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Core Core

L1 Cache L1 Cache

Core Core

L1 Cache L1 Cache

L3 Cache

® CPUs are latency
oriented (minimize
execution of serial code).

e |f the CPU has n cores,

each core processes 1/n
elements.

® Launching, scheduling
threads adds overhead.
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L2 Cache

e GPUs are throughput oriented
(maximize number of floating point
operations).

e GPUs process one element per
thread.

® Scheduled by GPU hardware, not by
OsS.
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e A Graphics Processor Unit (GPU) is mostly known for the or. Gem Gzdogan

hardware device used when running applications that

weigh heavy on graphics. $
e Highly parallel, highly multithreaded multiprocessor

optimized for graphic computing and other applications.
1 GPU Programming APIl: CUDA (Compute Unified Device _

Architecture) : parallel GPU programming API created by s .
NVIDA

o NVIDIA GPUs can be programmed by CUDA, extension of

C language

e APl libaries with G/C++/Fortran language

e CUDA C is compiled with nvcc

e Numerical libraries: cuBLAS, cuFFT, Magma, ...

2 GPU Programming API: OpenGL - an open standard for
GPU programming.

3 GPU Programming API: DirectX - a series of Microsoft
multimedia programming interfaces.

¢ https://developer.nvidia.com/ Download: CUDA Toolkit,
NVIDIA HPC SDK (Software Development Kit)


https://developer.nvidia.com/
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SP: Scalar Processor 'CUDA core’.
Executes one thread.

SM: Streaming Multiprocessor
32xSP (or 16, 48 or more).

Fast local 'shared memory’ (shared
between SPs) 16 KiB (or 64 KiB)
For example: NVIDIA Maxwell
GeForce GTX 750 Ti.

e 32 SP, 20 SM : 640 CUDA Cores
Parallelization: Decomposition to
threads.

Memory: Shared memory, global GLOBAL MEMORY
memory. (ON DEVICE)

Thread communication:
Synchronization HOST
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Exploring the GPU Architecture Il

Threads grouped in thread
blocks: 128, 192 or 256
threads in a block
One thread block executes
on one SM.
® All threads sharing the
'shared memory’.
® Each thread block is
divided in scheduled units
known as a warp.

Blocks form a GRID.
Thread ID: unique within
block.

Block ID: unique within
grid.

BLOCK 1

' BLocko || BLock 1 || BLock 2

, BLOCK 3 H BLOCK 4 H BLOCK 5 ]

| BLocks | BLock 7 || BLOCK S |
Grid
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GPU parallelization
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* A kernel is executed as a Host Device Lot
grid of thread blocks. All G Ry
threads share data memory e T T e
space. ! ©0 || o) | @0

e A thread block is a batch of Bioc”(| Block | Black || Programming Models
threads that can cooperate P o )
with each other by: . T a—

. Synchr.onizing their oot B 2 4—— “'
execution. 2 | \

e Efficiently sharing data i — e
through a low latency Block (1,1) |

shared memory.
¢ Two threads from two

different blocks cannot
cooperate.
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e Computation partitioning (where to run) Dr. Cem Gzdogan
® Declarations on functions
__host__, __global__, _ _device_ _
__global__ void cuda_hello () {

}
® Mapping of thread programs to device: P

compute <<<gs,bs>>>(<args>) _

cuda_hello <<<blocks_per_grid,threads_per_block>>> ();

e Data partitioning (where does data reside, who may
access it and how?)
® Declarations on data
_ _shared_ , _ device_ , _ constant_ ,

__device__ const char *STR = "HELLO WORLD!";

¢ Data management and orchestration
® Copying to/from host: e.g.,
cudaMemcpy (h_obj,d_obj, cudaMemcpyDevicetoHost)

cudaMemcpy ( d_a, h_a, bytes, cudaMemcpyHostToDevice) ;
cudaMemcpy ( h_c, d_c, bytes, cudaMemcpyDeviceToHost );
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e Concurrency management. e.g.. éi%‘%
2
__synchthreads ()
cudaDeviceSynchronize () ;

Exploring the GPU
Architecture

wemel P

¢ a simple C function

e executes on GPU in parallel as many times as there are
threads

® The keyword
__global___

tells the compiler nvce to make a function a kernel (and
compile/run it for the GPU, instead of the CPU)

e [t’s the functions that you may call from the host side using
CUDA kernel call semantics (<<< ... >>>).
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Setup and data transfer

N
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~
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cudaMemcpy : Transfer data to and from GPU (global
memory)

cudaMalloc : Allocate memory on GPU (global memory)

double =h_a; // Host input vectors

double =d_a; // Device input vectors

h_a = (double~)malloc(bytes); // Allocate memory for each
vector on host

cudaMalloc(&d_a, bytes); // Allocate memory for each vector
on GPU

cudaMemcpy ( d_a, h_a, bytes, cudaMemcpyHostToDevice); // Copy
data from host array h_a to device arrays d_a

add_vectors <<<blk_in_grid, thr_per_blk>>>(d_a, d_b, d_c); //
Execute the kernel

cudaMemcpy ( h_c, d_c, bytes, cudaMemcpyDeviceToHost ); //
Copy data from device array d_c to host array h_c

GPU is the 'device’, CPU is the 'host’. They do not share
memory!

The HOST launches a kernel that execute on the DEVICE.
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e Threads and blocks have
IDs

® So each thread can
decide what data to work
on

e Block ID: 1D or 2D
(blockldx.x, blockldx.y)

® Thread ID: 1D, 2D, or 3D
(threadldx.x,y,z)

e Simplifies memory
addressing when
processing multi-
dimensional data.

e Compiler nvce takes as input a .cu program and produces

Device
Grid 1
Block Block Block
©0 | Lo @0
‘ Block Block ‘ Block
o | @y | @
L
Block (1, 1)

® C Code for host processor (CPU), compiled by native C

compiler

® Code for device processor (GPU), compiled by nvcc

compiler

Beyond OpenMP & MP
GPU parallelization

Dr. Cem Ozdogan

Naed
RILYS

Exploring the GPU
Architecture

12.11



© o N O AW =

10
11
12
13

15
16
17

18
19

Execution and Programming Models V - Hello World |

Cuda Code:

#include <stdio.h>
#include <unistd.h>
__device

__global__ void cuda_hello () {
/1 blockldx .x: Block index within the grid in x—direction

/! threadldx .x: Thread index within the block

in a block

printf ("Hello World from GPU! (%d ,%d) : %c ThreadlD %d \n",
blockldx .x, threadldx.x, STR[threadldx .x % STR_LENGTH], (
threadldx .x +blockldx .x«blockDim.x));

// blockDim .x: # of threads

}

int main() {

const char *STR = "HELLO WORLD!";
const int STR LENGTH = 12;

printf ("Hello World from CPU!\n");

sleep (2);

int threads_per_block=12;

int blocks_per_grid=2;

cuda_hello <<<blocks_per_grid,threads_per_block>>> ();

cudaDeviceSynchronize () ;

/«

Halt host thread execution on CPU

until the device has finished processing all previously

requested tasks
return 0;

=/
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Cuda Code:

1 #include <stdio.h>

2 #include <cuda.h>

3 #include <cuda_runtime.h>

4 #define N 720 // number of computations

5 #define GRID_D1 20 // constants for grid and block sizes
6 #define GRID_D2 3 // constants for grid and block sizes
7 #define BLOCK D1 12 // constants for grid and block sizes
8 #define BLOCK D2 1 // constants for grid and block sizes
9 #define BLOCK D3 1 // constants for grid and block sizes

10

11 __global__ void hello(void) // this is the kernel function called for each thread

12 {

13 // CUDA variables {threadldx, blockldx, blockDim, gridDim} to determine a unique thread ID

14 int myblock = blockldx.x + blockldx.y + gridDim.x; // id of the block

15 int blocksize = blockDim.x « blockDim.y « blockDim.z; // size of each block

16 int subthread = threadldx.z«(blockDim.x + blockDim.y) + threadldx.y~blockDim.x +
threadldx.x; // id of thread in a given block

17 int idx = myblock + blocksize + subthread; // assign overall id/index of the thread

18 int nthreads=blocksize «gridDim.x=gridDim.y; // Total # of threads

19 int chunk=20; // Vary this value to see the changes at the output

20 if (idx < chunk || idx > nthreads—chunk) { // only print first and last chunks of threads

21 if (idx < N){

22 printf("Hello world! My block index is (%d,%d) [Grid dims=(%d,%d)], 3D-thread

index within block=(%d,%d,%d) => thread index=%d \n", blockldx.x, blockldx.y, gridDim.

x, gridDim.y, threadldx.x, threadldx.y, threadldx.z, idx);

23

24 else

25 {

26 printf("Hello world! My block index is (%d,%d) [Grid dims=(%d,%d)], 3D-thread
index within block=(%d,%d,%d) => thread index=%d [### this thread would not be used
for N=%d ###]\n", blockldx.x, blockldx.y, gridDim.x, gridDim.y, threadldx.x, threadldx
.y, threadldx.z, idx, N);

27 }

28 }

29 }
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30 int main(int argc,char x~argv)

31
32
33
34
35
36
37
38
39
40
41
42
43

44

45
46
47
48
49
50
51
52
53
54
55 }

/l objects containing the block and grid info
const dim3 blockSize(BLOCK D1, BLOCK D2, BLOCK D3);
const dim3 gridSize (GRID_D1, GRID_D2, 1);
int nthreads = BLOCK D1+BLOCK D2-BLOCK D3+GRID_D1+GRID_D2; // Total # of threads
if (nthreads < N){
printf("\n=
}

else

= NOT ENOUGH THREADS TO COVER N=%d ==

==\n\n",N);

printf("Launching %d threads (N=%d)\n",nthreads,N);

hello <<<gridSize , blockSize >>>(); // launch the kernel on the specified grid of thread
blocks

cudaError_t cudaerr = cudaDeviceSynchronize(); // Need to flush prints, otherwise none
of the prints from within the kernel will show up as program exit does not flush the
print buffer

if (cudaerr){
printf("kernel launch failed with error \"%s\".\n",

cudaGetErrorString(cudaerr));
}

else
printf("kernel launch success!\n");

}
printf ("That’s all!\n");
return 0;
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Launching 728 threads (H=T28)

1lo world! My block index iz (1,8) [Grid dims=(28,3)], 3D-thread index within block=(8,8,8) = thread index=12
Hello world! My block index is (1,8) [Grid dims=(28,3)], 3D-thread index within block=(1,8,8) => thread index=13
Hello world! My block index is (1,8) [Grid dims=(28,3)], 3D-thread index within block=(2,8,8) == thread index=14
Hello world! My block index is (1,8) [Grid dims=(28,3)], 3D-thread index within block=(3,8,8) == thread index=15
Hello world! My block index is (1,8) [Grid dims=(28,3)], 3D-thread index within block=({4,8,8) == thread index=16 L t ]
Hello world! My block index is (1,8) [Grid dims={28,3)], 30-thread index within block=(5,8,8) == thread index=17
Hello world! My block index is (1,8) [Grid dims={28,3)], 30-thread index within block=(6,8,8) == thread index=18 L
Hello world! My block index is {1,8) [Grid dims=(28,3)], 30-thread index within hlock=(7,8,8) => thread index=10

Hello world! My block index is (1B,2) [Grid dims=(28,3)], 3D-thread index within => thread index=781  Eyploring the GPU
Hello world! My block index is (1B,2) [Grid dims={28,3)], 3D-thread index within thread index=TB2  Archioot o
Hello world! My block index is (18,2) [Grid dims=(28,3)], 30-thread index within => thread index=783

Hello world! My block index is (18,2) [Grid dims=(28,3)], 30-thread index within = thread index=7T84

Hello world! My block index is (18,2) [Grid dims=(20,3)], 30-thread index within =» thread index=785

Hello world! My block index is (18,2) [Grid dims=(28,3)], 30-thread index within => thread index=786

Hello world! My block index is (18,2) [Grid dims=(28,3)], 30-thread index within => thread index=787

Hello world! My block index is (19,2) [Grid dims=(28,3)], 30-thread index within thread index=788

Hello world! My block index is (19,2) [Grid dims=(29,3)], 30-thread index within thread index=T60

Hello world! My block index is {10,2) [Grid dims={28,3)], 3D-thread index within thread i

Hello world! My block index is {10,2) [Grid dims={28,3)], 3D-thread index within thread i

Hello world! My block index is (10,2) [Grid dims={28,3)], 3D-thread index within thread i

Hello world! My block index is (10,2) [Grid dims={28,3)], 3D-thread index within thread i

Hello world! My block index is (10,2) [Grid dims={28,3)], 3D-thread index within thread i

Hello world! My block index is (19,2) [Grid dims=(28,3)], 30-thread index within thread i

Hello world! My block index is (19,2) [Grid dims=(28,3)], 30-thread index within thread i

Hello world! My block index is (10,2) [Grid dims=(20,3)], 30-thread index within thread i

Hello world! My block index is (10,2) [Grid dims=(28,3)], 30-thread index within ) => thread index=718

Hello world! My block index is (19,2) [Grid dims=(28,3)], 3D-thread index within 1 == thread index=719

Hello world! My block index is (8,8) [Grid dims=(28,3)], 3D-thread index within block={8,8,8) == thread index=B

== thread index=1
== thread index=2
== thread index=3

)
Hello world! My block index is (8,8) [Grid dims=(28,3)], 3D-thread index within block=(1,8,8)
)
)
) == thread index=4
)
)
)
)
)

Hello world! My block index is {B,8) [Grid dims=(28,3)], 30-thread index within hlock={
Hello world! My block index is {B,8) [Grid dims=(28,3)], 30-thread index within block=(
Hello world! My block index is (8,8) [Grid dims={28,3)], 30-thread index within block=(4,
Hello world! My block index is (8,8) [Grid dims=(28,3)], 30-thread index within block=(5,8,
Hello world! My block index is (8,8) [Grid dims=(28,3)], 30-thread index within block=(E,8,
Hello world! My block index is (8,8) [Grid dims=(28,3)], 3D-thread index within block=(7,8,
Hello world! My block index is (8,8) [Grid dims={28,3)], 30-thread index within block=(8,8,
Hello world! My block index is (8,8) [Grid dims={28,3)], 3D-thread index within block=(0,8,
Hello world! My block index is (8,8) [Grid dims={28,3)], 30-thread index within hlock=(18,8,8) => thread index=18
Hello world! My block index is (8,8) [Grid dims={28,3)], 3D-thread index within hlock=(11,8,8) => thread index=11
kernel launch success!

That"s all!

== thread index=5
== thread index=6
== thread index=7
== thread index=B
== thread index=0
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