
Programming Using the
Message-Passing

Paradigm IV

Dr. Cem Özdoğan

LOGIK

Overlapping
Communication with
Computation

Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

8.1

Lecture 8
Programming Using the
Message-Passing Paradigm IV
MPI: the Message Passing Interface; Overlapping, Multicast

IKC-MH.57 Introduction to High Performance and Parallel
Computing at December 08, 2023

Dr. Cem Özdoğan
Engineering Sciences Department

İzmir Kâtip Çelebi University

Programming Using the
Message-Passing

Paradigm IV

Dr. Cem Özdoğan

LOGIK

Overlapping
Communication with
Computation

Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

8.2

Contents

1 Overlapping Communication with Computation
Non-Blocking Communication Operations

2 Collective Communication and Computation Operations
Broadcast
Reduction
Gather
Scatter
All-to-All

Programming Using the
Message-Passing

Paradigm IV

Dr. Cem Özdoğan

LOGIK

Overlapping
Communication with
Computation

Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

8.3

Overlapping Communication with Computation

• The MPI programs we developed so far used blocking
send and receive operations whenever they needed to
perform point-to-point communication.

• Recall that a blocking send operation remains blocked
until the message has been copied out of the send buffer

• either into a system buffer at the source process
• or sent to the destination process.

• Similarly, a blocking receive operation returns only after
the message has been received and copied into the
receive buffer.

• It will be preferable if we can overlap the transmission of
the data with the computation.

Programming Using the
Message-Passing

Paradigm IV

Dr. Cem Özdoğan

LOGIK

Overlapping
Communication with
Computation

Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

8.4

Non-Blocking Communication Operations I

• In order to overlap communication with computation, MPI
provides a pair of functions for performing non-blocking
send and receive operations.

• MPI_Isend =⇒ starts a send operation but does not
complete, that is, it returns before the data is copied out of

the buffer.
• MPI_Irecv =⇒ starts a receive operation but returns before

the data has been received and copied into the buffer.

i n t MPI_Isend (vo id * buf , i n t count , MPI_Datatype
datatype , i n t dest , i n t tag , MPI_Comm comm,
MPI_Request * request)

i n t MPI_Irecv (vo id * buf , i n t count , MPI_Datatype
datatype , i n t source , i n t tag , MPI_Comm comm,
MPI_Request * request)

• MPI_Isend and MPI_Irecv functions allocate a request
object and return a pointer to it in the request variable.

• At a later point in the program, a process that has
started a non-blocking send or receive operation must
make sure that this operation has completed before it
proceeds with its computations.

https://www.open-mpi.org/doc/current/man3/MPI_Isend.3.php
https://www.open-mpi.org/doc/current/man3/MPI_Irecv.3.php

Programming Using the
Message-Passing

Paradigm IV

Dr. Cem Özdoğan

LOGIK

Overlapping
Communication with
Computation

Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

8.5

Non-Blocking Communication Operations II

• This is because a process that has started a non-blocking
send operation may want to

• overwrite the buffer that stores the data that are being
sent,
• or a process that has started a non-blocking receive
operation may want to use the data

• To check the completion of non-blocking send and receive
operations, MPI provides a pair of functions

1 MPI_Test =⇒ tests whether or not a non-blocking operation
has finished

2 MPI_Wait =⇒ waits (i.e., gets blocked) until a non-blocking
operation actually finishes.

i n t MPI_Test (MPI_Request * request , i n t * f l ag , MPI_Status

* s ta tus)
i n t MPI_Wait (MPI_Request * request , MPI_Status * s ta tus)

• The request object is used as an argument in the
MPI_Test and MPI_Wait functions to identify the operation
whose status we want to query or to wait for its completion.

https://www.open-mpi.org/doc/current/man3/MPI_Test.3.php
https://www.open-mpi.org/doc/current/man3/MPI_Wait.3.php

Programming Using the
Message-Passing

Paradigm IV

Dr. Cem Özdoğan

LOGIK

Overlapping
Communication with
Computation

Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

8.6

Non-Blocking Communication Operations III

• MPI_Test tests whether or not the non-blocking send or
receive operation identified by its request has finished.

True It returns flag = true (non-zero value in C) if it is
completed.

• The request object pointed to by request is deallocated
and request is set to MPI_REQUEST_NULL.
• Also the status object is set to contain information about
the operation.

False It returns flag = false (a zero value in C) if it is not
completed.

• The request is not modified and the value of the status

object is undefined.
• The MPI_Wait function blocks until the non-blocking
operation identified by request completes.

• A non-blocking communication operation can be matched
with a corresponding blocking operation.

• For example, a process can send a message using a
non-blocking send operation and this message can be
received by the other process using a blocking receive
operation.

Programming Using the
Message-Passing

Paradigm IV

Dr. Cem Özdoğan

LOGIK

Overlapping
Communication with
Computation

Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

8.7

Non-Blocking Communication Operations IV

• Avoiding Deadlocks; by using non-blocking communication
operations we can remove most of the deadlocks
associated with their blocking counterparts.

• For example, the following piece of code is not safe.
1 i n t a [1 0] , b [1 0] , myrank ;
2 MPI_Status s ta tus ;
3 . . .
4 MPI_Comm_rank (MPI_COMM_WORLD, &myrank) ;
5 i f (myrank == 0) {
6 MPI_Send (a , 10 , MPI_INT , 1 , 1 , MPI_COMM_WORLD) ;
7 MPI_Send (b , 10 , MPI_INT , 1 , 2 , MPI_COMM_WORLD) ;
8 }
9 else i f (myrank == 1) {

10 MPI_Recv (b , 10 , MPI_INT , 0 , 2 , &s ta tus , MPI_COMM_WORLD) ;
11 MPI_Recv (a , 10 , MPI_INT , 0 , 1 , &s ta tus , MPI_COMM_WORLD) ;
12 }
13 . . .

• However, if we replace either the send or receive
operations with their non-blocking counterparts, then the
code will be safe, and will correctly run on any MPI
implementation.

Programming Using the
Message-Passing

Paradigm IV

Dr. Cem Özdoğan

LOGIK

Overlapping
Communication with
Computation

Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

8.8

Non-Blocking Communication Operations V

• Safe with non-blocking communication operations;
1 i n t a [1 0] , b [1 0] , myrank ;
2 MPI_Status s ta tus ;
3 MPI_Request requests [2] ;
4 . . .
5 MPI_Comm_rank (MPI_COMM_WORLD, &myrank) ;
6 i f (myrank == 0) {
7 MPI_Send (a , 10 , MPI_INT , 1 , 1 , MPI_COMM_WORLD) ;
8 MPI_Send (b , 10 , MPI_INT , 1 , 2 , MPI_COMM_WORLD) ;
9 }

10 else i f (myrank == 1) {
11 MPI_Irecv (b , 10 , MPI_INT , 0 , 2 , &requests [0] ,

MPI_COMM_WORLD) ;
12 MPI_Irecv (a , 10 , MPI_INT , 0 , 1 , &requests [1] ,

MPI_COMM_WORLD) ;
13 } / / Non−Block ing Communication Operat ions
14 . . .

• This example also illustrates that the non-blocking
operations started by any process can finish in any order
depending on the transmission or reception of the
corresponding messages.

• For example, the second receive operation will finish
before the first does.

Programming Using the
Message-Passing

Paradigm IV

Dr. Cem Özdoğan

LOGIK

Overlapping
Communication with
Computation

Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

8.9

Collective Communication and Computation Operations I

• MPI provides an extensive set of functions for performing
commonly used collective communication operations.

• All of the collective communication functions provided by
MPI take as an argument a communicator that defines the
group of processes that participate in the collective
operation.
• All the processes that belong to this communicator
participate in the operation,
• and all of them must call the collective communication
function.

• Even though collective communication operations do not
act like barriers,

• act like a virtual synchronization step.
• Barrier; the barrier synchronization operation is

performed in MPI using the MPI_Barrier function.
i n t MPI_Barr ier (MPI_Comm comm)

• The call to MPI_Barrier returns only after all the
processes in the group have called this function.

https://www.open-mpi.org/doc/current/man3/MPI_Barrier.3.php

Programming Using the
Message-Passing

Paradigm IV

Dr. Cem Özdoğan

LOGIK

Overlapping
Communication with
Computation

Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

8.10

Broadcast I

• Broadcast; the one-to-all broadcast operation is
performed in MPI using the MPI_Bcast function.
i n t MPI_Bcast (vo id * buf , i n t count , MPI_Datatype datatype ,

i n t source , MPI_Comm comm)

• MPI_Bcast sends the data stored in the buffer buf of
process source to all the other processes in the group.

• The data that is broadcast consist of count entries of type
datatype.

• The data received by each process is stored in the buffer
buf.

• Since the operations are virtually synchronous, they
do not require tags.

https://www.open-mpi.org/doc/current/man3/MPI_Bcast.3.php

Programming Using the
Message-Passing

Paradigm IV

Dr. Cem Özdoğan

LOGIK

Overlapping
Communication with
Computation

Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

8.11

Broadcast II

Figure: Diagram for Broadcast.

Programming Using the
Message-Passing

Paradigm IV

Dr. Cem Özdoğan

LOGIK

Overlapping
Communication with
Computation

Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

8.12

Reduction I

• Reduction; the all-to-one reduction operation is performed
in MPI using the MPI_Reduce function.
i n t MPI_Reduce (vo id * sendbuf , vo id * recvbuf , i n t count ,

MPI_Datatype datatype , MPI_Op op , i n t t a rge t , MPI_Comm
comm)

• combines the elements stored in the buffer sendbuf of
each process in the group,
• using the operation specified in op,
• returns the combined values in the buffer recvbuf of the
process with rank target.

• Both the sendbuf and recvbuf must have the same
number of count items of type datatype.

• When count is more than one, then the combine operation
is applied element-wise on each entry of the sequence.

• Note that all processes must provide a recvbuf array, even
if they are not the target of the reduction operation.

https://www.open-mpi.org/doc/current/man3/MPI_Reduce.3.php

Programming Using the
Message-Passing

Paradigm IV

Dr. Cem Özdoğan

LOGIK

Overlapping
Communication with
Computation

Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

8.13

Reduction II

Figure: Diagram for Reduce.

Programming Using the
Message-Passing

Paradigm IV

Dr. Cem Özdoğan

LOGIK

Overlapping
Communication with
Computation

Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

8.14

Reduction III

• MPI provides a list of predefined operations that can be
used to combine the elements stored in sendbuf (See
Table).

Table: Predefined reduction operations.

Operation Meaning Datatypes
MPI_MAX Maximum C integers and floating point
MPI_MIN Minimum C integers and floating point
MPI_SUM Sum C integers and floating point
MPI_PROD Product C integers and floating point
MPI_LAND Logical AND C integers
MPI_BAND Bit-wise AND C integers and byte
MPI_LOR Logical OR C integers
MPI_BOR Bit-wise OR C integers and byte
MPI_LXOR Logical XOR C integers
MPI_BXOR Bit-wise XOR C integers and byte
MPI_MAXLOC max-min value-location Data-pairs
MPI_MINLOC min-min value-location Data-pairs

• MPI also allows programmers to define their own
operations.

Programming Using the
Message-Passing

Paradigm IV

Dr. Cem Özdoğan

LOGIK

Overlapping
Communication with
Computation

Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

8.15

Gather I

• Gather; the all-to-one gather operation is performed in
MPI using the MPI_Gather function.
i n t MPI_Gather (vo id * sendbuf , i n t sendcount , MPI_Datatype

senddatatype , vo id * recvbuf , i n t recvcount , MPI_Datatype
recvdatatype , i n t t a rge t , MPI_Comm comm)

• Each process, including the target process, sends the
data stored in the array sendbuf to the target process.

• As a result, the target process receives a total of p buffers
(p is the number of processors in the communication
comm).

• The data is stored in the array recvbuf of the target
process, in a rank order.

• That is, the data from process with rank i are stored in the
recvbuf starting at location i * sendcount (assuming that
the array recvbuf is of the same type as recvdatatype).

https://www.open-mpi.org/doc/current/man3/MPI_Gather.3.php

Programming Using the
Message-Passing

Paradigm IV

Dr. Cem Özdoğan

LOGIK

Overlapping
Communication with
Computation

Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

8.16

Gather II

• The data sent by each process must be of the same size
and type.

• That is, MPI_Gather must be called with the sendcount

and senddatatype arguments having the same values
at each process.

• The information about the receive buffer, its length and
type applies only for the target process and is ignored for
all the other processes.

• The argument recvcount specifies the number of elements
received by each process and not the total number of
elements it receives.

• So, recvcount must be the same as sendcount and their
datatypes must be matching.

Programming Using the
Message-Passing

Paradigm IV

Dr. Cem Özdoğan

LOGIK

Overlapping
Communication with
Computation

Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

8.17

Gather III

Figure: Diagram for Gather.

Programming Using the
Message-Passing

Paradigm IV

Dr. Cem Özdoğan

LOGIK

Overlapping
Communication with
Computation

Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

8.18

Gather IV

• MPI also provides the MPI_Allgather function in which the
data are gathered to all the processes and not only at the

target process.
i n t MPI_Al lgather (vo id * sendbuf , i n t sendcount , MPI_Datatype

senddatatype , vo id * recvbuf , i n t recvcount , MPI_Datatype
recvdatatype , MPI_Comm comm)

• The meanings of the various parameters are similar to
those for MPI_Gather;

• However, each process must now supply a recvbuf array
that will store the gathered data.

https://www.open-mpi.org/doc/current/man3/MPI_Allgather.3.php

Programming Using the
Message-Passing

Paradigm IV

Dr. Cem Özdoğan

LOGIK

Overlapping
Communication with
Computation

Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

8.19

Gather V

Figure: Diagram for All_Gather.

Programming Using the
Message-Passing

Paradigm IV

Dr. Cem Özdoğan

LOGIK

Overlapping
Communication with
Computation

Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

8.20

Scatter I

• Scatter; the one-to-all scatter operation is performed in
MPI using the MPI_Scatter function.
i n t MPI_Scatter (vo id * sendbuf , i n t sendcount , MPI_Datatype

senddatatype , vo id * recvbuf , i n t recvcount , MPI_Datatype
recvdatatype , i n t source , MPI_Comm comm)

• The source process sends a different part of the send
buffer sendbuf to each processes, including itself.

• The data that are received are stored in recvbuf.
• Process i receives sendcount contiguous elements of type

senddatatype starting from the i * sendcount location of
the sendbuf of the source process (assuming that sendbuf

is of the same type as senddatatype).

https://www.open-mpi.org/doc/current/man3/MPI_Scatter.3.php

Programming Using the
Message-Passing

Paradigm IV

Dr. Cem Özdoğan

LOGIK

Overlapping
Communication with
Computation

Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

8.21

Scatter II

Figure: Diagram for Scatter.

Programming Using the
Message-Passing

Paradigm IV

Dr. Cem Özdoğan

LOGIK

Overlapping
Communication with
Computation

Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

8.22

All-to-All I

• Alltoall; the all-to-all communication operation is
performed in MPI by using the MPI_Alltoall function.
i n t M P I _ A l l t o a l l (vo id * sendbuf , i n t sendcount , MPI_Datatype

senddatatype , vo id * recvbuf , i n t recvcount , MPI_Datatype
recvdatatype , MPI_Comm comm)

• Each process sends a different portion of the sendbuf

array to each other process, including itself.
• Each process sends to process i sendcount contiguous

elements of type senddatatype starting from the i *
sendcount location of its sendbuf array.

• The data that are received are stored in the recvbuf array.
• Each process receives from process i recvcount elements

of type recvdatatype and stores them in its recvbuf array
starting at location i * recvcount.

https://www.open-mpi.org/doc/current/man3/MPI_Alltoall.3.php

Programming Using the
Message-Passing

Paradigm IV

Dr. Cem Özdoğan

LOGIK

Overlapping
Communication with
Computation

Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

8.23

All-to-All II

Figure: Diagram for Alltoall.

	Overlapping Communication with Computation
	Non-Blocking Communication Operations

	Collective Communication and Computation Operations
	Broadcast
	Reduction
	Gather
	Scatter
	All-to-All

