
1 MPI Hands-On - Introduction to MPI

1.1 Parallel Computing

� Separate workers or processes.

� Interact by exchanging information.

� Data-Parallel. Same operations on different data. Also called SIMD.

� SPMD. Same program, different data.

� MIMD. Different programs, different data.

1.2 Communicating with other processes

Data must be exchanged with other workers;

� Cooperative — all parties agree to transfer data.

– Message-passing is an approach that makes the exchange of data
cooperative.

– Data must both be explicitly sent and received.

SEND(data)

Process 0 Process 1

RECV(data)

Figure 1: Cooperative–Communicating with other processes.

� One sided — one worker performs transfer of data.

– One-sided operations between parallel processes include remote
memory reads and writes.

– An advantage is that data can be accessed without waiting for
another process.

1

Process 0 Process 1

Process 0 Process 1

(Memory)

PUT(data)

(Memory)

GET(data)

Figure 2: One sided–Communicating with other processes.

1.3 What is MPI?

� A message-passing library specification

– message-passing model.

– not a compiler specification.

– not a specific product.

� For parallel computers, clusters, and heterogeneous networks.

� Designed to provide access to advanced parallel hardware for

– end users.

– library writers.

– tool developers.

1.4 MPI Implementations

� Open MPI (a project combining technologies and resources from several
other projects (FT-MPI, LA-MPI, LAM/MPI, and PACX-MPI))

� MPICH (Argonne National Laboratory).

� UNIFY (Mississippi State University).

� CHIMP (Edinburgh Parallel Computing Centre).

2

� LAM (Ohio Supercomputer Center).

� MPI for the Fujitsu AP1000 (Australian National University).

� Cray MPI Product for the T3D (Cray Research and the Edinburgh
Parallel Computing Center).

� IBM’s MPI for the SP.

� SGI’s MPI for 64-bit mips3 and mips4.

� PowerMPI for Parsytec Systems.

� HP’s MPI implementation.

� . . .

1.5 Is MPI Large or Small?

� MPI is large (See this openMPI link)

– MPI’s extensive functionality requires many functions.

– Number of functions not necessarily a measure of complexity.

� MPI is small. Many parallel programs can be written with just 6 basic functions.

– MPI Init– Initialise MPI.

– MPI Comm size– Find out how many processes there are.

– MPI Comm rank– Find out which process I am.

– MPI Send– Send a message.

– MPI Recv– Receive a message.

– MPI Finalize– Terminate MPI.

� MPI is just right

– One can access flexibility when it is required.

– One need not master all parts of MPI to use it.

3

https://www.open-mpi.org/doc/current/

1.6 Where to use MPI?

� You need a portable parallel program.

� You are writing a parallel library.

� You have irregular or dynamic data relationships that do not fit a
data parallel model.

Where not to use MPI:

� You can use HPF or a parallel Fortran 90.

� You don’t need parallelism at all.

� You can use libraries (which may be written in MPI).

1.7 How To Use MPI? Essential!!

1. When possible, start with a debugged serial version.

2. Design parallel algorithm.

3. Write code, making calls to MPI library.

4. Compile and run using implementation specific utilities.

5. Run with a few nodes first, increase number gradually.

1.8 Getting started

1.8.1 Writing MPI programs I

First program with MPI (hello.c). Write the following code and study the
response.

1 #inc l ude ”mpi . h”
2 #inc l ude <s td i o . h>
3

4 i n t main (argc , argv)
5 i n t argc ;
6 char ** argv ;
7 {
8 MPI Init (&argc , &argv) ;
9 p r i n t f (” He l l o world\n”) ;

10 MPI Final i ze () ;
11 r e turn 0 ;
12 }

4

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/hello.c

� #include "mpi.h"

provides basic MPI definitions and types.

� MPI_Init

starts MPI.

� MPI_Finalize

exits MPI.

� Note that all non-MPI routines are local; thus the

printf

run on each process.

mpicc -o hello hello.c

mpirun -np 2 hello

1.8.2 Writing MPI programs II

Another Example (Again no messsage-passing) (hello1.c):

1 #inc l ude <s td i o . h>
2 #inc l ude <mpi . h>
3

4 i n t main (argc , argv)
5 i n t argc ;
6 char *argv [] ;
7 {
8 char name [BUFSIZ] ;
9 i n t l ength ;

10 MPI Init(&argc , &argv) ;
11 MPI Get processor name (name , &l ength) ;
12 p r i n t f (”%s : h e l l o world\n” , name) ;
13 MPI Final i ze () ;
14 }

1.8.3 Writing MPI programs III

Another Example (Again hello and again no messsage-passing) (hello2.c):

1 #inc l ude ”mpi . h”
2 #inc l ude <s td i o . h>
3 #inc l ude <uni s td . h>
4

5 i n t main (argc , argv)
6 i n t argc ;
7 char ** argv ;
8 {
9 i n t rank , s i z e ;

5

http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/hello1.c
http://cemozdogan.net/IntroductiontoHighPerformanceandParallelComputing/cfiles/hello2.c

10 MPI Init (&argc , &argv) ;
11 MPI Comm rank (MPICOMMWORLD, &rank) ;
12 MPI Comm size (MPICOMMWORLD, &s i z e) ;
13 p r i n t f (” He l l o world ! I ’m %d of %d\n” , rank , s i z e) ;
14 s l e ep (10) ;
15 MPI Final i ze () ;
16 r e turn 0 ;
17 }

Two of the first questions asked in a parallel program are:

1. How many processes are there? Answered with MPI Comm size

2. Who am I? Answered with MPI Comm rank. The rank is a num-
ber between zero and size-1.

1.8.4 Exercise - Getting Started

� Designing, compiling, and runing a simple MPI program.

– Write a program that combines all the ”Hello world” programs
above.

– Execute several times and/or try different number of nodes. What
does the output look like? Why it does differ?

6

	MPI Hands-On - Introduction to MPI
	Parallel Computing
	Communicating with other processes
	What is MPI?
	MPI Implementations
	Is MPI Large or Small?
	Where to use MPI?
	How To Use MPI? Essential!!
	Getting started
	Writing MPI programs I
	Writing MPI programs II
	Writing MPI programs III
	Exercise - Getting Started

