Lecture 8
Programming Using the
Message-Passing Paradigm |V

MPI: the Message Passing Interface; Overlapping, Multicast

IKC-MH.57 Introduction to High Performance and Parallel
Computing at December 08, 2023

Dr. Cem Ozdogan
Engineering Sciences Department
Izmir Katip Celebi University

Programming Using th
Message-Passing
Paradigm IV

Dr. Cem Ozdogan

AT

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations

Broadcast

Reduction

Gather

Scatter

Allto-All

Contents Programming Using th

Message-Passing
Paradigm IV

Dr. Cem Ozdogan

E

Overlapping

Communication with

Computation
Non-Blocking
Communication Operations

@ Collective Communication and Computation Operations S

Communication and

@ Overlapping Communication with Computation
Non-Blocking Communication Operations

Broadcast Computaton
Reduction S
Gather =
Scatter Aol
All-to-All

Overlapping Communication with Computation

® The MPI programs we developed so far used blocking
send and receive operations whenever they needed to
perform point-to-point communication.

¢ Recall that a blocking send operation remains blocked

until the message has been copied out of the send buffer
e either into a system buffer at the source process
e or sent to the destination process.

e Similarly, a blocking receive operation returns only after

the message has been received and copied into the
receive buffer.

e |t will be preferable if we can overlap the transmission of
the data with the computation.

Programming Using th
Message-Passing
Paradigm IV

Dr. Cem Ozdogan

Non-Blocking

Communication Operations
Collective
Communication and
Computation
Operations

Broadcast

Reduction

Gather

Scatter

Allto-All

8.3

Non-Blocking Communication Operations |

¢ |n order to overlap communication with computation, MPI
provides a pair of functions for performing non-blocking
send and receive operations.

* MPI_Isend = starts a send operation but does not
complete, that is, it refurns before the data is copied out of
the buffer.

MPI_Irecv = starts a receive operation but returns before
the data has been received and copied into the buffer.
int MPI_lsend(void =buf, int count, MPI_Datatype

datatype, int dest, int tag, MPL.Comm comm,
MPI_Request =request)
int MPI_lrecv (void =buf, int count, MPI_Datatype

datatype, int source, int tag, MPI_Comm comm,
MPI_Request =request)

¢ MPI_Isend and MPI_Irecv functions allocate a request
object and return a pointer to it in the request variable.

¢ At a later point in the program, a process that has
started a non-blocking send or receive operation must
make sure that this operation has completed before it
proceeds with its computations.

Programming Using th
Message-Passing
Paradigm IV

Dr. Cem Ozdogan

s

Overlapping
Communication with
Computation

Collective
Communication and
Computation
Operations

Broadcast

Reduction

Gather

Scatter

Allto-All

https://www.open-mpi.org/doc/current/man3/MPI_Isend.3.php
https://www.open-mpi.org/doc/current/man3/MPI_Irecv.3.php

Non-Blocking Communication Operations Il

e This is because a process that has started a non-blocking
send operation may want to
o overwrite the buffer that stores the data that are being
sent,
e or a process that has started a non-blocking receive
operation may want to use the data

® To check the completion of non-blocking send and receive
operations, MPI provides a pair of functions

@ MPI_Test = tests whether or not a non-blocking operation
has finished

® MPI_Wait — waits (i.e., gets blocked) until a non-blocking
operation actually finishes.

int MPI_Test(MPI_Request =request, int «flag, MPI_Status
=status)

int MPI_Wait(MPI_Request =request, MPI_Status =status)

® The request object is used as an argument in the
MPI_Test and MPI_Wait functions to identify the operation
whose status we want to query or to wait for its completion.

Programming Using th
Message-Passing
Paradigm IV

Dr. Cem Ozdogan

AT

Overlapping
Communication with
Computation

Collective
Communication and
Computation
Operations

Broadcast

Reduction

Gather

Scatter

Allto-All

85

https://www.open-mpi.org/doc/current/man3/MPI_Test.3.php
https://www.open-mpi.org/doc/current/man3/MPI_Wait.3.php

Non-Blocking Communication Operations llI P Nessage-Passing.
Paradigm IV

¢ MPI_Test tests whether or not the non-blocking send or
receive operation identified by its request has finished.

True It returns flag = true (non-zero value in C) if it is ﬁié}x‘:}%
completed. ¢

e The request object pointed to by request is deallocated
and request is set to MPI_REQUEST_NULL.

Dr. Cem Ozdogan

o Also the status object is set to contain information about glin"ri’ujﬁ'giuon with

the operation. LT
False It returns flag = false (a zero value in C) if it is not Colletive

completed. e

e The request is not modified and the value of the status Operations

object is undefined. roadest

e The MPI_Wait function blocks until the non-blocking Gather

operation identified by request completes. Joie

¢ A non-blocking communication operation can be matched
with a corresponding blocking operation.

® For example, a process can send a message using a
non-blocking send operation and this message can be
received by the other process using a blocking receive
operation.

8.6

Non-Blocking Communication Operations IV

[]
[]
1
2
3
4
5
6
7

8
9
10
11
12
13

Avoiding Deadlocks; by using non-blocking communication
operations we can remove most of the deadlocks
associated with their blocking counterparts.

For example, the following piece of code is not safe.

int a[10], b[10], myrank;
MPI_Status status;

MPI_Comm_rank (MPl COMM _WORLD, &myrank) ;

if (myrank == 0) {
MPI_Send(a, 10, MPL_INT, 1,
MPI_Send(b, 10, MPIL_INT,

}

else if (myrank == 1) {
MPI_Recv (b, 10, MPI_INT, 0, 2, &status, MPI.COMM WORLD) ;
MPI_Recv(a, 10, MPI_INT, 0, 1, &status, MPI.COMM WORLD) ;

}

1, MPL.COMM WORLD) ;
1, 2, MPL.COMM WORLD) ;

However, if we replace either the send or receive
operations with their non-blocking counterparts, then the
code will be safe, and will correctly run on any MPI
implementation.

Programming Using th
Message-Passing
Paradigm IV

Dr. Cem Ozdogan

L]

Overlapping
Communication with
Computation

Collective
Communication and
Computation
Operations

Broadcast

Reduction

Gather

Scatter

Allto-All

Non-Blocking Communication Operations V

-~ 0O 0N O AW =

13
14

Safe with non-blocking communication operations;

int a[10], b[10], myrank;
MPI_Status status;
MPI_Request requests[2];

MPI_Comm_rank (MPl COMM_WORLD, &myrank) ;
if (myrank == 0) {
MPI_Send(a, 10, MPI_INT, 1, 1, MPL_.COMM WORLD) ;
MPI_Send(b, 10, MPI_INT, 1, 2, MPL_.COMM WORLD) ;
}
else if (myrank == {
MPI_Irecv (b, 10, MPI_INT, 0, 2, &requests[0],
MPI_COMM_WORLD) ;
MPI_Irecv(a, 10, MPL_INT, 0, 1, &requests[1],
MPI_COMM_WORLD) ;
} //Non—Blocking Communication Operations

This example also illustrates that the non-blocking

operations started by any process can finish in any order

depending on the transmission or reception of the
corresponding messages.

For example, the second receive operation will finish

before the first does.

Programming Using th
Message-Passing
Paradigm IV

Dr. Cem Ozdogan

AT

Overlapping
Communication with
Computation

Collective
Communication and
Computation
Operations

Broadcast

Reduction

Gather

Scatter

Allto-All

8.8

Collective Communication and Computation Operations |

e MPI provides an extensive set of functions for performing
commonly used collective communication operations.

o All of the collective communication functions provided by
MPI take as an argument a communicator that defines the
group of processes that participate in the collective
operation.
e All the processes that belong to this communicator
participate in the operation,
e and all of them must call the collective communication
function.

¢ Even though collective communication operations do not
act like barriers,

¢ act like a virtual synchronization step.

e Barrier; the barrier synchronization operation is
performed in MPI using the MPI_Barrier function.

int MPI_Barrier (MPI_Comm comm)

* The call to MPI_Barrier refurns only after all the
processes in the group have called this function.

Programming Using th
Message-Passing
Paradigm IV

Dr. Cem Ozdogan

s

Overlapping

Communication with

Computation
Non-Blocking
Communication Operations

Broadcast

Reduction
Gather
Scatter
All-to-All

8.9

https://www.open-mpi.org/doc/current/man3/MPI_Barrier.3.php

Broadcast |

Broadcast; the one-to-all broadcast operation is

performed in MPI using the MPI_Bcast function.

int MPI_Bcast(void =buf, int count, MPI_Datatype datatype,
int source, MPI_Comm comm)

MPI_Bcast sends the data stored in the buffer buf of
process source to all the other processes in the group.

The data that is broadcast consist of count entries of type
datatype.

The data received by each process is stored in the buffer
buf.

Since the operations are virtually synchronous, they
do not require tags.

Programming Using th
Message-Passing
Paradigm IV

Dr. Cem Ozdogan

s

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations

Reduction
Gather
Scatter
All-to-All

https://www.open-mpi.org/doc/current/man3/MPI_Bcast.3.php

Broadcast Il

MPI Bcast

Broadcasts a message to all other processes of that group

count = 1;

source = 1; broadcast originates in task 1

MPI_Bcast{ &msg, count, MPI_INT, source, MPI COMM_WORLD),

task 0 task 1 task 2 task 3
7 -=—— msg (before)
7 7 7 7 -—— msg (after)

Figure: Diagram for Broadcast.

Programming Using th
Message-Passing
Paradigm IV

Dr. Cem Ozdogan

Overlapping

Communication with

Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations

Reduction
Gather
Scatter
All-to-All

Reduction |

¢ Reduction; the all-to-one reduction operation is performed
in MPI using the MPI_Reduce function.

int MPI_Reduce(void =sendbuf, void =srecvbuf, int count,

MPI_Datatype datatype, MPI_Op op, int target, MPI_Comm
comm)

e combines the elements stored in the buffer sendbuf of
each process in the group,

e using the operation specified in op,
e returns the combined values in the buffer recvbuf of the
process with rank target.
e Both the sendbuf and recvbuf must have the same
number of count items of type datatype.

* When count is more than one, then the combine operation
is applied element-wise on each entry of the sequence.

¢ Note that all processes must provide a recvbuf array, even
if they are not the target of the reduction operation.

Programming Using th
Message-Passing
Paradigm IV

Dr. Cem Ozdogan

AT

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations

Broadcast

Gather
Scatter
All-to-All

https://www.open-mpi.org/doc/current/man3/MPI_Reduce.3.php

Reduction li

MPI_Reduce

Perform and associate reduction operation across all
tasks in the group and place the result in one task
count = 1;
dest = 1; result will be placed in task 1

MPI_Reduce(sendbuf, recvbuf, count, MPI_INT, MPI_SUM,
dest, MPI COMM_WORLD);

task O task 1 task 2 task 3
1 2 3 q -+—— sendbuf (before)
10 -—— recvbuf (after)

Figure: Diagram for Reduce.

Programming Using th
Message-Passing
Paradigm IV

Dr. Cem Ozdogan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations

Broadcast

Gather
Scatter
All-to-All

Reduction Il

e MPI provides a list of predefined operations that can be
used to combine the elements stored in sendbuf (See

Table).
Table: Predefined reduction operations.

Operation Meaning Datatypes

MPI_MAX Maximum C integers and floating point
MPI_MIN Minimum C integers and floating point
MPI_SUM Sum C integers and floating point
MPI_PROD Product C integers and floating point
MPI_LAND Logical AND C integers

MPI_BAND Bit-wise AND C integers and byte
MPI_LOR Logical OR C integers

MPI_BOR Bit-wise OR C integers and byte
MPI_LXOR Logical XOR C integers

MPI_BXOR Bit-wise XOR C integers and byte

MPI_MAXLOC max-min value-location ~ Data-pairs
MPI_MINLOC min-min value-location Data-pairs

* MPI also allows programmers to define their own
operations.

Programming Using th
Message-Passing
Paradigm IV

Dr. Cem Ozdogan

Overlapping

Communication with

Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations

Broadcast

Gather
Scatter
All-to-All

Gather |

Gather; the all-to-one gather operation is performed in
MPI using the MPI_Gather function.

int MPI_Gather(void =sendbuf, int sendcount, MPI_Datatype
senddatatype, void «recvbuf, int recvcount, MPI_Datatype
recvdatatype , int target, MPI_Comm comm)

Each process, including the target process, sends the
data stored in the array sendbuf to the target process.

As a result, the target process receives a total of p buffers
(p is the number of processors in the communication
comm).

The data is stored in the array recvbuf of the target
process, in a rank order.

That is, the data from process with rank i are stored in the
recvbuf starting at location i * sendcount (assuming that
the array recvbuf is of the same type as recvdatatype).

Programming Using th
Message-Passing
Paradigm IV

Dr. Cem Ozdogan

s

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations

Broadcast

Reduction

Scatter
All-to-All

https://www.open-mpi.org/doc/current/man3/MPI_Gather.3.php

Gather Il

The data sent by each process must be of the same size
and type.

That is, MPI_Gather must be called with the sendcount
and senddatatype arguments having the same values
at each process.

The information about the receive buffer, its length and

type applies only for the target process and is ignored for
all the other processes.

The argument recvcount specifies the number of elements
received by each process and not the total number of
elements it receives.

So, recvcount must be the same as sendcount and their
datatypes must be matching.

Programming Using th
Message-Passing
Paradigm IV

Dr. Cem Ozdogan

s

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations

Broadcast

Reduction

Scatter
All-to-All

Gather lll

MPI_Gather

Gathers together values from a group of processes

sendcnt = 1;
recvent = 1;
src = 1; messages will be gathered in task 1

MPI_Gather(sendbuf, sendent, MPL INT,
recvhbuf, recvent, MPL INT,
src, MPI_COMM_WORLD);

task 0 task 1 task 2 task 3

1 2 3 4 ——— sendbuf (before)

~+—— recvhuf {after)

Figure: Diagram for Gather.

Programming Using th
Message-Passing
Paradigm IV

Dr. Cem Ozdogan

Overlapping

Communication with

Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations

Broadcast

Reduction

Scatter
All-to-All

Gather IV

* MPI also provides the MPI_Allgather function in which the

data are gathered to all the processes and not only at the
target process.

int MPI_Allgather (void +sendbuf, int sendcount, MPI_Datatype
senddatatype, void =recvbuf, int recvcount, MPI_Datatype
recvdatatype , MPI_Comm comm)

® The meanings of the various parameters are similar to
those for MPI_Gather;

* However, each process must now supply a recvbuf array
that will store the gathered data.

Programming Using th
Message-Passing
Paradigm IV

Dr. Cem Ozdogan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations

Broadcast

Reduction

Scatter
All-to-All

https://www.open-mpi.org/doc/current/man3/MPI_Allgather.3.php

Gather V

MPI_Allgather

Gathers together values from a group of processes and distributes to all

sendent = 1;

recvent = 1

MPIL_Allgather{scndbuf, sendcnt, MPI_INT,
recvbuf, recvent, MPI_INT,
MPI_COMM_WORLD);

task 0 task 1 task 2 task 3
1 2 3 4 ~—— sendbuf (before)
1 1 1 1
2 2 2 2
=—— recvhuf (after)
3 3 3 3
4 4 4 4

Figure: Diagram for All_Gather.

Programming Using th
Message-Passing
Paradigm IV

Dr. Cem Ozdogan

Overlapping

Communication with

Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations

Broadcast

Reduction

Scatter
All-to-All

Scatter |

Scatter; the one-to-all scatter operation is performed in
MPI using the MPI_Scatter function.

int MPI_Scatter (void =sendbuf, int sendcount, MPI_Datatype
senddatatype , void xrecvbuf, int recvcount, MPI_Datatype
recvdatatype , int source, MPI_Comm comm)

The source process sends a different part of the send
buffer sendbuf to each processes, including itself.

The data that are received are stored in recvbuf.
Process i receives sendcount contiguous elements of type
senddatatype starting from the i * sendcount location of

the sendbuf of the source process (assuming that sendbuf
is of the same type as senddatatype).

Programming Using th
Message-Passing
Paradigm IV

Dr. Cem Ozdogan

s

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations

Broadcast

Reduction

Gather

All-to-All

https://www.open-mpi.org/doc/current/man3/MPI_Scatter.3.php

Scatter Il

MPFI_Scatter

Sends data from one task to all other tasksin a group

sendcnt = 1;
recvent = 1;
sre = 1; task 1 contains the message to be scattered

MPI_Scatter(sendhuf, sendcnt, MPl _INT,
recvhbuf, recvent, MPI_INT,
src, MPI_COMM_WORLDY);

task 0 task 1 task 2 task 3

-~—— sendbuf (before)

1 2 3 4 ~—— recvhuf (after)

Figure: Diagram for Scatter.

Programming Using th
Message-Passing
Paradigm IV

Dr. Cem Ozdogan

Overlapping

Communication with

Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations

Broadcast

Reduction

Gather

All-to-All

All-to-All |

Alltoall; the all-to-all communication operation is
performed in MPI by using the MPI_Alltoall function.

int MPI_Alltoall(void «sendbuf, int sendcount, MPI_Datatype
senddatatype , void xrecvbuf, int recvcount, MPI_Datatype
recvdatatype , MPI_Comm comm)

Each process sends a different portion of the sendbuf
array to each other process, including itself.

Each process sends to process i sendcount contiguous
elements of type senddatatype starting from the j *
sendcount location of its sendbuf array.

The data that are received are stored in the recvbuf array.

Each process receives from process i recvcount elements
of type recvdatatype and stores them in its recvbuf array
starting at location i * recvcount.

Programming Using th
Message-Passing
Paradigm IV

Dr. Cem Ozdogan

s

Overlapping

Communication with

Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations

Broadcast

Reduction

Gather

Scatter

https://www.open-mpi.org/doc/current/man3/MPI_Alltoall.3.php

All-to-All 1l

MPI_Alltoall

Sends data from all to all processes. Each process
performs a scatter operation.

sendent = 1;
recvent = 1;

MPI_Alltoall(sendbuf, sendent, MPL_INT,
recvhuf, recvent, MPLINT,

MPI_COMM_WORLDY;

task 0 task 1 task 2 task 3
1 5 9 13
2 6 10 14
-«—— sendbuf (before)
3 7 11 15
4 8 12 16
1 2 3 4
5 6 7 8
-+—— recvhuf (after)
9 10 11 12
13 14 15 16

Figure: Diagram for Alltoall.

Programming Using th
Message-Passing
Paradigm IV

Dr. Cem Ozdogan

Overlapping

Communication with

Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations

Broadcast

Reduction

Gather

Scatter

	Overlapping Communication with Computation
	Non-Blocking Communication Operations

	Collective Communication and Computation Operations
	Broadcast
	Reduction
	Gather
	Scatter
	All-to-All

