Lecture 5
Programming Using the
Message-Passing Paradigm |

Principles of Message-Passing Programming

IKC-MH.57 Introduction to High Performance and Parallel
Computing at November 10, 2023

Dr. Cem Ozdogan
Engineering Sciences Department
Izmir Katip Celebi University

Programming Using th
Message-Passing
Paradigm |

Dr. Cem Ozdogan

AT

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming
Structure of
Message-Passing
Programs
The Building Blocks: Send
and Receive Operations
Blocking Message Passing
Operations
Non-Blocking Message
Passing Operations

Programming Using th
CO ntel’lts Message-Passing
Paradigm |

Dr. Cem Ozdogan

$
Programming Using
@ Programming Using the Message-Passing Paradigm Paradgm o
Principles of Message-Passing Programming e L
. Programmin,
Structure of Message-Passing Programs i —
. . . . Message-Passin
The Building Blocks: Send and Receive Operations Progans
Blocking Message Passing Operations e e
Non-Blocking Message Passing Operations Zhi Ry

Non-Blocking Message
Passing Operations

Principles of Message-Passing Programming |

Set of Primitives: Allows processes to communicate with each
other.

® A message passing architecture uses a set of primitives
that allows processes to communicate with each other.

® j.e., send, receive, broadcast, and barrier.

There are two key attributes that characterize the message
-passing programming paradigm.

@ the firstis that it assumes a partitioned address space,
® the second is that it supports only explicit parallelization.

e Each data element must belong to one of the partitions
of the space;

® hence, data must be explicitly partitioned and placed.
* Adds complexity, encourages data locality.

Programming Using th
Message-Passing
Paradigm |

Dr. Cem Ozdogan

s

Programming Using
the Message-Passing
Paradigm

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations
Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

53

Principles of Message-Passing Programming

¢ All interactions (read-only or read/write) require
cooperation of two processes:
© the process that has the data,
@® the process that wants to access the data.

Primary advantage of explicit two-way interactions is that

the programmer is fully aware of all the costs of non-local
interactions

The programmer is responsible for analyzing the
underlying serial algorithm/application.

As a result, programming using the message-passing
paradigm tends to be hard and intellectually demanding.
However, on the other hand, properly written

message-passing programs can often achieve very high
performance and scale to a very large number of
processes.

Programming Using th
Message-Passing
Paradigm |

Dr. Cem Ozdogan

s

Programming Using
the Message-Passing
Paradigm

Structure of
Message-Passing
Programs
The Building Blocks: Send
and Receive Operations
Blocking Message Passing
Operations
Non-Blocking Message
Passing Operations

Structure of Message-Passing Programs |

Message-passing programs are often written using the
asynchronous or loosely synchronous paradigms.

In the asynchronous paradigm, all concurrent tasks
execute asynchronously.

® However, such programs can be harder and can have
non-deterministic behavior due to race conditions.

Loosely synchronous programs are a good compromise
between two extremes.

® |n such programs, tasks or subsets of tasks synchronize to
perform interactions.

* However, between these interactions, tasks execute
completely asynchronously.

Most message-passing programs are written using the
single program multiple data (SPMD).

e SPMD programs can be loosely synchronous or
completely asynchronous.

Programming Using th
Message-Passing
Paradigm |

Dr. Cem Ozdogan

s

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

55

The Building Blocks: Send and Receive Operations |

¢ Since interactions are accomplished by sending and
receiving messages, the basic operations in the

message-passing programming paradigm are send and
receive.

In their simplest form, the prototypes of these operations
are defined as follows:

send (void xsendbuf, int nelems,

int dest)
receive (void *recvbuf,

int nelems, int source)
e sendbuf points to a buffer that stores the data to be sent,
e recvbuf points to a buffer that stores the data to be
received,

e nelems is the number of data units to be sent and
received,.

e dest is the identifier of the process that receives the data,.

e source is the identifier of the process that sends the data.

Programming Using th
Message-Passing
Paradigm |

Dr. Cem Ozdogan

s

Programming Using
the Message-Passing
Paradigm

Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

56

The Building Blocks: Send and Receive Operations Il

g w N

PO Pl

a = 100; receive (&a, 1, 0)
send(&a, 1, 1); printf ("$d\n", a);
a=0;

e Process P, sends a message to process P; which
receives and prints the message.

e The important thing to note is that process P, changes
the value of a to 0 immediately following the send.

e The semantics of the send operation require that the
value received by process P; must be 100 (not 0).

e That is, the value of a at the time of the send operation
must be the value that is received by process P;.

¢ [t may seem that it is quite straightforward to ensure the
semantics of the send and receive operations.

e However, based on how the send and receive operations
are implemented this may not be the case.

Programming Using th
Message-Passing
Paradigm |

Dr. Cem Ozdogan

AT

Programming Using
the Message-Passing
Paradigm

Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

Blocking Message Passing Operations |

e As aresult, if the send operation programs the
communication hardware and returns before the
communication operation has been accomplished,
process P; might receive the value 0 in a instead of 100!

¢ A simple solution to the problem presented in the code
fragment above is for the send operation to return only
when it is semantically safe to do so.

¢ Note that this is not the same as saying that the send

operation returns only after the receiver has received the
data.

¢ |t simply means that the sending operation blocks until it
can guarantee that the semantics will_not be violated on
return irrespective of what happens in the program
subsequently.

e There are two mechanisms by which this can be achieved.
@ Blocking Non-Buffered Send/Receive
@® Blocking Buffered Send/Receive

Programming Using th
Message-Passing
Paradigm |

Dr. Cem Ozdogan

AT

Programming Using
the Message-Passing
Paradigm

Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Non-Blocking Message
Passing Operations

58

Blocking Message Passing Operations Il

@ Blocking Non-Buffered Send/Receive

® The send operation does not return until the matching
receive has been encountered at the receiving process.

* When this happens, the message is sent and the send
operation returns upon completion of the communication
operation.

¢ Typically, this process involves a handshake between the
sending and receiving processes (see Figure).

sending recaiving sending

recalving aendmg raceiving
procass process process procoss process
send request 1o send
request 1o send request fa send
okay to send recaive 5end akay 1o '-ﬂv) receivd any ok.ny s || receive
l data '- I l data

{a) Sender comes first; (b) Sender and receiver come
idling at sender at about the same time;
idling minimized

(c) Receiver comes first:
idling at receiver

Figure: Handshake for a blocking non-buffered send/receive
operation.

Programming Using th
Message-Passing
Paradigm |

Dr. Cem Ozdogan

‘,’* o3
RYLY)

Programming Using
the Message-Passing
Paradigm

Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Non-Blocking Message
Passing Operations

59

Blocking Message Passing Operations lll

e The sending process sends a request to communicate to

the receiving process.

e When the receiving process encounters the target
receive, it responds to the request.

e The sending process upon receiving this response
initiates a transfer operation.

e Since there are no buffers used at either sending or

receiving ends, this is also referred to as a non-buffered
blocking operation.

¢ [dling Overheads in Blocking Non-Buffered Operations: It
is clear from the figure that a blocking non-buffered
protocol is suitable when the send and receive are posted
at roughly the same time (see Figure(b)).

However, in an asynchronous environment, this may be
impossible to predict.

¢ This idling overhead is one of the major drawbacks of this
protocol.

Programming Using th
Message-Passing
Paradigm |

Dr. Cem Ozdogan

AT

Programming Using
the Message-Passing
Paradigm

Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Non-Blocking Message
Passing Operations

Blocking Message Passing Operations IV

e Deadlocks in Blocking Non-Buffered Operations: Consider

the following simple exchange of messages that can lead
to a deadlock:

1 PO Pl

2

3 send(&a, 1, 1); send(&a, 1, 0);
4 receive (&b, 1, 1); receive (&b, 1, 0);

® The code fragment makes the values of a available to both
processes Py and P;.

* However, if the send and receive operations are
implemented using a blocking non-buffered protocol,

e the send at P, waits for the matching receive at P;
e whereas the send at process P; walits for the
corresponding receive at Py,

e resulting in an infinite wait.

e Deadlocks are very easy in blocking protocols and care
must be taken to break cyclic waits.

Programming Using th
Message-Passing
Paradigm |

Dr. Cem Ozdogan

AT

Programming Using
the Message-Passing
Paradigm

Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Non-Blocking Message
Passing Operations

Blocking Message Passing Operations V
® Blocking Buffered Send/Receive

¢ A simple solution to the idling and deadlocking problems

outlined above is to rely on buffers at the sending and
receiving ends.

sending

receiving sending receiving
process process process process
sand send I I
Data copied to

bul’lal al receiver

data b :
' receive
]
I receive

Figure: Blocking buffered transfer protocols: Left: in the
presence of communication hardware with buffers at send and
receive ends; and Right: in the absence of communication

hardware, sender interrupts receiver and deposits data in buffer
at receiver end.

Programming Using th
Message-Passing
Paradigm |

Dr. Cem Ozdogan

':ﬁ o3
RILYS

Programming Using
the Message-Passing
Paradigm

Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Non-Blocking Message
Passing Operations

Blocking Message Passing Operations VI

On a send operation, the sender simply copies the data
into the designated buffer and returns after the copy
operation has been completed.

The sender process can now continue with the program
knowing that any changes to the data will not impact
program semantics.

Note that at the receiving end, the data cannot be stored
directly at the target location since this would violate
program semantics.

Instead, the data is copied into a buffer at the receiver as
well.

When the receiving process encounters a receive
operation, it checks to see if the message is available in its
receive buffer. If so, the data is copied into the target
location.

In general, if the parallel program is highly synchronous,
non-buffered sends may perform better than buffered
sends.
However, generally, this is not the case and buffered sends
are desirable unless buffer capacity becomes an issue.

Programming Using th
Message-Passing
Paradigm |

Dr. Cem Ozdogan

AT

Programming Using
the Message-Passing
Paradigm

Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Non-Blocking Message
Passing Operations

Blocking Message Passing Operations VII

Deadlocks in Buffered Send and Receive Operations:

¢ While buffering relieves many of the deadlock situations, it
is still possible to write code that deadlocks.

e This is due to the fact that as in the non-buffered case,

receive calls are always blocking (fo ensure semantic
consistency).

e Thus, a simple code fragment such as the following
deadlocks since both processes wait to receive data but
nobody sends it.

1 PO Pl
2
3 receive(s&a, 1, 1);

receive(&a, 1, 0);
4 send(&b, 1, 1);

send (&b, 1, 0);
e Once again, such circular waits have to be broken.

e However, deadlocks are caused only by waits on receive
operations in this case.

Programming Using th
Message-Passing
Paradigm |

Dr. Cem Ozdogan

AT

Programming Using
the Message-Passing
Paradigm

Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Non-Blocking Message
Passing Operations

Non-Blocking Message Passing Operations |

In blocking protocols, the overhead of guaranteeing
semantic correctness was paid in the form of idling

(non-buffered) or buffer management (buffered).
It is possible to require the programmer

® to ensure semantic correctness,

® to provide a fast send/receive operation that incurs little

overhead.

This class of non-blocking protocols returns from the
send or receive operation before it is semantically safe to
do so.

Consequently, the user must be careful not to alter data
that may be potentially participating in communication.
Non-blocking operations are generally accompanied by a
check-status operation,

which indicates whether the semantics of a previously
initiated transfer may be violated or not.

Programming Using th
Message-Passing
Paradigm |

Dr. Cem Ozdogan

s

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming
Structure of
Message-Passing
Programs
The Building Blocks: Send
and Receive Operations
Blocking Message Passing
Operations

Non-Blocking Message Passing Operations Il

Upon return from a non-blocking operation, the process is
free to perform any computation that does not depend
upon the completion of the operation.

Later in the program, the process can check whether or
not the non-blocking operation has completed,

and, if necessary, wait for its completion.
Non-blocking operations can be buffered or non-buffered.

In the non-buffered case, a process wishing to send data
to another simply posts a pending message and returns to
the user program.

The program can then do other useful work.

At some point in the future, when the corresponding
receive is posted, the communication operation is initiated.
When this operation is completed, the check-status
operation indicates that it is safe to touch this data.

Programming Using th
Message-Passing
Paradigm |

Dr. Cem Ozdogan

s

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming
Structure of
Message-Passing
Programs
The Building Blocks: Send
and Receive Operations
Blocking Message Passing
Operations

Non-Blocking Message Passing Operations Il

sending receiving sending receiving
process Process Process process

sand I raquast io-sat sand I Tequesis sand

Unsafe 1o Unsafe te
update okay o send e update akay 1o send e

dala being dat baing

o e il Sl [y |

Figure: Non-blocking non-buffered send and receive operations Left:
in absence of communication hardware; Right: in presence of
communication hardware.

¢ This transfer is indicated in Figure(Left)

e Comparing Figures (Left) and (a), it is easy to see that the
idling time when the process is waiting for the
corresponding receive in a blocking operation can now be
utilized for computation.

® This removes the major bottleneck associated with the
former at the expense of some program restructuring.

Unsale to read
data baing recetved

Programming Using th
Message-Passing
Paradigm |

Dr. Cem Ozdogan

‘,’* o3
RYLY)

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming
Structure of
Message-Passing
Programs
The Building Blocks: Send
and Receive Operations
Blocking Message Passing
Operations

Non-Blocking Message Passing Operations IV Programming Using th

Message-Passing
Paradigm |

Dr. Cem Ozdogan

E

Programming Using

¢ Blocking operations facilitate safe and easier

programming. e
® Non-blocking operations are useful for performance E’L“;‘S'gt;’;ssmg
optimization by masking communication overhead. af"f:mp.:sg
¢ One must, however, be careful using non-blocking e Blocke: Send
protocols since errors can result from unsafe access to e
data that is in the process of being communicated. R

	Programming Using the Message-Passing Paradigm
	Principles of Message-Passing Programming
	Structure of Message-Passing Programs
	The Building Blocks: Send and Receive Operations

