MSE228 Engineering Quantum Mechanics Quiz 6 Duration: 30 minutes Open Book Quiz

1. A certain atom has six electrons in the 3d level. (a) What is the maximum possible total m_l for the six electrons, and what is the total m_s in that configuration? (b) What is the maximum possible total m_s for the six electrons, and what would be the largest possible total m_l in that configuration?

6 = in 3d. m=2, & $l=2 \Rightarrow m_{l}=2,-l,0,+l,+2$ i) Mark $m_{l}=?$ two e in +2-t/2two e in +1/t/2t=2 t=2 t=2 t=2 t=3 t=

2. The ground state of helium has the configuration 1s². Use the electron screening model to predict the energies of the following excited states of helium: (a) 1s¹2s¹ (measured value -4.0 eV); (b) 1s¹2p¹ (-3.4 eV); (c) 1s¹3d¹ (-1.5 eV).

Ground state Itelium: 15^2 use $E_n = \frac{2ept}{n^2}$ in encrited states

i) 15^225^4 , nuclear chape +2e is screened by 15^4e . (+2e-1e=1e)

(experimental) $\stackrel{?}{=} \frac{2ept}{2} = 2$ for the outr $\stackrel{?}{=} = \implies E_2 = 1^2 \left(\frac{+3.6eV}{2}\right) = \frac{-3.4eV}{2}$ $\stackrel{?}{=} \frac{4eV}{2} > -3.4eV \implies 25e$ is closer to nucleus them

ii) 15^42p^4 , $E_2 = -3.4eV$ equal to experimental value, good agreement.

iii) 15^43d^4 , $E_3 = 1^2 \frac{(-13.6eV)}{3^2} = -1.5eV$ equal to experimental value.

(as expected since no penetration to 15e)