan

LOGIK

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

The OpenMP Design
Concepts

10.3

OpenMP: a Standard for Directive Based Parallel
Programming I

• Although standardization and support for the threaded
APIs has a considerable progress, their use is still
restricted to system programmers as opposed to
application programmers.

• One of the reasons for this is that APIs such as Pthreads
are considered to be low-level primitives.

• A large class of applications can be efficiently supported
by higher level constructs (or directives)

• Which rid the programmer of the mechanics of
manipulating threads.

• Such directive-based languages have standardization
efforts succeeded in the form of OpenMP.

• OpenMP is an API that can be used with FORTRAN, C,
and C++ for programming shared address space
machines.

https://www.openmp.org/

Programming Shared
Memory II

Dr. Cem Özdoğan

LOGIK

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

The OpenMP Design
Concepts

10.4

OpenMP: a Standard for Directive Based Parallel
Programming II

• Standard API for defining multi-threaded shared-memory
programs.

• Allow a programmer to separate a program into
serial regions and parallel regions, rather than
concurrently-executing threads.

• NOT parallelize automatically and NOT guarantee
speedup.

• General structure:
1 # inc lude <omp. h>
2 main () {
3 i n t var1 , var2 , var3 ;
4 S e r i a l code
5 Beginning of p a r a l l e l sec t ion . Fork a team of threads
6 Spec i fy va r i ab l e scoping
7 #pragma omp p a r a l l e l p r i v a t e (var1 , var2) shared (var3)
8 {
9 P a r a l l e l sec t ion executed by a l l threads

10 A l l threads j o i n master thread and disband
11 }
12 Resume s e r i a l code
13 }

Programming Shared
Memory II

Dr. Cem Özdoğan

LOGIK

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

The OpenMP Design
Concepts

10.5

The OpenMP Programming Model I
• OpenMP directives provide support for concurrency,

synchronization, and data handling while avoiding the
need for explicitly setting up mutexes, condition variables,
data scope, and initialization.

• OpenMP directives in C is based on the #pragma compiler
directives.

• The directive itself consists of a directive name followed by
clauses.

#pragma omp d i r e c t i v e [c lause l i s t]

• OpenMP programs execute serially until they encounter
the parallel directive.

• This directive is responsible for creating a group of
threads.

• The exact number of threads can be

• specified in the directive (num_threads(4)),
• set using an environment variable (export
OMP_NUM_THREADS=4 [sh, ksh, bash]),
• defined at runtime using OpenMP functions
(omp_set_num_threads(4)).

Programming Shared
Memory II

Dr. Cem Özdoğan

LOGIK

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

The OpenMP Design
Concepts

10.6

The OpenMP Programming Model II

• The main thread that encounters the parallel directive
becomes the master of this group of threads with id 0.

• The parallel directive has the following prototype:

#pragma omp p a r a l l e l [c lause l i s t]
/ * s t r u c t u r e d block * /

• Each thread created by this directive executes the
structured block specified by the parallel directive (SPMD).

1 i n t main () {
2 omp_set_num_threads (4) ;
3 / / Do t h i s pa r t i n p a r a l l e l
4 #pragma omp p a r a l l e l
5 {
6 p r i n t f (" Hel lo , World ! \ n ") ;
7 }
8 re tu rn 0;

Figure: Creating
four threads for
"printf" function.

Programming Shared
Memory II

Dr. Cem Özdoğan

LOGIK

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

The OpenMP Design
Concepts

10.7

The OpenMP Programming Model III

Figure: A sample OpenMP program along with its Pthreads
translation that might be performed by an OpenMP compiler.

Programming Shared
Memory II

Dr. Cem Özdoğan

LOGIK

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

The OpenMP Design
Concepts

10.8

The OpenMP Programming Model IV

• The clause list is used to specify conditional
parallelization, number of threads, and data handling.

1 Conditional Parallelization: The clause
if (scalar expression) determines whether the parallel
construct results in creation of threads.

2 Degree of Concurrency: The clause
num_threads (integer expression) specifies the number of
threads that are created by the parallel directive.

3 Data Handling: The clause private (variable list) indicates
that the set of variables specified is local to each thread.

• Each thread has its own copy of each variable in the list.
• The clause firstprivate (variable list) is similar to the
private clause, except the values of variables on entering
the threads are initialized to corresponding values before
the parallel directive.
• The clause shared (variable list) indicates that all variables
in the list are shared across all the threads,

Programming Shared
Memory II

Dr. Cem Özdoğan

LOGIK

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

The OpenMP Design
Concepts

10.9

The OpenMP Programming Model V

Figure: Fork-Join Model.

FORK Master thread then creates a team of parallel threads.

Statements in program that are enclosed by the parallel
region construct are executed in parallel among the
various threads.

JOIN When the team threads complete the statements in the
parallel region construct, they synchronize and terminate,
leaving only the master thread.

Programming Shared
Memory II

Dr. Cem Özdoğan

LOGIK

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

The OpenMP Design
Concepts

10.10

The OpenMP Programming Model VI

Shared Variables. OpenMP default is shared variables. To
make private, need to declare with pragma:

1 # inc lude <s t d i o . h>
2 # inc lude <omp. h>
3 # inc lude <un i s td . h>
4 i n t a , b , x , y , num_threads , thread_num ;
5 i n t main ()
6 {
7 p r i n t f (" I am i n sequen t i a l pa r t . \ n ") ;
8 #pragma omp p a r a l l e l num_threads (8) p r i v a t e (a) shared (b)
9 {

10 num_threads=omp_get_num_threads () ;
11 thread_num=omp_get_thread_num () ;
12 x=thread_num ;
13 / / s leep (1) ;
14 y=x +1;
15 p r i n t f (" I am openMP p a r e l l i z e d pa r t and thread %d . \ n X and Y

values are %d and %d . \ n " , omp_get_thread_num () , x , y) ;
16 }
17 p r i n t f (" I am i n sequen t i a l pa r t again . \ n ") ;
18 }

X and y are shared variables. There is a risk of data race.

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code19.c

Programming Shared
Memory II

Dr. Cem Özdoğan

LOGIK

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

The OpenMP Design
Concepts

10.11

The OpenMP Programming Model VII

Table: Correct and Wrong outputs of the program.

Programming Shared
Memory II

Dr. Cem Özdoğan

LOGIK

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

The OpenMP Design
Concepts

10.12

The OpenMP Programming Model VIII

Using the parallel directive;

1 pragma omp p a r a l l e l i f (i s _ p a r a l l e l == 1) num_threads (8)
p r i v a t e (a) shared (b) f i r s t p r i v a t e (c)

2 {
3 / * s t ruc tu red block * /
4 }

• Here, if the value of the variable is_parallel equals one,
eight threads are created.

• Each of these threads gets private copies of variables a
and c, and shares a single value of variable b.

• Furthermore, the value of each copy of c is initialized to
the value of c before the parallel directive.

• The clause default (shared) implies that, by default, a
variable is shared by all the threads.

• The clause default (none) implies that the state of each
variable used in a thread must be explicitly specified.

• This is generally recommended, to guard against errors
arising from unintentional concurrent access to shared data.

Programming Shared
Memory II

Dr. Cem Özdoğan

LOGIK

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

The OpenMP Design
Concepts

10.13

The OpenMP Programming Model IX

The reduction clause :
• Specifies how multiple local copies of a variable at

different threads are combined into a single copy at the
master when threads exit.

• The usage of the reduction clause is reduction (operator:
variable list).

• This clause performs a reduction on the scalar variables
specified in the list using the operator.

• The variables in the list are implicitly specified as being
private to threads.

• The operator can be one of

+ * - & | ^ && ||

• Each of the eight threads gets a copy of the variable sum.

1 #pragma omp p a r a l l e l r educ t i on (+ : sum) num_threads (8)
2 {
3 / * compute l o c a l sums here * /
4 }
5 / * sum here conta ins sum of a l l l o c a l ins tances of sums * /

Programming Shared
Memory II

Dr. Cem Özdoğan

LOGIK

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

The OpenMP Design
Concepts

10.14

The OpenMP Programming Model X

Parallel Loop:

• Compiler calculates loop bounds for each thread directly
from serial source (computation decomposition).

• Compiler also manages data partitioning.
• Synchronization also automatic (barrier).
• Preprocessor calculates loop bounds and divide iterations

among parallel threads.

Programming Shared
Memory II

Dr. Cem Özdoğan

LOGIK

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

The OpenMP Design
Concepts

10.15

The OpenMP Programming Model XI

Loop Scheduling in Parallel for pragma

• Master thread creates additional threads,
each with a separate execution context.

• All variables declared outside for loop are
shared by default, except for loop index
which is private per thread.

• Implicit "barrier" synchronization at end of
for loop.

• Divide index regions sequentially per thread
• Thread 0 gets 0, 1, . . . (max/n)− 1
• Thread 1 gets

max/n,max/n + 1, . . . 2 ∗ (max/n) − 1

•

...

Example:
#pragma omp p a r a l l e l f o r
f o r (i =0; i <max ; i ++)

zero [i] = 0;

• Breaks for loop into chunks,
and allocate each to a
separate thread.

• if max = 1000 with 2 threads:
assign 0-499 to thread 0, and
500-999 to thread 1.

Programming Shared
Memory II

Dr. Cem Özdoğan

LOGIK

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

The OpenMP Design
Concepts

10.16

The OpenMP Design Concepts

• Load balance, Scheduling overhead, Data locality, Data
sharing, Synchronization.

• OpenMP is a compiler-based technique to create
concurrent code from (mostly) serial code.

• OpenMP can enable (easy) parallelization of loop-based
code with fork-join parallelism.

1 pragma omp p a r a l l e l
2 pragma omp p a r a l l e l f o r
3 pragma omp p a r a l l e l p r i v a t e (i , x)
4 pragma omp atomic
5 pragma omp c r i t i c a l
6 pragma omp f o r reduc t i on (+ : sum)

• OpenMP performs comparably to manually-coded
threading.

	OpenMP: a Standard for Directive Based Parallel Programming
	The OpenMP Programming Model
	The OpenMP Design Concepts

