Lecture 4 Performance Analysis

Performance Metrics, Postulates

IKC-MH.57 Introduction to High Performance and Parallel Computing at November 03, 2023

Performance Analysis

Dr. Cem Özdoğan

Performance Analysis

Computational Models Equal Duration Model Parallel Computation with

Serial Sections Model Skeptic Postulates For

Amdahl's Law

Dr. Cem Özdoğan Engineering Sciences Department İzmir Kâtip Çelebi University

Contents

Performance Analysis

Dr. Cem Özdoğan

Performance Analysis

Computational Models Equal Duration Model Parallel Computation with Serial Sections Model

Skeptic Postulates For Parallel Architectures Amdahl's Law

1 Performance Analysis

Computational Models Equal Duration Model Parallel Computation with Serial Sections Model Skeptic Postulates For Parallel Architectures Amdahl's Law

Performance Analysis

- Analysis of the <u>performance measures</u> of parallel programs.
- Two computational models;
 - 1 the equal duration processes
 - parallel computation with serial sections.
- Two measures;
 - speed-up factor
 - efficiency.
- The impact of the communication <u>overhead</u> on the overall speed performance of multiprocessors.
- The scalability of parallel systems.

Dr. Cem Özdoğan

Performance Analysis

Computational Models Equal Duration Model

Parallel Computation with Serial Sections Model

Computational Models - Equal Duration Model I

Assume that a given computation <u>can be divided</u> into <u>concurrent tasks</u> for execution on the multiprocessor.

- In this model (*t_s*: execution time of the whole task using a single processor),
 - a given task can be divided into *n* equal subtasks,
 - each of which can be executed by one processor,
 - the time taken by each processor to execute its subtask is

$$t_p = \frac{t_s}{n}$$

 since all processors are executing their subtasks simultaneously, then the time taken to execute the whole task is

$$t_p = \frac{t_s}{n}$$

• The speed-up factor of a parallel system can be defined as

- the ratio between the time taken by a single processor to solve a given problem
- to the time taken by a parallel system consisting of *n* processors to solve the same problem.

Performance Analysis

Dr. Cem Özdoğan

Performance Analysis

Computational Models

Equal Duration Model

Parallel Computation with Serial Sections Model

Computational Models - Equal Duration Model II

Speed Up;

$$S(n) = rac{t_s}{t_
ho} = rac{t_s}{t_s/n} = n$$

- This equation indicates that, according to the equal duration model, the speed-up factor resulting from using n processors is equal to the number of processors used (n).
- One important factor has been ignored in the above derivation.
- This factor is the <u>communication overhead</u>, *t_c*, which results from the time needed for processors to <u>communicate</u> and possibly <u>exchange data</u> while executing their subtasks.
- Then the <u>actual time</u> taken by each processor to execute its subtask is given by

$$S(n) = \frac{t_s}{t_p} = \frac{t_s}{t_s/n + t_c} = \frac{n}{1 + n * t_c/t_s}$$
(2)

• This equation indicates that the relative values of *t_s* and *t_c* affect the achieved speed-up factor.

Performance Analysis

Dr. Cem Özdoğan

(1)

Performance Analysis Computational Models

Equal Duration Model

Parallel Computation with Serial Sections Model

Computational Models - Equal Duration Model III

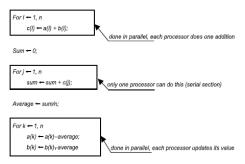
- A number of cases can then be studied:
 - 1 if $t_c \ll t_s$ then the potential speed-up factor is approximately n
 - **2** if $t_c \gg t_s$ then the potential speed-up factor is $t_s/t_c \ll 1$
 - 3 if $t_c = t_s$ then the potential speed-up factor is $n/n + 1 \cong 1$, for $n \gg 1$.
- In order to scale the speed-up factor to a value between 0 and 1, we divide it by the number of processors, n.
- The resulting measure is called the efficiency, E.
- The efficiency is a measure of the **speed-up achieved per processor**.
- According to the simple equal duration model, the efficiency *E* is equal to 1, if the communication overhead is ignored.
- However if the communication overhead is taken into consideration, the efficiency can be expressed as

$$\Xi = \frac{1}{1 + n * t_c/t_s} \tag{3}$$

Performance Analysis

Dr. Cem Özdoğan

Performance Analysis


Computational Models

Equal Duration Model

Parallel Computation with Serial Sections Model

Computational Models - Equal Duration Model IV

- Although simple, the equal duration model is however <u>unrealistic</u>.
- This is because it is based on the assumption that a given task can be divided into a number of equal subtasks.
- However, real algorithms contain some (serial) parts that cannot be divided among processors.
- These (serial) parts must be executed on a single processor.

Figure: Example program segments.

Performance Analysis

Dr. Cem Özdoğan

Performance Analysis

Computational Models

Equal Duration Model

Parallel Computation with Serial Sections Model

Skeptic Postulates For Parallel Architectures

Amdahl's Law

Computational Models - Equal Duration Model V

- In Figure program segments, we assume that we start with a value from each of the two arrays (vectors) a and b stored in a processor of the available n processors.
 - The first program block can be done in parallel; that is, each processor can compute an element from the array (vector) *c*. The elements of array *c* are now distributed among processors, and each processor has an element.
 - The next program segment cannot be executed in parallel. This block will require that the elements of array *c* be communicated to one processor and are added up there.
 - The last program segment can be done in parallel. Each processor can update its elements of *a* and *b*.

Performance Analysis

Dr. Cem Özdoğan

Performance Analysis

Computational Models

Equal Duration Model

Parallel Computation with Serial Sections Model

Computational Models - Parallel Computation I

- It is assumed (or known) that **a fraction** *f* of the given task (computation) is <u>not dividable</u> into concurrent subtasks.
- The remaining part (1 − f) is assumed to be dividable into concurrent subtasks.
- The time required to execute the task on n processors is

$$t_{p}=t_{s}*f+(1-f)*(t_{s}/n)$$

The speed-up factor is therefore given by

$$S(n) = \frac{t_s}{t_s * f + (1 - f) * (t_s/n)} = \frac{n}{1 + (n - 1) * f}$$
(4)

- According to this equation, the <u>potential speed-up</u> due to the use of *n* processors is determined primarily by the fraction of code that cannot be divided.
- If the task (program) is completely serial, that is, f = 1, then no speed-up can be achieved regardless of the number of processors used.

Dr. Cem Özdoğan

Performance Analysis

Computational Models Equal Duration Model

Parallel Computation with Serial Sections Model

Computational Models - Parallel Computation II

- This principle is known as <u>Amdahl's law</u>.
- It is interesting to note that according to this law, the maximum speed-up factor is given by

$$\lim_{n \to \infty} S(n) = \frac{1}{f}$$

- Therefore, the improvement in performance (speed) of a parallel algorithm over a sequential one is
 - limited not by the number of processors employed
 - but rather by the fraction of the algorithm that cannot be parallelized.
- According to Amdahl's law, researchers were led to believe that a substantial increase in speed-up factor would **not be possible** by using parallel architectures.
- NOT parallelizable;
 - communication overhead,
 - a sequential fraction, f

Dr. Cem Özdoğan

Performance Analysis

Computational Models

Equal Duration Model

Parallel Computation with Serial Sections Model

Postulates - Amdahl's Law I

- Amdahl's law made it so <u>pessimistic</u> to build parallel computer systems.
- Due to the <u>intrinsic limit</u> set on the performance improvement (speed) regardless of the number of processors used.
- An interesting observation to make here is that according to Amdahl's law, f is <u>fixed</u> and <u>does not scale</u> with the problem size, n.
- However, it has been practically observed that some real parallel algorithms have a fraction that is a <u>function of n</u>.
- Let us assume that *f* is a function of *n* such that $\lim_{n\to\infty} f(n) = 0$

$$\lim_{n\to\infty} S(n) = \lim_{n\to\infty} \frac{n}{1+(n-1)*f(n)} = n \qquad (5)$$

- This is clearly in <u>contradiction</u> to Amdahl's law.
- It is therefore **possible to achieve a linear speed-up factor** for large-sized problems, given that

$$lim_{n\to\infty}f(n)=0$$

a condition that has been practically observed.

Performance Analysis

Dr. Cem Özdoğan

Performance Analysis

Computational Models Equal Duration Model

Parallel Computation with Serial Sections Model

Skeptic Postulates For Parallel Architectures

Amdahl's Law