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Pi Computation |
¢ 7 by numerically evaluating the integral
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Figure: Midpoint Rule.
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#include <stdio.h>

#include <math.h>

int main(int argc, charx argv[])

{ &
int done = 0, n, 1i; ': .‘:
double PI25DT = 3.141592653589793238462643; b
double mypi, h, sum, x; Parallelization
while (!done) Application Example
{

printf ("Enter the number of intervals: (0 quits) ");
scanf ("%d", &n) ;

if (n == 0) break; /* Quit when "0" enteredx*/

/* Integral limits are from 0 to 1 «*/
h = (1.0-0.0)/(double)n; /* Step length=/
sum = 0.0; /+ Initialize sum variable =x/

/* loop over interval for integrationx/
for (i = 1; 1 <=n; 1 += 1)
{
x = h » ((double)i - 0.5); /* Middle point at step =/
sum += 4.0 / (1.0 + x*x); /% Sum up at each step */
//("i=%d x=%f sum=%f \n",i,x,sum); /* print intermediate steps */
}
mypi = h * sum; /» Obtain resulting pi number =/
printf ("pi is approximately %.16f, Error is $%$.16f\n",mypi, \\
fabs (mypi - PI25DT));


http://boron.physics.metu.edu.tr/ozdogan/IntroductiontoHighPerformanceandParallelComputing/cfiles/sequential_pi.c

Pi Computation llI

mpicc -o sequential_|

./sequential pi

Enter the number of
pi is approximately
Enter the number of
pl 1s approximately
Enter the number of
pi is approximately
Enter the number of

pi sequential_pi.c

intervals: (@ gults) 100

3.1416009869231254, Error is 0.0000083333333323
intervals: (@ quits) 1000

3.1415927369231227, Error is 0.0000000833333296
intervals: (@ guits) 10080

3.1415926544231341, Error is 0.0000000088333410
intervals: (@ gults) ©

Figure: Sequential Code Output.
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Pi Computation IV

e Parallel Code:

The master process reads number of intervals from
standard input, this number is then sent to the processes.
Having received the number of intervals, each process
evaluates the total area of n/size rectangles under the
curve.

The contributions to the total area under the curve are
collected from participating processes by the master
process, which then adds them up, and prints the result on
standard output.
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http://boron.physics.metu.edu.tr/ozdogan/IntroductiontoHighPerformanceandParallelComputing/cfiles/parallel_pi.c
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#include <math.h>
#include "mpi.h"

int main(int argc, charx argv[])

{

_
int done = 0, n, 1i; ;: ‘:
double PI25DT = 3.141592653589793238462643;
double mypi, h, sum, x; Parallelization
int size, rank, me; Application Example
int tag=11;

MPI_Status status;
double mysum;
double pi;

MPI_Init (&argc, &argv); /* Initialize MPI =x/
MPI_Comm_size (MPI_COMM_WORLD, &size);/* Get number of processes */
MPI_Comm_rank (MPI_COMM_WORLD, &rank);/* Get own identifier =/

while

{

if

(!done)
(rank == 0) { /% Process 0 does this */
printf ("Enter the number of intervals: (0 quits) ");

scanf ("%d", &n) ;
/+ Send a message containing number of intervals to all \
other processes */
for (i=1; i<size; i++) {
MPI_Send(&n, 1, MPI_INT, i, tag, MPI_COMM_WORLD); \
/* Blocking send x/
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if (n == 0) break; /* Quit when "0" entered =*/

/* Computing local pi number for rank 0 processx/ LIS D

/* Integral limits are from 0 to 1 =/

h = (1.0-0.0)/ (double)n; /+ Step lengthx/

mysum = 0.0; /% Initialize sum variable x/

for (i = rank+l; i <= n; i += size) /x Loop over interval \ Jk Py
for integration x/ Ry

x = h % ((double)i - 0.5); /x Middle point at step +*/ paralelization
mysum += 4.0 / (1.0 + xxx); /* Sum up at each step =%/ Application Example
//printf ("i=%d x=%f sum=%f \n",i,x,sum); /* Intermediate steps =/

mypi = h * mysum; /% Obtain local resulting pi number =/
/* Receive a message containing local resulting pi number \
from all other processes */
for (i=1; i<size; i++) {
MPI_Recv (&pi, 1, MPI_DOUBLE, i, tag, MPI_COMM_WORLD, \
&status); /* Blocking recieve x/
printf ("Process 0 : Received local resulting pi \
number: %.16f from process %d \n",pi,1i);
mypi=mypi+pi; /* Reduce all local values to mypi \
variable x/
}
printf ("pi is approximately %.16f, Error is %$.16f\n",mypi, \
fabs (mypi - PI25DT));
}
else /» Other processes do this */
{
MPI_Recv (&n, 1, MPI_INT, 0, tag, MPI_COMM_WORLD, \

&status); /x Blocking recieve */
6.8
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printf ("Process %d : Received number of intervals as %d \

from process 0 \n",rank, n);
if (n == 0) break; /* Quit when "0" enteredx/

_
/* Computing local pi number for other processesx/ ': ‘:
/% Integral limits are from 0 to 1 %/ :
h = (1.0-0.0)/ (double)n; /+ Step lengthx/ Parallelization
mysum = 0.0; /% Initialize sum variable x/ Application Example
for (i = rank+l; i <= n; i += size) /* Loop over interval

for integration x/

x = h » ((double)i - 0.5); /% Middle point at step x/
mysum += 4.0 / (1.0 + x*x); /* Sum up at each step x/
//printf ("i=%d x=%f sum=%f \n",1i,x,sum); /* Intermediate steps x/

mypi = h » mysum; /% Obtain local resulting pi number x/
/* Send a message containing local resulting pi number
to master processes x/
MPI_Send (&mypi, 1, MPI_DOUBLE, 0, tag, MPI_COMM_WORLD) ;
/* Blocking send =/
}
}
MPI_Finalize();
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mpicc -o parallel pi parallel pi.c
Enter the number of intervals: (@ quits) 100

Process
Process
Process
Process
Process
Process

coounE

Recelved
Received
Received
Recelved
Received
Recelved

number of intervals as 160 from process @
number of intervals as 166 from process @
number of intervals as 100 from process B
local resulting pi
local resulting pi
local resulting pi

pl is approximately 3,1416009869231249, Error 1s ©9.0000083333333318
Enter the number of intervals: (@ guits) 1ee8

Process
Process
Process
process
Process
Process

ooEHwm

Received
Recelved
Received
Received
Received
Recelved

number of intervals as 1668 from process @
number of intervals as 1000 from process @
number of intervals as 1006 from process @
local resulting pi
local resulting pi
local resulting pi

pi is approximately 3.1415927369231262, Error is ©.0000000833333331
Enter the number of intervals: (B guits) 10080

Process
Process
Process
Process
Process
Process

1 :

coown

Received
Recelved
Received
Received
Received
Received

number of intervals as 10000 from process ©
number of intervals as 10080 from process ©
number of intervals as 10088 from process ©
local resulting pi
local resulting pi
local resulting pi

pi is approximately 3.1415826544231239, Error is @.0000000008333307
Enter the number of intervals: (© quits) @

Process
Process
Process

1:
2
3

Recelved
Received
Received

number of intervals as @ from process @
number of intervals as @ from process @
number of intervals as @ from process ©

Figure: Parallel Code Output.
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