Beyond OpenMP & MP
GPU parallelization

Lecture 12
Beyond OpenMP & MPI: GPU aié"?’;%@

para”elization Exploring the GPU

Architecture

Introduction, Architecture, Programming Beae

Programming Models

IKC-MH.57 Introduction to High Performance and Parallel
Computing at January 05, 2024

Dr. Cem Ozdogan
Engineering Sciences Department
Izmir Katip Celebi University

Contents

@ Exploring the GPU Architecture

@ Execution and Programming Models

Beyond OpenMP & MP
GPU parallelization

Dr. Cem Ozdogan

E

Exploring the GPU
Architecture

Execution and
Programming Models

Exploring the GPU Architecture | PeLy paraneization

Core Core

L1 Cache L1 Cache

Core Core

L1 Cache L1 Cache

L3 Cache

® CPUs are latency
oriented (minimize
execution of serial code).

e |f the CPU has n cores,

each core processes 1/n
elements.

® Launching, scheduling
threads adds overhead.

Dr. Cem Ozdogan

Execution and
Programming Models

L2 Cache

e GPUs are throughput oriented
(maximize number of floating point
operations).

e GPUs process one element per
thread.

® Scheduled by GPU hardware, not by
OsS.

Beyond OpenMP & MP

Exploring the GPU Architecture Il GPU parallelization

e A Graphics Processor Unit (GPU) is mostly known for the or. Gem Gzdogan

hardware device used when running applications that

weigh heavy on graphics. $
e Highly parallel, highly multithreaded multiprocessor

optimized for graphic computing and other applications.
1 GPU Programming APIl: CUDA (Compute Unified Device _

Architecture) : parallel GPU programming API created by s .
NVIDA

o NVIDIA GPUs can be programmed by CUDA, extension of

C language

e APl libaries with G/C++/Fortran language

e CUDA C is compiled with nvcc

e Numerical libraries: cuBLAS, cuFFT, Magma, ...

2 GPU Programming API: OpenGL - an open standard for
GPU programming.

3 GPU Programming API: DirectX - a series of Microsoft
multimedia programming interfaces.

¢ https://developer.nvidia.com/ Download: CUDA Toolkit,
NVIDIA HPC SDK (Software Development Kit)

https://developer.nvidia.com/

Beyond OpenMP & MP

Exploring the GPU Architecture Il GPU parallelization

Dr. Cem Ozdogan

AT

Execution and
Programming Models

SP: Scalar Processor 'CUDA core’.
Executes one thread.

SM: Streaming Multiprocessor
32xSP (or 16, 48 or more).

Fast local 'shared memory’ (shared
between SPs) 16 KiB (or 64 KiB)
For example: NVIDIA Maxwell
GeForce GTX 750 Ti.

e 32 SP, 20 SM : 640 CUDA Cores
Parallelization: Decomposition to
threads.

Memory: Shared memory, global GLOBAL MEMORY
memory. (ON DEVICE)

Thread communication:
Synchronization HOST

Mo Ao Ao o

E%nwnwnwn
oX
2o

=4¢)]

Exploring the GPU Architecture Il

Threads grouped in thread
blocks: 128, 192 or 256
threads in a block
One thread block executes
on one SM.
® All threads sharing the
'shared memory’.
® Each thread block is
divided in scheduled units
known as a warp.

Blocks form a GRID.
Thread ID: unique within
block.

Block ID: unique within
grid.

BLOCK 1

' BLocko || BLock 1 || BLock 2

, BLOCK 3 H BLOCK 4 H BLOCK 5]

| BLocks | BLock 7 || BLOCK S |
Grid

Beyond OpenMP & MP
GPU parallelization

Dr. Cem Ozdogan

Execution and
Programming Models

Exploring the GPU Architecture IV BLPU paranelization

GPU parallelization

Dr. Cem Ozdogan

* A kernel is executed as a Host Device Lot
grid of thread blocks. All G Ry
threads share data memory e T T e
space. ! ©0 || o) | @0

e A thread block is a batch of Bioc”(| Block | Black || Programming Models
threads that can cooperate P o)
with each other by: . T a—

. Synchr.onizing their oot B 2 4—— “'
execution. 2 | \

e Efficiently sharing data i — e
through a low latency Block (1,1) |

shared memory.
¢ Two threads from two

different blocks cannot
cooperate.

Beyond OpenMP & MP

Execution and Programming Models | GPU parallelization
e Computation partitioning (where to run) Dr. Cem Gzdogan
® Declarations on functions
__host__, __global__, _ _device_ _
__global__ void cuda_hello () {

}
® Mapping of thread programs to device: P

compute <<<gs,bs>>>(<args>) _

cuda_hello <<<blocks_per_grid,threads_per_block>>> ();

e Data partitioning (where does data reside, who may
access it and how?)
® Declarations on data
_ _shared_ , _ device_ , _ constant_ ,

__device__ const char *STR = "HELLO WORLD!";

¢ Data management and orchestration
® Copying to/from host: e.g.,
cudaMemcpy (h_obj,d_obj, cudaMemcpyDevicetoHost)

cudaMemcpy (d_a, h_a, bytes, cudaMemcpyHostToDevice) ;
cudaMemcpy (h_c, d_c, bytes, cudaMemcpyDeviceToHost);

Execution and Programming Models II BLou paratelization

Dr. Cem Ozdogan

e Concurrency management. e.g.. éi%‘%
2
__synchthreads ()
cudaDeviceSynchronize () ;

Exploring the GPU
Architecture

wemel P

¢ a simple C function

e executes on GPU in parallel as many times as there are
threads

® The keyword
__global___

tells the compiler nvce to make a function a kernel (and
compile/run it for the GPU, instead of the CPU)

e [t’s the functions that you may call from the host side using
CUDA kernel call semantics (<<< ... >>>).

Execution and Programming Models llI

Setup and data transfer

N

[N

~

3}

o

.

cudaMemcpy : Transfer data to and from GPU (global
memory)

cudaMalloc : Allocate memory on GPU (global memory)

double =h_a; // Host input vectors

double =d_a; // Device input vectors

h_a = (double~)malloc(bytes); // Allocate memory for each
vector on host

cudaMalloc(&d_a, bytes); // Allocate memory for each vector
on GPU

cudaMemcpy (d_a, h_a, bytes, cudaMemcpyHostToDevice); // Copy
data from host array h_a to device arrays d_a

add_vectors <<<blk_in_grid, thr_per_blk>>>(d_a, d_b, d_c); //
Execute the kernel

cudaMemcpy (h_c, d_c, bytes, cudaMemcpyDeviceToHost); //
Copy data from device array d_c to host array h_c

GPU is the 'device’, CPU is the 'host’. They do not share
memory!

The HOST launches a kernel that execute on the DEVICE.

Beyond OpenMP & MP
GPU parallelization

Dr. Cem Ozdogan

Exploring the GPU
Architecture

12.10

Execution and Programming Models IV

e Threads and blocks have
IDs

® So each thread can
decide what data to work
on

e Block ID: 1D or 2D
(blockldx.x, blockldx.y)

® Thread ID: 1D, 2D, or 3D
(threadldx.x,y,z)

e Simplifies memory
addressing when
processing multi-
dimensional data.

e Compiler nvce takes as input a .cu program and produces

Device
Grid 1
Block Block Block
©0 | Lo @0
‘ Block Block ‘ Block
o | @y | @
L
Block (1, 1)

® C Code for host processor (CPU), compiled by native C

compiler

® Code for device processor (GPU), compiled by nvcc

compiler

Beyond OpenMP & MP
GPU parallelization

Dr. Cem Ozdogan

Naed
RILYS

Exploring the GPU
Architecture

12.11

© o N O AW =

10
11
12
13

15
16
17

18
19

Execution and Programming Models V - Hello World |

Cuda Code:

#include <stdio.h>
#include <unistd.h>
__device

__global__ void cuda_hello () {
/1 blockldx .x: Block index within the grid in x—direction

/! threadldx .x: Thread index within the block

in a block

printf ("Hello World from GPU! (%d ,%d) : %c ThreadlD %d \n",
blockldx .x, threadldx.x, STR[threadldx .x % STR_LENGTH], (
threadldx .x +blockldx .x«blockDim.x));

// blockDim .x: # of threads

}

int main() {

const char *STR = "HELLO WORLD!";
const int STR LENGTH = 12;

printf ("Hello World from CPU!\n");

sleep (2);

int threads_per_block=12;

int blocks_per_grid=2;

cuda_hello <<<blocks_per_grid,threads_per_block>>> ();

cudaDeviceSynchronize () ;

/«

Halt host thread execution on CPU

until the device has finished processing all previously

requested tasks
return 0;

=/

Beyond OpenMP & MP
GPU parallelization

Dr. Cem Ozdogan

fﬁ o3
RILYS

Exploring the GPU
Architecture

12.12

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code24.cu

Execution and Programming Models VI - Hello World |

Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

World
World
World
World
world
World
World
world
World
World
World
World
world
World
World
world
World
World
World
World
world
World
World
world
World

from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from

CPU!
GPU!
GPU!
GPU!
GPU!
GPU!
GPU!
GPU!
GPU!
GPU!
GPU!
GPU!
GPU!
GPU!
GPU!
GPU!
GPU!
GPU!
GPU!
GPU!
GPU!
GPU!
GPU!
GPU!
GPU!

1,0)
1,1)
1,2)
1,3)
1,4)

‘rmos=

" rmos=s

orrr mIx

o mI

D ThreadID 22
ThreadID 23

D ThreadID 10
ThreadID 11

ThreadID
ThreadID
ThreadID
ThreadID
ThreadID
ThreadID
ThreadID
ThreadID
ThreadID
ThreadID

ThreadID
ThreadID
ThreadID
ThreadID
ThreadID
ThreadID
ThreadID
ThreadID
ThreadID
ThreadID

12
13
14
15
16
17
18
19
20
21

LN AEWNREO

Beyond OpenMP & MP
GPU parallelization

Dr. Cem Ozdogan

Naed
RYLY)

Exploring the GPU
Architecture

12.13

Execution and Programming Models VII - Hello World Il
Cuda Code:

1 #include <stdio.h>

2 #include <cuda.h>

3 #include <cuda_runtime.h>

4 #define N 720 // number of computations

5 #define GRID_D1 20 // constants for grid and block sizes
6 #define GRID_D2 3 // constants for grid and block sizes
7 #define BLOCK D1 12 // constants for grid and block sizes
8 #define BLOCK D2 1 // constants for grid and block sizes
9 #define BLOCK D3 1 // constants for grid and block sizes

10

11 __global__ void hello(void) // this is the kernel function called for each thread

12 {

13 // CUDA variables {threadldx, blockldx, blockDim, gridDim} to determine a unique thread ID

14 int myblock = blockldx.x + blockldx.y + gridDim.x; // id of the block

15 int blocksize = blockDim.x « blockDim.y « blockDim.z; // size of each block

16 int subthread = threadldx.z«(blockDim.x + blockDim.y) + threadldx.y~blockDim.x +
threadldx.x; // id of thread in a given block

17 int idx = myblock + blocksize + subthread; // assign overall id/index of the thread

18 int nthreads=blocksize «gridDim.x=gridDim.y; // Total # of threads

19 int chunk=20; // Vary this value to see the changes at the output

20 if (idx < chunk || idx > nthreads—chunk) { // only print first and last chunks of threads

21 if (idx < N){

22 printf("Hello world! My block index is (%d,%d) [Grid dims=(%d,%d)], 3D-thread

index within block=(%d,%d,%d) => thread index=%d \n", blockldx.x, blockldx.y, gridDim.

x, gridDim.y, threadldx.x, threadldx.y, threadldx.z, idx);

23

24 else

25 {

26 printf("Hello world! My block index is (%d,%d) [Grid dims=(%d,%d)], 3D-thread
index within block=(%d,%d,%d) => thread index=%d [### this thread would not be used
for N=%d ###]\n", blockldx.x, blockldx.y, gridDim.x, gridDim.y, threadldx.x, threadldx
.y, threadldx.z, idx, N);

27 }

28 }

29 }

Beyond OpenMP & MP
GPU parallelization

Dr. Cem Ozdogan

‘..ﬁ o3
30 %2
Exploring the GPU

Architecture

12.14

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/code25.cu

Execution and Programming Models VIII - Hello World Il

30 int main(int argc,char x~argv)

31
32
33
34
35
36
37
38
39
40
41
42
43

44

45
46
47
48
49
50
51
52
53
54
55 }

/l objects containing the block and grid info
const dim3 blockSize(BLOCK D1, BLOCK D2, BLOCK D3);
const dim3 gridSize (GRID_D1, GRID_D2, 1);
int nthreads = BLOCK D1+BLOCK D2-BLOCK D3+GRID_D1+GRID_D2; // Total # of threads
if (nthreads < N){
printf("\n=
}

else

= NOT ENOUGH THREADS TO COVER N=%d ==

==\n\n",N);

printf("Launching %d threads (N=%d)\n",nthreads,N);

hello <<<gridSize , blockSize >>>(); // launch the kernel on the specified grid of thread
blocks

cudaError_t cudaerr = cudaDeviceSynchronize(); // Need to flush prints, otherwise none
of the prints from within the kernel will show up as program exit does not flush the
print buffer

if (cudaerr){
printf("kernel launch failed with error \"%s\".\n",

cudaGetErrorString(cudaerr));
}

else
printf("kernel launch success!\n");

}
printf ("That’s all!\n");
return 0;

Beyond OpenMP & MP
GPU parallelization

Dr. Cem Ozdogan

‘..‘ o3
RILYS

Exploring the GPU
Architecture

12.15

Beyond OpenMP & MP

Execution and Programming Models IX - Hello World II @PU parallelization

Dr. Cem Ozdogan

Launching 728 threads (H=T28)

1lo world! My block index iz (1,8) [Grid dims=(28,3)], 3D-thread index within block=(8,8,8) = thread index=12
Hello world! My block index is (1,8) [Grid dims=(28,3)], 3D-thread index within block=(1,8,8) => thread index=13
Hello world! My block index is (1,8) [Grid dims=(28,3)], 3D-thread index within block=(2,8,8) == thread index=14
Hello world! My block index is (1,8) [Grid dims=(28,3)], 3D-thread index within block=(3,8,8) == thread index=15
Hello world! My block index is (1,8) [Grid dims=(28,3)], 3D-thread index within block=({4,8,8) == thread index=16 L t]
Hello world! My block index is (1,8) [Grid dims={28,3)], 30-thread index within block=(5,8,8) == thread index=17
Hello world! My block index is (1,8) [Grid dims={28,3)], 30-thread index within block=(6,8,8) == thread index=18 L
Hello world! My block index is {1,8) [Grid dims=(28,3)], 30-thread index within hlock=(7,8,8) => thread index=10

Hello world! My block index is (1B,2) [Grid dims=(28,3)], 3D-thread index within => thread index=781 Eyploring the GPU
Hello world! My block index is (1B,2) [Grid dims={28,3)], 3D-thread index within thread index=TB2 Archioot o
Hello world! My block index is (18,2) [Grid dims=(28,3)], 30-thread index within => thread index=783

Hello world! My block index is (18,2) [Grid dims=(28,3)], 30-thread index within = thread index=7T84

Hello world! My block index is (18,2) [Grid dims=(20,3)], 30-thread index within =» thread index=785

Hello world! My block index is (18,2) [Grid dims=(28,3)], 30-thread index within => thread index=786

Hello world! My block index is (18,2) [Grid dims=(28,3)], 30-thread index within => thread index=787

Hello world! My block index is (19,2) [Grid dims=(28,3)], 30-thread index within thread index=788

Hello world! My block index is (19,2) [Grid dims=(29,3)], 30-thread index within thread index=T60

Hello world! My block index is {10,2) [Grid dims={28,3)], 3D-thread index within thread i

Hello world! My block index is {10,2) [Grid dims={28,3)], 3D-thread index within thread i

Hello world! My block index is (10,2) [Grid dims={28,3)], 3D-thread index within thread i

Hello world! My block index is (10,2) [Grid dims={28,3)], 3D-thread index within thread i

Hello world! My block index is (10,2) [Grid dims={28,3)], 3D-thread index within thread i

Hello world! My block index is (19,2) [Grid dims=(28,3)], 30-thread index within thread i

Hello world! My block index is (19,2) [Grid dims=(28,3)], 30-thread index within thread i

Hello world! My block index is (10,2) [Grid dims=(20,3)], 30-thread index within thread i

Hello world! My block index is (10,2) [Grid dims=(28,3)], 30-thread index within) => thread index=718

Hello world! My block index is (19,2) [Grid dims=(28,3)], 3D-thread index within 1 == thread index=719

Hello world! My block index is (8,8) [Grid dims=(28,3)], 3D-thread index within block={8,8,8) == thread index=B

== thread index=1
== thread index=2
== thread index=3

)
Hello world! My block index is (8,8) [Grid dims=(28,3)], 3D-thread index within block=(1,8,8)
)
)
) == thread index=4
)
)
)
)
)

Hello world! My block index is {B,8) [Grid dims=(28,3)], 30-thread index within hlock={
Hello world! My block index is {B,8) [Grid dims=(28,3)], 30-thread index within block=(
Hello world! My block index is (8,8) [Grid dims={28,3)], 30-thread index within block=(4,
Hello world! My block index is (8,8) [Grid dims=(28,3)], 30-thread index within block=(5,8,
Hello world! My block index is (8,8) [Grid dims=(28,3)], 30-thread index within block=(E,8,
Hello world! My block index is (8,8) [Grid dims=(28,3)], 3D-thread index within block=(7,8,
Hello world! My block index is (8,8) [Grid dims={28,3)], 30-thread index within block=(8,8,
Hello world! My block index is (8,8) [Grid dims={28,3)], 3D-thread index within block=(0,8,
Hello world! My block index is (8,8) [Grid dims={28,3)], 30-thread index within hlock=(18,8,8) => thread index=18
Hello world! My block index is (8,8) [Grid dims={28,3)], 3D-thread index within hlock=(11,8,8) => thread index=11
kernel launch success!

That"s all!

== thread index=5
== thread index=6
== thread index=7
== thread index=B
== thread index=0

12.16

	Exploring the GPU Architecture
	Execution and Programming Models

