Lecture 6
Programming Using the
Message-Passing Paradigm |l

MPI: the Message Passing Interface; Parallelization Application
Example - Pi Computation

IKC-MH.57 Introduction to High Performance and Parallel
Computing at April 14, 2023

Dr. Cem Ozdogan
Engineering Sciences Department
Izmir Katip Celebi University

Programming Using th
Message-Passing
Paradigm Il

Dr. Cem Ozdogan

AT

Parallelization
Application Example
Pi Computation

Contents

@ Parallelization Application Example
Pi Computation

Programming Using th
Message-Passing
Paradigm Il

Dr. Cem Ozdogan

E

Parallelization
Application Example
Pi Computation

Pi Computation |
¢ 7 by numerically evaluating the integral

1
1 T
/0 2%~ 3

e Midpoint Rule for fab f(x)dx = (b — a)f(xm)

Figure: Midpoint Rule.

¢ Midpoint Rule becomes

Ty i 1
ax ~
/0 1+x2 ;1+(i—2.5)2

Parallelization

Programming Using th

Pi Computation I g Ui
Sequential Code: Paradigm Il

Dr. Cem Ozdogan
#include <stdio.h>

#include <math.h>

int main(int argc, charx argv[])

{ &
int done = 0, n, 1i; ': .‘:
double PI25DT = 3.141592653589793238462643; b
double mypi, h, sum, x; Parallelization
while (!done) Application Example
{

printf ("Enter the number of intervals: (0 quits) ");
scanf ("%d", &n) ;

if (n == 0) break; /* Quit when "0" enteredx*/

/* Integral limits are from 0 to 1 «*/
h = (1.0-0.0)/(double)n; /* Step length=/
sum = 0.0; /+ Initialize sum variable =x/

/* loop over interval for integrationx/
for (i = 1; 1 <=n; 1 += 1)
{
x = h » ((double)i - 0.5); /* Middle point at step =/
sum += 4.0 / (1.0 + x*x); /% Sum up at each step */
//("i=%d x=%f sum=%f \n",i,x,sum); /* print intermediate steps */
}
mypi = h * sum; /» Obtain resulting pi number =/
printf ("pi is approximately %.16f, Error is $%$.16f\n",mypi, \\
fabs (mypi - PI25DT));

http://boron.physics.metu.edu.tr/ozdogan/IntroductiontoHighPerformanceandParallelComputing/cfiles/sequential_pi.c

Pi Computation llI

mpicc -o sequential_|

./sequential pi

Enter the number of
pi is approximately
Enter the number of
pl 1s approximately
Enter the number of
pi is approximately
Enter the number of

pi sequential_pi.c

intervals: (@ gults) 100

3.1416009869231254, Error is 0.0000083333333323
intervals: (@ quits) 1000

3.1415927369231227, Error is 0.0000000833333296
intervals: (@ guits) 10080

3.1415926544231341, Error is 0.0000000088333410
intervals: (@ gults) ©

Figure: Sequential Code Output.

Programming Using th
Message-Passing
Paradigm Il

Dr. Cem Ozdogan

f‘ o3
RILYS

Parallelization
Application Example

6.5

Pi Computation IV

e Parallel Code:

The master process reads number of intervals from
standard input, this number is then sent to the processes.
Having received the number of intervals, each process
evaluates the total area of n/size rectangles under the
curve.

The contributions to the total area under the curve are
collected from participating processes by the master
process, which then adds them up, and prints the result on
standard output.

Programming Using th
Message-Passing
Paradigm Il

Dr. Cem Ozdogan

s

Parallelization
Application Example

6.6

http://boron.physics.metu.edu.tr/ozdogan/IntroductiontoHighPerformanceandParallelComputing/cfiles/parallel_pi.c

Programming Using th

Pi Computation V Message-Passing

#include <stdio.h>

Paradigm Il

Dr. Cem Ozdogan

#include <math.h>
#include "mpi.h"

int main(int argc, charx argv[])

{

_
int done = 0, n, 1i; ;: ‘:
double PI25DT = 3.141592653589793238462643;
double mypi, h, sum, x; Parallelization
int size, rank, me; Application Example
int tag=11;

MPI_Status status;
double mysum;
double pi;

MPI_Init (&argc, &argv); /* Initialize MPI =x/
MPI_Comm_size (MPI_COMM_WORLD, &size);/* Get number of processes */
MPI_Comm_rank (MPI_COMM_WORLD, &rank);/* Get own identifier =/

while

{

if

(!done)
(rank == 0) { /% Process 0 does this */
printf ("Enter the number of intervals: (0 quits) ");

scanf ("%d", &n) ;
/+ Send a message containing number of intervals to all \
other processes */
for (i=1; i<size; i++) {
MPI_Send(&n, 1, MPI_INT, i, tag, MPI_COMM_WORLD); \
/* Blocking send x/

. . Programming Using th
Pl Computatlon VI Message-Passing
Paradigm Il
if (n == 0) break; /* Quit when "0" entered =*/

/* Computing local pi number for rank 0 processx/ LIS D

/* Integral limits are from 0 to 1 =/

h = (1.0-0.0)/ (double)n; /+ Step lengthx/

mysum = 0.0; /% Initialize sum variable x/

for (i = rank+l; i <= n; i += size) /x Loop over interval \ Jk Py
for integration x/ Ry

x = h % ((double)i - 0.5); /x Middle point at step +*/ paralelization
mysum += 4.0 / (1.0 + xxx); /* Sum up at each step =%/ Application Example
//printf ("i=%d x=%f sum=%f \n",i,x,sum); /* Intermediate steps =/

mypi = h * mysum; /% Obtain local resulting pi number =/
/* Receive a message containing local resulting pi number \
from all other processes */
for (i=1; i<size; i++) {
MPI_Recv (&pi, 1, MPI_DOUBLE, i, tag, MPI_COMM_WORLD, \
&status); /* Blocking recieve x/
printf ("Process 0 : Received local resulting pi \
number: %.16f from process %d \n",pi,1i);
mypi=mypi+pi; /* Reduce all local values to mypi \
variable x/
}
printf ("pi is approximately %.16f, Error is %$.16f\n",mypi, \
fabs (mypi - PI25DT));
}
else /» Other processes do this */
{
MPI_Recv (&n, 1, MPI_INT, 0, tag, MPI_COMM_WORLD, \

&status); /x Blocking recieve */
6.8

. . Programming Using th
Pl Computatlon V" Message-Passing
Paradigm Il
Dr. Cem Ozdogan
printf ("Process %d : Received number of intervals as %d \

from process 0 \n",rank, n);
if (n == 0) break; /* Quit when "0" enteredx/

_
/* Computing local pi number for other processesx/ ': ‘:
/% Integral limits are from 0 to 1 %/ :
h = (1.0-0.0)/ (double)n; /+ Step lengthx/ Parallelization
mysum = 0.0; /% Initialize sum variable x/ Application Example
for (i = rank+l; i <= n; i += size) /* Loop over interval

for integration x/

x = h » ((double)i - 0.5); /% Middle point at step x/
mysum += 4.0 / (1.0 + x*x); /* Sum up at each step x/
//printf ("i=%d x=%f sum=%f \n",1i,x,sum); /* Intermediate steps x/

mypi = h » mysum; /% Obtain local resulting pi number x/
/* Send a message containing local resulting pi number
to master processes x/
MPI_Send (&mypi, 1, MPI_DOUBLE, 0, tag, MPI_COMM_WORLD) ;
/* Blocking send =/
}
}
MPI_Finalize();

6.9

Pi Computation VI

mpicc -o parallel pi parallel pi.c
Enter the number of intervals: (@ quits) 100

Process
Process
Process
Process
Process
Process

coounE

Recelved
Received
Received
Recelved
Received
Recelved

number of intervals as 160 from process @
number of intervals as 166 from process @
number of intervals as 100 from process B
local resulting pi
local resulting pi
local resulting pi

pl is approximately 3,1416009869231249, Error 1s ©9.0000083333333318
Enter the number of intervals: (@ guits) 1ee8

Process
Process
Process
process
Process
Process

ooEHwm

Received
Recelved
Received
Received
Received
Recelved

number of intervals as 1668 from process @
number of intervals as 1000 from process @
number of intervals as 1006 from process @
local resulting pi
local resulting pi
local resulting pi

pi is approximately 3.1415927369231262, Error is ©.0000000833333331
Enter the number of intervals: (B guits) 10080

Process
Process
Process
Process
Process
Process

1 :

coown

Received
Recelved
Received
Received
Received
Received

number of intervals as 10000 from process ©
number of intervals as 10080 from process ©
number of intervals as 10088 from process ©
local resulting pi
local resulting pi
local resulting pi

pi is approximately 3.1415826544231239, Error is @.0000000008333307
Enter the number of intervals: (© quits) @

Process
Process
Process

1:
2
3

Recelved
Received
Received

number of intervals as @ from process @
number of intervals as @ from process @
number of intervals as @ from process ©

Figure: Parallel Code Output.

number :
number :
number ;

number :
number ;
number :

number ;
number :
number :

.

0.

0.

0.

0.
.7853731661050003
B

7879260283629755
7B29244650957667
T778741525634219

7856484350120356
7851484334495280
7846479331370270

7854231661065627

7853231811048871

from
from
from

from
from
from

from
from
from

process
process
process

process
process
process

process
process
process

W

(RN

W

Programming Using th
Message-Passing

Dr. Cem Ozdogan

f‘ o3
RILYS

Parallelization
Application Example

	Parallelization Application Example
	Pi Computation

