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• The Bohr theory of the atom has a number of severe limitations. 
• It applies only to hydrogen and one-electron ions such as He+ and Li+2. 

• It cannot explain why certain spectral lines are more intense than others (that is, 

why certain transitions between energy levels have greater probabilities of 

occurrence than others).  

• It cannot account for the observation that many spectral lines actually consist of 

several separate lines whose wavelengths differ slightly.  

• Perhaps most important, it does not permit us to obtain an understanding of how 

individual atoms interact with one another to endow macroscopic aggregates of 

matter with the physical and chemical properties we observe. 

• A more general approach to atomic phenomena is required.  

• Such an approach was developed in 1925 and 1926 by Erwin 

Schrödinger, Werner Heisenberg, Max Born, Paul Dirac, and others 

under the name of quantum mechanics.  
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• Classical mechanics is an approximation of quantum mechanics 

• The fundamental difference between classical (or Newtonian) 

mechanics and quantum mechanics lies in what they describe.  

• In classical mechanics, the future history of a particle is completely 

determined by its initial position and momentum together with the 

forces that act upon it. 

• Quantum mechanics also arrives at relationships between observable 

quantities, but the uncertainty principle suggests that the nature of an 

observable quantity is different in the atomic level.  
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• The quantity with which quantum mechanics is concerned is the wave 

function Ψ of a body. 

• The linear momentum, angular momentum, and energy of the body are 

quantities that can be established from Ψ.  

• The problem of quantum mechanics is to determine Ψ for a body when 

its freedom of motion is limited by the action of external forces. 

• Wave functions are usually complex with both real and imaginary 

parts (Wave function) where A and B are real functions. 

• A probability, however, must be a positive real quantity. The 

probability density |Ψ|2 for a complex is therefore taken as the product 

of Ψ and its complex conjugate Ψ* which is Ψ*Ψ. 

• The complex conjugate of any function is obtained by replacing i by -i 

wherever it appears in the function. 

 

• Since i2=-1; |Ψ|2=Ψ*Ψ is always a positive real quantity. 

(Complex conjugate) 
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• Since |Ψ|2 is proportional to the probability density P of finding the 

body described by Ψ, the integral of |Ψ|2 over all space must be finite - 

the body is somewhere. 

• If                          the particle does not exist. 

• It is usually convenient to have |Ψ|2 be equal to the probability density 

P of finding the particle described by Ψ, rather than merely be 

proportional to P.  

• If |Ψ|2 is to equal P, then it must be true that  

• A wave function that obeys Eq. (5.1) is said to be normalized.  

• Every acceptable wave function can be normalized by multiplying it by 

an appropriate constant. 

(5.1 Normaliation) 
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• Only wave functions with the properties below can yield physically 

meaningful results when used in calculations, so only such “well-

behaved” wave functions are admissible as mathematical 

representations of real bodies.  
• To summarize: 

1. Ψ must be continuous and single-valued everywhere. 

2. Ψ/x, Ψ/y, Ψ/z must be continuous and single-valued 

everywhere. 

3. Ψ must be normalizable, which means that Ψ must go to 0 as 

x→ , y → , z →  in order that  Ψ|2 dV over all space be a 

finite constant. 

(Probabilty) 

• For a particle restricted to motion in the x direction, the probability 

of finding it between x1 and x2 is given by 



5.2 The Wave Equation 

16 April 2018 8 MSE 228 Engineering Quantum Mechanics © Dr.Cem Özdoğan 

• It can have a variety of solutions, including complex ones. 

• Schrödinger’s equation, which is the fundamental equation of quantum 

mechanics in the same sense that the second law of motion is the 

fundamental equation of Newtonian mechanics, is a wave equation in 

the variable Ψ. (5.3 Wave equation) 

• Solutions of the wave equation may be of many kinds, reflecting the 

variety of waves that can occur. 

Figure 5.1 Waves in the xy plane traveling in 

the x direction along a stretched string lying 

on the x axis. 

All solutions must be of the form  

where F is any function that can be 

differentiated.  

• The solutions F(t-x/v) represent waves 

traveling in the +x-direction, 

• and the solutions F(t+x/v) represent waves 

traveling in the -x direction. 
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• Let us consider the wave equivalent of a “free particle”, which is a 

particle that is not under the influence of any forces and therefore 

follow a straight path at constant speed.  

• This wave is described by the general solution of Eq. (5.3) for 

undamped (that is, constant amplitude A), monochromatic (constant 

angular frequency) harmonic waves in the x direction, namely  

In this formula y is a complex quantity, with both real and imaginary 

parts.  
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• A basic physical principle that cannot be derived from anything else.  

• In quantum mechanics, the wave function Ψ corresponds to the wave 

variable y of wave motion in general.  

• However, Ψ, unlike y, is not itself a measurable quantity and may 

therefore be complex. For this reason, we assume that for a particle 

moving freely in the +x-direction is specified by 

Replacing  in the above formula by 2 and v by  gives 

• This is convenient since we already know what  and  are in terms of 

the total energy E and momentum p of the particle being described by 

Ψ. Because                                              we have (5.9 Free 

particle) 

• Equation (5.9) describes the wave equivalent of an unrestricted particle 

of total energy E and momentum p moving in the +x- direction. 

• The expression for the wave function Ψ given by Eq. (5.9) is correct 

only for freely moving particles.  
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• However, we are most interested in situations where the motion of a 

particle is subject to various restrictions.  

• An important concern, for example, is an electron bound to an atom by 

the electric field of its nucleus. 

• What we must now do is obtain the fundamental differential equation 

for Ψ, which we can then solve for in a specific situation.  

• This equation is Schrödinger’s equation. 

• We begin by differentiating Eq. (5.9) for Ψ twice with respect to x, 

which gives 

differentiating Eq. (5.9) once with respect to t gives 

(5.10) 

(5.11) 
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• At speeds small compared with that of light, the total energy E of a 

particle is the sum of its kinetic energy p2/2m and its potential energy 

U, where U is in general a function of position x and time  

(5.12) 

(5.14 Time dependent 

Schrödinger’s equation in 1D) 

• The function U represents the influence of the rest of the universe on 

the particle.  

• Of course, only a small part of the universe interacts with the particle 

to any extent;  

• for instance, in the case of the electron in a hydrogen atom, only the 

electric field of the nucleus must be taken into account. 

• Multiplying both sides of Eq. (5.12) by the wave function Ψ. 

• Now we substitute for E Ψ and p2 Ψ from Eqs. (5.10) and (5.11) to 

obtain the time dependent form of Schrödinger’s equation: 
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where the particle’s potential energy U is some function of x, y, 

z, and t. 

• Any restrictions that may be present on the particle’s motion 

will affect the potential energy function U.  

• In three dimensions the time-dependent form of 

Schrödinger’s equation is 

Ernwin 

Schrödinger 

(1887–1961)  

Nobel Prize in 

Physics in 1933 

• Once U is known, Schrödinger’s equation may be solved for the wave 

function Ψ of the particle, from which its probability density |Ψ|2 may 

be determined for a specified x, y, z, t. 

Schrödinger’s equation cannot be derived from other basic principles of 

physics; it is a basic principle in itself. 

(5.15 Time dependent 

Schrödinger’s equation in 3D) 
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• Wave functions add, not probabilities. 

• An important property of Schrödinger’s equation is that it is linear in 

the wave function: the equation has terms that contain and its 

derivatives but no terms independent of or that involve higher powers 

of or its derivatives. 

• As a result, a linear combination of solutions of Schrödinger’s equation 

for a given system is also itself a solution. 
•  If Ψ1 and Ψ2 are two solutions (that is, two wave functions that satisfy the 

equation), then Ψ= a1Ψ1+a2Ψ2 is also a solution, where a1 and a2 are constants. 

Superposition principle.  

• We conclude that interference effects can occur for wave functions just 

as they can for light, sound, water, and electromagnetic waves. 

• Let us apply the superposition principle to the diffraction of an electron 

beam.  
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• Figure 5.2a shows a pair of slits through which a parallel beam of 

monoenergetic electrons pass on their way to a viewing screen. 
Figure 5.2 (a) Arrangement of double-slit experiment. (b) The 

electron intensity at the screen with only slit 1 open. (c) The electron 

intensity at the screen with only slit 2 open. (d) The sum of the 

intensities of (b) and (c). (e) The actual intensity at the screen with 

slits 1 and 2 both open. The wave functions Ψ1 and Ψ2 add to 

produce the intensity at the screen, not the probability densities |Ψ1|2 

and |Ψ2|2 

• If slit 1 only is open, the result is the intensity variation shown in Fig. 5.2b that 

corresponds to the probability density P=|Ψ1|
2= Ψ1

*Ψ1 

• If slit 2 only is open, as in Fig. 5.2c, the corresponding probability density is 

P=|Ψ2|
2= Ψ2

*Ψ2 

• We might suppose that opening both slits would give an electron intensity variation 

described by P1 + P2, as in Fig. 5.2d 

• However, this is not the case because in quantum mechanics wave functions add, 

not probabilities.  

• Instead the result with both slits open is as shown in Fig. 5.2e, the same pattern of 

alternating maxima and minima that occurs when a beam of monochromatic light 

passes through the double slit of Fig. 2.4. Superposition of the wave functions. 
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• How to extract information from a wave function. 

• Once Schrödinger’s equation has been solved for a particle in a given 

physical situation, the resulting wave function Ψ(x, y, z, t) contains all 

the information about the particle (that is permitted by the uncertainty 

principle). 

• Let us calculate the expectation value <x> of the position of a particle 

confined to the x axis that is described by the wave function Ψ(x, t).  

• This is the value of x we would obtain if we measured the positions 

of a great many particles described by the same wave function at 

some instant t and then averaged the results. 

• What is the average position x of a number of identical particles 

distributed along the x axis in such a way that there are N1 particles at 

x1, N2 particles at x2, and so on? The average position in this case is the 

same as the center of mass of the distribution, and so 
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• When we are dealing with a single particle, we must replace the 

number Ni of particles at xi by the probability Pi that the particle be 

found in an interval dx at xi.  

• This probability is Pi =| Ψi |
2 dx where Ψi is the particle wave function 

evaluated at x=xi. Making this substitution and changing the 

summations to integrals, we see that the expectation value of the 

position of the single particle is 
 

• If Ψ is a normalized wave function, the denominator of Eq. (5.18) 

equals the probability that the particle exists somewhere between     

x=- and x=  therefore has the value 1. In this case 

 (5.19 Expectation value for position) 

 The same procedure as that followed above can be used to obtain the 

expectation value G(x)  of any quantity-for instance, potential energy 

U(x)-that is a function of the position x of a particle described by a 

wave function Ψ. The result is (5.20 Expectation value for G) 
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Example 5.2 

A particle limited to the x axis has the wave function Ψ=ax between x=0 

and x=1; Ψ= 0 elsewhere. (a) Find the probability that the particle can be 

found between x=0.45 and x=0.55. (b) Find the expectation value <x> of 

the particle’s position. 
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• Another way to find expectation values. 

• A hint as to the proper way to evaluate <p> and <E> comes from 

differentiating the free particle wave function Ψ=A e(-i/h(Et-px)) with 

respect to x and to t. We find that 
(5.21) 

(5.22) 

 An operator tells us what operation to carry out on the quantity that 

follows it. 

 Thus, the operator E instructs us to take the partial derivative of what 

comes after it with respect to t and multiply the result by     . 

 It is customary to denote operators by using a caret, so that ˆp is the 

operator that corresponds to momentum p and ˆE is the operator that 

corresponds to total energy E. 

 From Eqs. (5.21) and (5.22) these operators are  

(5.23 Momentum operator) (5.24 Total-energy operator) 

They are entirely 

general results whose 

validity is the same as 

that of Schrödinger’s 

equation. 



5.6 Operators 

16 April 2018 20 MSE 228 Engineering Quantum Mechanics © Dr.Cem Özdoğan 

• Replace the equation E=KE+U for the total energy of a particle with 

the operator equation                                     we have (5.25) 

which is Schrödinger’s equation. Postulating Eqs. (5.23) and (5.24) is 

equivalent to postulating Schrödinger’s equation. 
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(5.30 Expectation value of an operator) 

• Because p and E can be replaced by their corresponding operators in 

an equation, we can use these operators to obtain expectation values 

for p and E. Thus the expectation values for p and E are 

 Every observable quantity G characteristic of a physical system may 

be represented by a suitable quantum-mechanical operator ˆG. To 

obtain this operator, we express G in terms of x and p. If the wave 

function Ψ of the system is known, the expectation value of G(x, p) is 
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(5.31) 

• Eigenvalues and eigenfunctions. 

• In a great many situations, the potential energy of a particle does not 

depend on time explicitly;  

• the forces that act on it, and hence U, vary with the position of the 

particle only. 

• Then Schrödinger’s equation may be simplified by removing all 

reference to t. 

Ψ is now the product of a time-dependent function exp(-(iE/h)t) and a 

position dependent function ψ. 

Substituting the Ψ of Eq. (5.31) into the time-dependent form of 

Schrödinger’s equation and dividing through the common exponential 

factor, we find that 
(5.32 Steady-state Schrödinger 

equation in one dimension) 

Equation (5.32) is the steady-state form of Schrödinger’s equation.  
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• In three dimensions, the steady-state form of Schrödinger’s 

equation is 

 An important property of Schrödinger’s steady-state equation is that, if 

it has one or more solutions for a given system, each of these wave 

functions corresponds to a specific value of the energy E.  

 Thus, energy quantization appears in wave mechanics as a natural 

element of the theory. 

 The values of energy En for which Schrödinger’s steady-state equation 

can be solved are called eigenvalues and the corresponding wave 

functions ψn are called eigenfunctions. 

 The discrete energy levels of the hydrogen atom are an example of a 

set of eigenvalues. 
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 An important example of a dynamical variable other than total energy 

that is found to be quantized in stable systems is angular momentum L. 

In the case of the hydrogen atom, eigenvalues of the magnitude of the 

total angular momentum:  

• In the hydrogen atom, the electron’s position is not quantized. So 

that we must think of the electron as being present in the vicinity of the 

nucleus with a certain probability |ψ|2 per unit volume but with no 

predictable position or even orbit in the classical sense. 

• The condition that a certain dynamical variable G be restricted to the 

discrete values Gn   (G be quantized) is that the wave functions ψn of 

the system be such that (5.34 Eigenvalue equation) 

where ˆG is the operator that corresponds to G and each Gn is a real 

number.  

 If measurements of G are made on a number of identical systems 

(eigenfunction ψk), each measurement will yield the single value 

Gk. 
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Example 5.3 

An eigenfunction of the operator d2/dx2 is ψ=e(2x). Find the 

corresponding eigenvalue. 
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 The total-energy operator ˆE can also be written as 

(5.35 Hamiltonian operator) 
   and is called the Hamiltonian operator. The steady-state 

Schrödinger equation can be written simply as 

(5.36 Schrödinger's equation) 

Table 5.1 Lists the operators that correspond to various 

observable quantities. 
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• We may specify the particle’s motion by saying that 

it is restricted to traveling along the x axis between 

x=0 and x=L by infinitely hard walls.  

• A particle does not lose energy when it collides with 

such walls, so that its total energy stays constant. 
Figure 5.4 A square potential well 

with infinitely high barriers at each 

end corresponds to a box with 

infinitely hard walls. • Potential energy U of the particle is infinite on both                           

sides of the box, while U is a constant -say 0 for convenience- on the 

inside (Fig. 5.4).  

• Because the particle cannot have an infinite amount of energy, it 

cannot exist outside the box, and so its wave function ψ is 0 for x≤0 

and x≥L.  

• How boundary conditions and normalization determine wave 

functions. 

• The simplest quantum-mechanical problem is that of a particle trapped 

in a box with infinitely hard walls.  
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• Our task is to find what ψ is within the box (btw x=0 and x=L). Within 

the box Schrödinger’s equation becomes 

(5.37) 
since U=0 there. Equation (5.37) 

has the solution 

(5.38) A and B are constants to be 

evaluated 

• This solution is subject to the boundary conditions: 

• ψ=0 for x=0 and for x=L. Since cos 0=1, the second term cannot 

describe the particle because it does not vanish at x=0. Hence, B=0.  

• Since sin0=0, the sine term always yields ψ=0 at x=0, as required, 

but ψ will be 0 at x=L only when (5.39) 

• From Eq. (5.39), Energy  of the particle can have only certain values 

(eigenvalues). These eigenvalues, constituting the energy levels of the 

system, are found by solving Eq. (5.39) for En, which gives 

(5.40 Particle in a box) 
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• The wave functions (eigenfunctions) of a particle in a box whose 

energies are En are, from Eq. (5.38) with B=0 

(5.41) substituting Eq. (5.40) for En gives 

(5.42) 
for the eigenfunctions corresponding to the 

energy eigenvalues En.  

• With the help of the trigonometric identity sin2 θ=1/2(1-cos2θ) we find 

that 

(5.43) 
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• To normalize ψ we must assign a value to A such that |ψn|
2dx is equal 

to the probability Pdx of finding the particle between x and x+dx, 

rather than merely proportional to Pdx. If |ψn|
2dx is to equal P dx, then 

it must be true that 

 

 

 

 

(5.44) 

Comparing Eqs. (5.43) and (5.44), we see that the wave 

functions of a particle in a box are normalized if 

(5.45) 

The normalized wave functions of the particle are 

therefore 

(5.46 Particle in a box) 
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• The normalized wave functions ψ1, ψ2, and ψ3 together 

with the probability densities |ψ1|
2, |ψ2|

2, and |ψ3|
2 are 

plotted in Fig. 5.5.  

• Although ψn may be negative as well as positive, |ψn|
2 

is never negative. 

• Since ψn is normalized, its value (|ψn|
2 ) at a given x is 

equal to the probability density of finding the particle 

there.  

• In every case |ψn|
2=0 at x=0 and x=L, the boundaries of 

the box. 

Figure 5.5 Wave 

functions and 

probability densities of 

a particle confined to a 

box with rigid walls. 
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Example 5.4 

Find the probability that a particle trapped in a box L wide can be found 

between 0.45L and 0.55L for the ground and first excited states. 

Figure 5.6 The probability Px1,x2 

of finding a particle in the box of 

Fig. 5.5 between x1=0.45L and 

x2=0.55L is equal to the area 

under the |ψ|2 curves between 

these limits. 
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Example 5.5 

Find the expectation value <x> of the position of a particle trapped in a 

box L wide. 
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• The wave function penetrates the walls, which lowers the energy levels. 

• Potential energies are never infinite in the real world, and the box with 

infinitely hard walls (particle in a box) has no physical counterpart. 

• However, potential wells with barriers of finite height certainly do 

exist. 

• Figure 5.7 shows a potential well with square 

corners that is U high and L wide and contains a 

particle whose energy E is less than U 

• According to classical mechanics, when the 

particle strikes the sides of the well, it bounces 

off without entering regions I and III.  

Figure 5.7 A square potential well 

with finite barriers. The energy E of 

the trapped particle is less than the 

height U of the barriers. 

• In quantum mechanics, the particle also bounces back and forth, but 

now it has a certain probability of penetrating into regions I and III 

even though E<U. 



5.9 Finite Potential Well 

16 April 2018 35 MSE 228 Engineering Quantum Mechanics © Dr.Cem Özdoğan 

• In regions I and III Schrödinger’s steady-state equation is 

which we can rewrite in the more convenient form 

(5.53) 
The solutions to 

Eq. (5.53) are real 

exponentials: 

• Both ψI and ψIII must be finite everywhere. (e- →0) 

Since e-ax →  as x →-  and eax →  as x → , the 

coefficients D and F must therefore be 0. Hence we have 

These wave functions decrease exponentially inside the barriers at the 

sides of the well. 

• In regions II (within the well). Schrödinger’s equation is the same as 

Eq. (5.37) and its solution is 
(5.59) 

Here, ψII =C at x=0 and ψII=G at x =L, so both the sine and cosine 

solutions of Eq. (5.59) are possible. 
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• For either solution, both ψ and dψ/dx must be 

continuous at x=0 and x=L: 

• The wave functions inside and outside each side of 

the well must not only have the same value where 

they join. 

• But also the same slopes, so they match up perfectly.  

• When these boundary conditions are taken into 

account, the result is that exact matching only occurs 

for certain specific values En of the particle energy.  

• The complete wave functions and their probability 

densities are shown in Fig. 5.8. 
Figure 5.8 Wave functions 

and probability densities 

of a particle in a finite 

potential well. The 

particle has a certain 

probability of being found 

outside the wall. 
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• Its energy levels are evenly spaced.  

• Harmonic motion takes place when a system of some kind vibrates 

about an equilibrium configuration. The system may be  

• an object supported by a spring, 

• floating in a liquid,  

• a diatomic molecule,  

• an atom in a crystal lattice … on all scales of size.  

• The condition for harmonic motion is the presence of a restoring force 

that acts to return the system to its equilibrium configuration when it is 

disturbed. (Hooke’s law) 

This relationship is customarily called Hooke’s law. From the second 

law of motion, F=ma, we have  (5.62 Harmonicc oscillator) 
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(5.64 Frequency of harmonic oscillator) 

• There are various ways to write the solution to Eq. (5.62). A common 

one is 

ν is the frequency of the oscillations and A is their amplitude. The value 

of  , the phase angle, depends upon what x is at the time t=0 and on the 

direction of motion then. 

• The importance of the simple harmonic oscillator in both classical 

and modern physics lies not in the strict adherence of actual restoring 

forces to Hooke’s law, which is seldom true, but in the fact that these 

restoring forces reduce to Hooke’s law for small displacements x. 

• As a result, any system in which something executes small vibrations 

about an equilibrium position behaves very much like a simple 

harmonic oscillator. 
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• The potential-energy function U(x) that corresponds to a Hooke’s law 

force may be found by calculating the work needed to bring a particle 

from x=0 to x=x against such a force. (see Figure 5.10)  

Figure 5.10 The potential energy of a 

harmonic oscillator is proportional to x2, 

where x is the displacement from the 

equilibrium position. The amplitude A of the 

motion is determined by the total energy E of 

the oscillator, which classically can have any 

value. 

• Three quantum mechanical modifications to 

this classical picture: 

1.The allowed energies will not form a 

continuous spectrum but instead a discrete 

spectrum of certain specific values only. 

2.The lowest allowed energy will not be E=0 

but will be some definite minimum E=E0. 

3.There will be a certain probability that the 

particle can penetrate the potential well it is 

in and go beyond the limits of -A and +A. 
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• Schrödinger’s equation for the harmonic oscillator is, with U=1/2kx2, 

Figure 5.11 Potential wells and energy levels 

of (a) a hydrogen atom, (b) a particle in a box, 

and (c) a harmonic oscillator. In each case the 

energy levels depend in a different way on the 

quantum number n. Only for he harmonic 

oscillator are the levels equally spaced.  

(5.70 Energy levels of harmonic oscillator) 

The energy of a harmonic oscillator is thus quantized in 

steps of hν. Note that when n=0, (5.71 Zero point energy) 

• This value is called the zero-point energy because a 

harmonic oscillator in equilibrium with its surroundings 

would approach an energy of E=E0 and not E=0 as the 

temperature approaches 0 K.  

• Figure 5.11 is a comparison of the energy levels of a 

harmonic oscillator with those of a hydrogen atom and of 

a particle in a box with infinitely hard walls.  

• The shapes of the respective potential-

energy curves are also shown. 

• The spacing of the energy levels is constant 

only for the harmonic oscillator. 
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5 Solved Problems   

1. Show that Aei(kx-wt) satisfies the time-dependent Schrödinger wave 

equation. 
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5 Solved Problems   

2. The initial wavefunction of a particle is given as 

ψ(x,0)=C e(-|x|/x0), where C and x0 are constants. 

Sketch of the function is given.  

a) Find C in terms of x0 such that ψ(x,0) is 

normalized. 

b) Calculate the probability that the particle will 

be found in the interval -x0 ≤ x ≤ x0. 
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5 Solved Problems   

3. A small object of mass 1.00 mg is confined to move between two 

rigid walls separated by 1.00 cm.  

a) Calculate the minimum speed of the object.  

b) If the speed of the object is 3.00 cm/s, find the corresponding 

value of n. 
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5 Solved Problems   

4. An electron is trapped in a one-dimensional region of length 

1.00x10-10 m (a typical atomic diameter).  

a) Find the energies of the ground state and first two excited states.  

b) How much energy must be supplied to excite the electron from 

the ground state to the second excited state? 

c) From the second excited state, the electron drops down to the 

first excited state. How much energy is released in this process? 

d) In the first excited state, what is the probability of finding the 

electron between x=0 and x=0.025 nm? 
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5 Solved Problems   
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5 Solved Problems   

5. An atom can be viewed as a number of electrons 

moving around a positively charged nucleus, where 

the electrons are subject mainly to the Coulombic 

attraction of the nucleus (which actually is partially 

“screened” by the  intervening electrons). The 

potential well that each electron “sees” is sketched 

in Figure. Use the model of a particle in a box to estimate the energy (in 

eV) required to raise an atomic electron from the state n=1 to the state 

n=2, assuming the atom has a radius of 0.100 nm.  
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5 Solved Problems   

6. A particle is known to be in the ground state of an infinite square 

well with length L. Calculate the probability that this particle will be 

found in the middle half of the well, that is, between x=L/4 and 

x=3L/4. 



16 April 2018 48 MSE 228 Engineering Quantum Mechanics © Dr.Cem Özdoğan 

5 Solved Problems   

7. An electron is bound to a region of space by a springlike force with 

an effective spring constant of k = 95.7 eV/nm2.  

a) What is its ground-state energy?  

b) How much energy must be absorbed for the electron to jump 

from the ground state to the second excited state? 



16 April 2018 49 MSE 228 Engineering Quantum Mechanics © Dr.Cem Özdoğan 

5 Quantum Mechanics   

Additional Materials 
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5.8 Particle in a Box   
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• A particle without the energy to pass over a 

potential barrier may still tunnel through it 

• Although the walls of the potential well of 

Fig. 5.7 were of finite height, they were 

assumed to be infinitely thick. 

– As a result, the particle was trapped 

forever even though it could penetrate 

the walls.  

• We next look at the situation of a particle 

that strikes a potential barrier of height U, 

again with E<U, but here the barrier has a 

finite width (Fig. 5.9).  

Figure 5.9 When a particle of energy E< U 

approaches a potential barrier, according to 

classical mechanics the particle must be reflected. 

In quantum mechanics, the de Broglie waves that 

correspond to the particle are partly reflected and 

partly transmitted, which means that the particle 

has a finite chance of penetrating the barrier. 

• What we will find is that the particle has a certain probability -not 

necessarily great, but not zero either- of passing through the barrier 

and emerging on the other side.  
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• The particle lacks the energy to go over the top of the barrier, but it can 

nevertheless tunnel through it, so to speak. 

• Not surprisingly, the higher the barrier and the wider it is, the less the 

chance that the particle can get through. 

• The tunnel effect actually occurs, notably in the case of the alpha 

particles emitted by certain radioactive nuclei.  

• An alpha particle whose kinetic energy is only a few MeV is able 

to escape from a nucleus whose potential wall is perhaps 25 MeV 

high.  

• The probability of escape is so small that the alpha particle might 

have to strike the wall 1038 or more times before it emerges, but 

sooner or later it does get out. 

• Tunneling also occurs in the operation of certain semiconductor diodes 

in which electrons pass through potential barriers even though their 

kinetic energies are smaller than the barrier heights. 
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• The ability of electrons to tunnel through a potential 

barner is used in an ingenious way in the scanning 

tunneling microscope (STM) to study surfaces on an 

atomic scale of size. 

• In an STM, a metal probe with a point so fine that its tip is a 

single atom is brought close to the surface of a conducting or 

semiconducting material. 

• Normally even the most loosely bound electrons in an atom on a 

surface need several electron-volts of energy to escape -this is the 

work function.  

• However, when a voltage of only 10 mV or so is applied between 

the probe and the surface, electrons can tunnel across the gap 

between them if the gap is small enough, a nanometer or two.  

• What is done is to move the probe across the surface in a series of 

closely spaced back-and-forth scans.  
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• The height of the probe is continually adjusted to give a constant 

tunneling current, and the adjustments are recorded so that a map 

of surface height versus position is built up. 

• Such a map is able to resolve individual atoms on a surface. 

• Actually, the result of an STM scan is not a true topographical 

map of surface height but a contour map of constant electron 

density on the surface.  This means that atoms of different 

elements appear differently.  

• Although many biological materials conduct electricity, they do so by the flow of 

ions rather than of electrons and so cannot be studied with STMs. 

• The atomic force microscope (AFM) can be used on any surface, although with 

somewhat less resolution than an STM.  

• In an AFM, the sharp tip of a fractured diamond presses gently against the 

atoms on a surface.  

• A spring keeps the pressure of the tip constant, and a record is made of the 

deflections of the tip as it moves across the surface.  

• The result is a map showing contours of constant repulsive force between the 

electrons of the probe and the electrons of the surface atoms. 


