

İzmir Kâtip Çelebi University Materials Science and Engineering Mse228 Engineering Quantum Mechanics Midterm Examination April 11, 2018 09:30 – 11:30 Good Luck!

NAME-SURNAME:

SIGNATURE:

ID:

DEPARTMENT:

DURATION: 120 minutes

 \diamond Answer all the questions.

 \diamond Write the solutions explicitly and clearly.

Use the physical terminology.

 \diamond Calculator is allowed.

 \diamond You are not allowed to use any other electronic equipment in the exam.

Question	Grade	Out of
1A		10
1B		10
2		30
3A		10
3B		10
4		20
5A		10
5B		10
TOTAL		110

.

A) The work function of a tungsten surface is 5.4 eV. When the surface is illuminated by light of wavelength 175 nm, the maximum photo-electron energy is 1.7 eV. Find Planck's constant from these data.

\$=5.4eV	KEman = hV- \$= h = -5.4 eV= 1.7 eV
2=175nm	$h = \frac{1}{2}(7.1ev) = \frac{175 \times 10}{8} = 1.1eV$
RE = 1-tev	= 175×10 m (7.1ev)(1.6×10 J/1)
	$3 \times 10^{8} m$ (eV)
61/2 6 1 8 E C	$= 4.14 \times 10^{-15} eV$

B) An electron has a de Broglie wavelength equal to the diameter of the hydrogen atom. What is the kinetic energy of the electron? How does this energy compare with the ground-state energy of the hydrogen atom?

Diameter of the hydrogen atom: $2a_0 = 1.06 \text{ Å}_{-9}$ = 10.6×10 m $2 = 2a_0 = 10.6 \times 10^{-9} \text{ m} = \frac{h}{P}$ $P = \frac{h}{\lambda} \Rightarrow KE = \frac{p^2}{2m} = \frac{h^2}{2m\lambda^2}$ =(6.626×10 J.5 $= 2.15 \times 10^{-21} = 0.0134 eV$ Gronnel state of hydrogen abom: E,= 13.6eV => Comparing <u>00134eV</u> ~ 1 13.6eV 1000

- 2. An x-ray of wavelength 0.050 nm scatters from a gold target.
 - a) Can the x-ray be Compton-scattered from an electron bound by as much as 62 keV ?
 - b) What is the largest wavelength of scattered photon that can be observed?
 - c) What is the kinetic energy of the most energetic recoil electron?

 $i)_{x-ray}: x=0.050 \text{ nm} \rightarrow E=hV = (6.626 \times 10^{-34} \text{ J.s}) \frac{3 \times 10^8 \text{ m/s}}{3 \times 10^8 \text{ m/s}}$ $(initial photon) = \frac{hc}{2} = 3.972 \times 10^{-15} \frac{0.050 \times 10^{-9} \text{ m}}{3}$ $= 24.825 \times 10^3 \text{ eV} = 24.8 \text{ keV}$ This is the energy of the x-ray and less than the bond energy 62 bev. NO. it can not ii) The longest wavelength occur when D2 is a marinum or when 0=180° R'->= h (1-Cos 180°)= 2h MC $\lambda' = 0.050 \times 10^{-9} + 2 \underbrace{(6.626 \times 10^{-34} \text{ J.s})}_{(9.1 \times 10^{3} \text{ kg})(3 \times 10^{8} \text{ m/s})}$ $= 0.050 \times 10^{9} \text{ m} + 0.00485 \times 10^{-9} \text{ m} = \underline{0.055} \text{ nm}$ $\Rightarrow E' = h \mathcal{V}' = \underline{hc} = \underbrace{(6.626 \times 10^{-34} \text{ J.s})(3 \times 10^{8} \text{ m/s})}_{\mathcal{R}'}$ $= \underbrace{3.63 \times 10^{-7} \text{ J}}_{\mathcal{R}} = \underbrace{22.65 \text{ keV}}_{\text{em}} \underbrace{\text{final pha}}_{\text{em}}$ iii) E-E'=KEeleebron =(24.8-22.65)kev=<u>2.15 kev</u>

- 3. A) A particle of charge q and mass m is accelerated from rest through a small potential difference V.
 - a) Find its de Broglie wavelength, assuming that the particle is nonrelativistic.
 - b) Calculate λ if the particle is an electron and V=50 V.

 $\begin{array}{c} charge \ q \\ mass \ m \\ from \ rent \\ V \\ \end{array} \left\{ \begin{array}{c} {}^{(a)}_{KE} = PE \\ \frac{m^{2} e^{2}}{2m} = qV \\ \frac{m^{2} e^{2}}{\sqrt{2(9.1 \times 10^{-54} \text{ kg})(1.6 \times 10^{-54} \text{ kg})(50 \text{ v})^{1}}} \\ \frac{m^{2} e^{2}}{\sqrt{2(9.1 \times 10^{-54} \text{ kg})(1.6 \times 10^{-54} \text{ kg})(50 \text{ v})^{1}}} \\ \frac{m^{2} e^{2}}{\sqrt{2(9.1 \times 10^{-10} \text{ m})^{10}}} \\ \frac{m^{2} e^{2}}{\sqrt{2(9.1 \times 10^{-10} \text{ m})^{10}}$

B) A proton has a kinetic energy of 1.0 MeV. If its momentum is measured with an uncertainty of 5.0%, what is the minimum uncertainty in its position?

 $K \mathcal{E}_{proton} = \frac{m_{p} v^{2}}{2} = \frac{p^{2}}{2m_{p}} \sim p^{2} = 2(1.67 \times 10^{-27} \text{ kg})(1 \times 10^{6} \text{ eV})(1.6 \times 10^{-19} \text{ Jev})$ $\sim p = 2.312 \times 10^{-20} \text{ kgm/s}$ $\Rightarrow \Delta p = 0.05 p = 1.160 \times 10^{-21} kgm/s$ $\Rightarrow \Delta x \Delta p \ge \frac{1}{2} \rightarrow \Delta x = \frac{(6.626 \times 10^{-34} J.s)/271}{2 \times 1.160 \times 10^{-21} kgm/s} = \frac{4.56 \times 10^{-14}}{4.56 \times 10^{-14}}$

- 4. An atom in an excited state normally remains in that state for a very short time (~ 10^{-8} s) before emitting a photon and returning to a lower energy state. The "lifetime" of the excited state can be regarded as an uncertainty in the time Δt associated with a measurement of the energy of the state. This, in turn, implies an "energy width", namely, the corresponding energy uncertainty ΔE . Calculate
 - a) the characteristic "energy width" of such a state,
 - b) the uncertainty ratio of the frequency $\Delta \nu / \nu$ if the wavelength of the emitted photon is 300 nm.

i) At=10 s & DEAt > 1/2 $\rightarrow SE = \frac{(6.626 \times 10^{-34} \text{ J.s})/2\pi}{2(10^{-8} \text{ s})} = \frac{5.3 \times 10^{-27}}{3.3 \times 10^{-8} \text{ eV}}$ $\lambda = \frac{C}{V} = 300 \text{ nm} \quad \gamma V = \frac{3 \times 10^8 \text{m}}{300 \times 15^9 \text{m/s}} = 10^{15} \text{l/s} = 10^5 \text{Hz}$ $\Delta E = h\Delta V \longrightarrow \Delta V = \frac{5.3 \times 10^{-27} T}{6.626 \times 10^{-34} T.5} = 8 \times 10^{6} Hz$ $\Delta V = \frac{8 \times 10^6 Hz}{V} = \frac{8 \times 10^6}{1511} = \frac{8 \times 10^7}{1511} = \frac{10^7}{1511} = \frac{10^7}{$

5. A) Show that the speed of an electron in the n^{th} Bohr orbit of hydrogen is $\alpha c/n$, where α is the fine structure constant, equal to $e^2/4\pi\epsilon_0\hbar c$. What would be the speed in a hydrogen-like atom with a nuclear charge of Ze?

 $E = pc = hV \{c = \lambda V\} p \lambda V = hV \Rightarrow p = h = mV \{for V, F_c = Eoulowb}$ $m \frac{V^2}{r} = \frac{e^2}{4\pi e_0 r^2} \Rightarrow V = \sqrt{\frac{e^2}{4\pi e_0 mr}} Conduction for orbital stability$ $\lambda = \frac{h}{mV} = \frac{h}{m} \sqrt{\frac{4\pi e_0 mr}{e^2}} \Rightarrow n \frac{h}{4\pi e_0 mr} r (2nduction for orbital stability)$ $\lambda = \frac{h}{mV} = \frac{h}{m} \sqrt{\frac{4\pi e_0 mr}{e^2}} \Rightarrow n \frac{h}{e} \sqrt{\frac{4\pi e_0 r}{m}} = 2\pi r_n n^2 \frac{h^2}{e^2} \frac{4\pi e_0 r}{m} = 4\pi r_n^2$ $V = \frac{h}{m\lambda} = \frac{h}{m} \frac{m}{h} \sqrt{\frac{e^2}{4\pi e_0 mr}} x = \frac{e^2}{m} k we are given V_n = \frac{w^2 e_0}{n} = \frac{e^2}{4\pi e_0 n^2} \frac{c}{n}$ when the nuclear the vector of the vector of the equation ofa nuclear charge of Le: when the nuclear the nuclear the charge is 2e, we must the replace e^2 with $2e^2 \Rightarrow 0_{\tilde{n}} = 0$ They are equa

B) The electron in a hydrogen atom at rest makes a transition from the n=2 energy state to the n=1 ground state. Find the wavelength, frequency, and energy (eV) of the emitted photon.

$$m=2 \longrightarrow n=1$$

$$\int_{A}^{-1} = \frac{-E_{1}}{ch} \left(\frac{1}{1^{2}} - \frac{1}{2^{2}}\right) = \frac{-(13.6eV)(1.6x10^{-19}J/eV)}{(3x10^{8})(6.626x10^{-34}J.s)} \left(\frac{3}{4}\right)$$

$$\int_{A}^{-1} = 8.2 \times 10^{6} m^{-1} \longrightarrow \gamma = 1.22 \times 10^{-7} m = 122 nm$$

$$V = \frac{C}{A} = \frac{3 \times 10^{8} m/s}{1.22 \times 10^{-7} m} = \frac{2.46 \times 10^{15} Hz}{1.22 \times 10^{-7} m}$$

$$E = hV = (6.626 \times 10^{-34} J.s)(2.46 \times 10^{5} 1/s) = \frac{1.6 \times 10^{-18} J}{1.22 \times 10^{-7} m}$$

$$= 10.2 eV$$