
1 MPI Hands-On - Introduction to MPI

1.1 Parallel Computing

� Separate workers or processes.

� Interact by exchanging information.

� Data-Parallel. Same operations on different data. Also called SIMD.

� SPMD. Same program, different data.

� MIMD. Different programs, different data.

1.2 Communicating with other processes

Data must be exchanged with other workers;

� Cooperative — all parties agree to transfer data.

– Message-passing is an approach that makes the exchange of data
cooperative.

– Data must both be explicitly sent and received.

SEND( data )

Process 0 Process 1

RECV( data )

Figure 1: Cooperative–Communicating with other processes.

� One sided — one worker performs transfer of data.

– One-sided operations between parallel processes include remote
memory reads and writes.

– An advantage is that data can be accessed without waiting for
another process.
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Figure 2: One sided–Communicating with other processes.

1.3 What is MPI?

� A message-passing library specification

– message-passing model.

– not a compiler specification.

– not a specific product.

� For parallel computers, clusters, and heterogeneous networks.

� Designed to provide access to advanced parallel hardware for

– end users.

– library writers.

– tool developers.

1.4 MPI Implementations

� Open MPI (a project combining technologies and resources from several
other projects (FT-MPI, LA-MPI, LAM/MPI, and PACX-MPI))

� MPICH (Argonne National Laboratory).

� UNIFY (Mississippi State University).

� CHIMP (Edinburgh Parallel Computing Centre).
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� LAM (Ohio Supercomputer Center).

� MPI for the Fujitsu AP1000 (Australian National University).

� Cray MPI Product for the T3D (Cray Research and the Edinburgh
Parallel Computing Center).

� IBM’s MPI for the SP.

� SGI’s MPI for 64-bit mips3 and mips4.

� PowerMPI for Parsytec Systems.

� HP’s MPI implementation.

� . . .

1.5 Is MPI Large or Small?

� MPI is large (See this openMPI link)

– MPI’s extensive functionality requires many functions.

– Number of functions not necessarily a measure of complexity.

� MPI is small. Many parallel programs can be written with just 6 basic functions.

– MPI Init– Initialise MPI.

– MPI Comm size– Find out how many processes there are.

– MPI Comm rank– Find out which process I am.

– MPI Send– Send a message.

– MPI Recv– Receive a message.

– MPI Finalize– Terminate MPI.

� MPI is just right

– One can access flexibility when it is required.

– One need not master all parts of MPI to use it.
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1.6 Where to use MPI?

� You need a portable parallel program.

� You are writing a parallel library.

� You have irregular or dynamic data relationships that do not fit a
data parallel model.

Where not to use MPI:

� You can use HPF or a parallel Fortran 90.

� You don’t need parallelism at all.

� You can use libraries (which may be written in MPI).

1.7 How To Use MPI? Essential!!

1. When possible, start with a debugged serial version.

2. Design parallel algorithm.

3. Write code, making calls to MPI library.

4. Compile and run using implementation specific utilities.

5. Run with a few nodes first, increase number gradually.

1.8 Getting started

1.8.1 Writing MPI programs I

First program with MPI ( hello.c). Write the following code and study the
response.

1 #inc l ude ”mpi . h”
2 #inc l ude <s td i o . h>
3

4 i n t main ( argc , argv )
5 i n t argc ;
6 char ** argv ;
7 {
8 MPI Init ( &argc , &argv ) ;
9 p r i n t f ( ” He l l o world\n” ) ;

10 MPI Final i ze ( ) ;
11 r e turn 0 ;
12 }
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� #include "mpi.h"

provides basic MPI definitions and types.

� MPI_Init

starts MPI.

� MPI_Finalize

exits MPI.

� Note that all non-MPI routines are local; thus the

printf

run on each process.

mpicc -o hello hello.c

mpirun -np 2 hello

1.8.2 Writing MPI programs II

Another Example (Again no messsage-passing) ( hello1.c):

1 #inc l ude <s td i o . h>
2 #inc l ude <mpi . h>
3

4 i n t main ( argc , argv )
5 i n t argc ;
6 char *argv [ ] ;
7 {
8 char name [BUFSIZ ] ;
9 i n t l ength ;

10 MPI Init(&argc , &argv ) ;
11 MPI Get processor name (name , &l ength ) ;
12 p r i n t f ( ”%s : h e l l o world\n” , name) ;
13 MPI Final i ze ( ) ;
14 }

1.8.3 Writing MPI programs III

Another Example (Again hello and again no messsage-passing) ( hello2.c):

1 #inc l ude ”mpi . h”
2 #inc l ude <s td i o . h>
3 #inc l ude <uni s td . h>
4

5 i n t main ( argc , argv )
6 i n t argc ;
7 char ** argv ;
8 {
9 i n t rank , s i z e ;
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10 MPI Init ( &argc , &argv ) ;
11 MPI Comm rank ( MPICOMMWORLD, &rank ) ;
12 MPI Comm size ( MPICOMMWORLD, &s i z e ) ;
13 p r i n t f ( ” He l l o world ! I ’m %d of %d\n” , rank , s i z e ) ;
14 s l e ep (10) ;
15 MPI Final i ze ( ) ;
16 r e turn 0 ;
17 }

Two of the first questions asked in a parallel program are:

1. How many processes are there? Answered with MPI Comm size

2. Who am I? Answered with MPI Comm rank. The rank is a num-
ber between zero and size-1.

1.8.4 Exercise - Getting Started

� Designing, compiling, and runing a simple MPI program.

– Write a program that combines all the ”Hello world” programs
above.

– Execute several times and/or try different number of nodes. What
does the output look like? Why it does differ?
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