1

1.

1
2
3
4
5

6

7

Hands-on; Shared Memory 1I; OpenMP

Hello world: codel8.c

e In this example, the master thread forks a parallel region.

e All threads in the team obtain their unique thread number and

print it.

e The master thread only prints the total number of threads.

e Two OpenMP library routines are used to obtain the number of

threads and each thread’s number.

Follow the steps below for executing OpenMP code;

export OMP_NUM_THREADS=8
gcc —o codel8 codel8.c -fopenmp
./codel8

[35 s ok ok ok ok ok ok ok ok ok ok ok ok sk ok Sk ok ok ok ok K K ok K K K K K R o o o ok ok ok ok ok ok ok ok
* FILE: omp_hello.c
* DESCRIPTION :
* OpenMP Example — Hello World — C/C++ Version
*
*
*

In this simple example, the master thread forks a parallel region.

All threads in the team obtain their unique thread number and
print it. The master thread only prints the total number of
threads.

* Two OpenMP library routines are used to obtain the number of

* threads and each thread’s number.

x AUTHOR: Blaise Barney 5/99

* LAST REVISED: 04/06/05

3K 3k K o oK K oK K oK K ok K ok K ok oK 3 ok K oK K ok K ok K ok oK ok ok 3 oK ok ok oK o ok K oK K oK K oK 3 oK K oK ok K ok o ok K oKk ok K ok ok K oK ok K K
«

#include <omp.h>

#include <stdio .h>

5 #include <stdlib .h>

int main (int argc, char *argv([]) {

int nthreads, tid;

/* Fork a team of threads giving them their own copies of variables =/

#pragma omp parallel private(nthreads, tid)

tid = omp-get_thread_num () ; /* Obtain thread number =/
printf(”Hello World from thread : %d\n”, tid);

/* Only master thread does this x*/
if (tid == 0)

nthreads = omp_get_-num_threads () ;
printf (”Number of threads = %d\n”, nthreads);

}

} /* All threads join master thread and disband x*/
return 0;

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code18.c

2. Shared Variables: codel9.c

e OpenMP default is shared variables.

e To make private, need to declare with pragma:

Follow the steps below for executing OpenMP code;

export OMP_NUM_THREADS=8
gcc —o codel9 codel9.c -fopenmp
./codel9

1 #include <stdio .h>
2 #include <omp.h>
#include <unistd.h>

int a,b,x,y,num_threads,thread_-num;
6 int main ()

8 printf(”I am in sequential part.\n”);
9 #pragma omp parallel num_threads (8) private (a) shared (b)

11 num_threads=omp_get_-num_threads () ;

12 thread_num=omp_get_thread_num () ;
13 x=thread_num ;

14 //sleep (1) ;

15 y=x-+1;

16 printf(”I am openMP parellized part and thread %d. \n X and Y
values are %d and %d. \n” ,omp-_get_-thread_num () ,x,y);

18 printf(”?I am in sequential part again.\n”);
19 return 0;
20 }

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code19.c

3. Loop work-sharing: code20.c

1
2
3
4
5

e The iterations of a loop are scheduled dynamically across the team
of threads.

e A thread will perform CHUNK iterations at a time before being
scheduled for the next CHUNK of work.

Follow the steps below for executing OpenMP code;

gcc —o code20 code20.c -fopenmp

./code20

[35 sk ok ok ok ok ok ok ok ok ok ok sk ok sk ok Sk ok koK ok K K ok K K K K K o o o o ok ok ok ok ok ok ok ok

* FILE: omp_worksharel.c

* DESCRIPTION :

* OpenMP Example — Loop Work—sharing — C/C{+ Version

* In this example, the iterations of a loop are scheduled dynamically
x across the team of threads. A thread will perform CHUNK iterations
* at a time before being scheduled for the next CHUNK of work.

* AUTHOR: Blaise Barney 5/99

+ LAST REVISED: 04/06/05

ok ok ok ok K ok ok ok ok ok K ok K ok ok o ok K ok ok ok K ok K ok ok ok ok oKk ok ok ok ok K Kk ok ok oK K Kk ok ok o ok K ok ok ok o ok o ok o ok ok ok Rk

in

*/

#include <omp.h>
#include <stdio.h>
#include <stdlib .h>
4 #define CHUNKSIZE 10
#define N 100

t main (int arge, char xargv([]) {

int nthreads, tid, i, chunk;
float a[N], b[N], c[N];

for (i=0; i < N; i++4) /* Some initializations x/
chunk = CHUNKSIZE;

; #pragma omp parallel shared(a,b,c,nthreads,chunk) private(i,tid)

tid = omp-get_thread_num () ;
if (tid = 0) {
nthreads = omp_get_-num-_threads () ;
printf (”Number of threads = %d\n”, nthreads);

printf(”Thread %d starting...\n”,tid);

// #pragma omp for schedule(static ,chunk)

i #pragma omp for schedule (dynamic,chunk)

for (i=0; i<N; i++) {
c[i] =a[i] + b[i];
printf (” Thread %d: c[%d]= %f\n” ,tid ,i,c[i]);

} /% end of parallel section x/
return O0;

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code20.c

	Hands-on; Shared Memory II; OpenMP

