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* The first problem that Schrédinger tackled with his new wave
equation was that of the hydrogen atom.
» The discovery of how naturally quantization occurs in wave
mechanics:
« “It has its basis in the requirement that a certain spatial function be
finite and single-valued.”
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« Symmetry suggests spherical polar coordinates.
A hydrogen atom consists of a proton, a particle of :
electric charge +e, and an electron, a particle of charge -e ~ +

which is 1836 times lighter than the proton. | xersmoemy
« We shall consider the proton to be stationary, with the
electron moving about in its vicinity but prevented from
escaping by the proton’s electric field. <:>(
« Schrodinger’s equation for the electron in three Sl
dimensions, which is what we must use for the hydrogen /
oM, is O P Y e =0 e
The potential energy U here is the electric pote{ltiaj energy \ \
[J = _4;75“{? (6.2 Electric potential energy)
. . _/ ./
of a charge -e when it is the distance r from another charge +e.
Figure 6.1 (a) Spherical polar coordinates. —~

(b) A'line of constant zenith angle 0 on a sphere
is a circle whose plane is perpendicular to the z
axis. (c) A line of constant azimuth angle ¢ is a
circle whose plane includes the z axis.

9 Mav 2018 MSE 228 Enecineerine Ouantum Mechanics © Dr.Cem Ozdogan 4
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e Since U is a function of r rather than of X, y, z, we cannot

substitute Eqg. (6.2) directly into Eq. (6.1). Two alternatives
1. One isto express U in terms of the cartesian coordinates +"

=
{{a:-
-
[T] E=)
L
ot

X, Y, Z by replacing r by /22 +y? + 22 " o
2. The other is to express Schrédinger’s equation in terms o:
the spherical polar coordinates r, 0, ¢ defined in Fig. 6.1.

have the following interpretations:

(Spherical polar coordinates)

The spherical polar coordinates r, 0, ¢ of the point P shown in Fig. 6.1 f, <>
el
r=length of radius vector from origin O to point P \u.i__ __,../
_ \/IE n yz n 2.'2 (b)
0 =angle between radius vector and +z-axis :
=zenith angle |
q z 12 / \ \v
= COS = cos  — |' . |
\/I-Q + yz + 32 T e-"lle o | )
o=angle between the projection of the radius vector in the xy ..
plane and the +z-axis, measured in the direction shoun b
i o
= azimuth angle
1
= tan._li
@I
MSE 228 Enecineerine Ouantum Mechanics © Dr.Cem Ozdogan 5
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* In spherical polar coordinates Schrodinger’s equation is written
: i ; : : ; ; : : Y | 9
Lr_} (;.Ed_t) N 1 d (H,(”ﬁﬂ—t) N I % L H};LI:E W0 63

r2 dr Or r2sinf Of WL, rlsin?@ O h?

» Substituting Eq. (6.2) for the potential energy U and multiplying the
entire equation by r2sin?0, we obtain

: Ay : /'y 72 r ‘] 22 2
HEHEHIE—} (r'gf.}—t) +.f~;4"r;l|5*.f—j (Hmﬁ*d—t)-l-d i -|—“mj e Hl: ! L-l—E}v =0 69

I I (1o (1 o fil daeqg 1

 Equation (6.4) Is the partial differential equation for the wave function
v of the electron in a hydrogen atom.

» Together with the various conditions y must obey:
*  be normalizable
* y and its derivatives be continuous and single-valued at each point

r,0, ¢
* This equation completely specifies the behavior of the electron.

In order to see exactly what this behavior is, we must solve Eq. (6.4) for y.

9 Mav 2018 MSE 228 Enecineerine Ouantum Mechanics © Dr.Cem Ozdogan 6
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A particle in a three-dimensional box needs three guantum numbers for
Its description, since there are now three sets of boundary conditions
that the particle’s wave function y must obey:

* v must be 0 at the walls of the box in the X, y, and z directions
Independently.

* In a hydrogen atom the electron’s motion 1s restricted by the inverse-
square electric field of the nucleus instead of by the walls of a box.

« A differential equation for each variable.
» Here the wave function v (r, 0, ¢) has the form of a product of three
different functions:
1. R(r) which depends on r alone;
2. ©(0) which depends on 0 alone; (6:5 Hydrogen atom wave function)
3. ®(d) which depends on ¢ alone.

(r,0,¢0) = R(r)0(0)®(¢)

9 Mav 2018 MSE 228 Enecineerine Ouantum Mechanics © Dr.Cem Ozdogan 7
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 The function R(r) describes how the wave function y of the electron
varies along a radius vector from the nucleus, with 6 and ¢ constant.

* The function ®(0) describes how y varies with zenith angle 0 along a
meridian on a sphere centered at the nucleus, with r and ¢ constant
(Fig. 6.1c).

 The function ®(¢) describes how y varies with azimuth angle ¢ along
a parallel on a sphere centered at the nucleus, with r and 0 constant

(Fig. 6.1b).
gy IR __dR U(r.0.0) = R(r)0(0)®(¢)
i:)_r — &}@6—7" — E“I]E
dv BLE) ET=)

Y _ pe?Z — pa— When we substitute R ® ® for in Schrodi ’
g = R0o5 = RO 1n Schrodinger’s

2w o*e  are equation for the hydrogen atom and divide the
gor ~ 1935 =970 entire equation by R ® @ , we find that
. 9 - . 2 2 oron 2 2
S () + % (im0 d9) + 4 + 2 (4 F) =

9 Mav 2018 MSE 228 Enecineerine Ouantum Mechanics © Dr.Cem Ozdogan 8
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 The third term of Eqg. (6.6) is a function of azimuth angle ¢ only,
whereas the other terms are functions of r and 0 only.
 Rearrange Eq. (6.6) to read 67)

sin?60 d 2dR stnf d 2mr2sin?6 e? o 1 d2
e ar (FPE) + 550 5 (sinfGg) + 205 Ireor TE) = —Fag

 This equation can be correct only if both sides of it are equal to the same constant,
since they are functions of different variables.
» Itis convenient to call this constant m? . The differential equation for the function

ols | @2
~Tiz

Next we substitute m;? for the right-hand side of Eq. (6.7), divide the
entire equation by sin? 0, and rearrange the various terms, which yields

Ld (,dR +2mr2 e’ B m? 1 d 446
- ; = —— ?ﬂ —_— .
Rar \\ ar 2\ dregr sin20  ©Osind dd 40 (69)

« Again we have an equation in which different variables appear on each side,
requiring that both sides be equal to the same constant.

= m? 6.8)

9 Mav 2018 MSE 228 Enecineerine Ouantum Mechanics © Dr.Cem Ozdogan 0
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 This costant is called I(I+1). The equations for the functions ® and R
are therefore

2 :
m 1 d /. ,de
— ——— (sinf— ) = (I +1 |
sin?0  Osinddd (“” g ) ~li+h) eo

1d [ L,dR\  2mr? [ €’
__(2 )+mr(€ —|—E>:E(f—|—l) (6.11)

Rdr g dr h2 drregr
Equations (6.8), (6.10), and (6.11) are usually written
d’® 5 .
W + m_lr@ =3 (6.12 Equations for @ )
1 d [/ de m? ] |
‘?iﬂﬁ@ (Siﬂﬁ@) -+ [f(f -+ 1) — Si‘fﬂ.zﬁ} e =10 (6.13 Equations for @ )

2
izi (Tzd_R) + {?;1 (4;5[]1" + E) — E(Er—g 1)] R=10 (6.14 Equations for R )

 Each of these Is an ordinary differential equation for a single function
of a single variable.
* Only the equation for R depends on the potential energy U(r).

9 Mav 2018 MSE 228 Enecineerine Ouantum Mechanics © Dr.Cem Ozdogan 10
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» Three dimensions, three qguantum numbers.
 The first of these equations, Eq. (6.12), is readily solved. The result is

From Fig. 6.2, itis clear that ¢ and ¢+2r  © (20 =4<"]
both identify the same meridian plane.
" Hence it must be true that ®($p)=D(Pp+2m), Or Ao = a¢mi(o+2m
which can happen only when m, is 0 or a positive or
o negative integer (1, £2, £3, . . ).

indentify the same
meridian plane.

 The constant m, iIs known as the magnetic quantum number of the
hydrogen atom.

» The differential equation for ®(0), Eq. (6.13), has a solution provided
that the constant | is an integer equal to or greater than m,, the absolute
value of m. m,=0,+1, £2, 43, . . ., I

» The constant I is known as the orbital qguantum number.

9 Mav 2018 MSE 228 Enecineerine Ouantum Mechanics © Dr.Cem Ozdogan 11
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 The solution of the final equation, Eq. (6.14), for the radial part R(r) of

the hydrogen atom wave function also requires that a certain condition

be fulfilled [E - me* ( 1 ) _ E
32

| = — n=1.2.3....] (616
m2e2h? \ n? ’ _ ]

 Another condition that must be obeyed in order to solve Eq. (6.14) is
that n, known as the principal quantum number, must be equal to or
greater than |+1. [/=0,1,2,...,(n-1)]

« Hence, we may tabulate the three quantum numbers n, I, and m,
together with their permissible values as follows:

Principal quantum number n=1,2,3,...
Orbital quantum number [ =0,1,2,...,(n — 1) (6.17)
Magnetic quantum number m;=0,+x1, £2,..., £l

* The electron wave functions of the hydrogen atom

E — R::Fehm @'””]

9 Mav 2018 MSE 228 Enecineerine Ouantum Mechanics © Dr.Cem Ozdogan 12
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Table 6.1 Normalized Wave Functions of the Hydrogen Atom for n = 1, 2, and 3*

n I m D(cp) o(0) R(n wlr, 0, ¢)
1 1 1
1 0 0 — S %s"f"ﬂ g
Vi V2 g Vo ai?
2 0 0 —— . NS PR P B (1 - i)s-'r'hc
Vi V2 V2 i dy N g g
2 1 0 = Mo R S QPN B S A
Vg 2 2V6 ai? ag N2z ad? ap
21 *1 P Esmﬁ S e B
Vo z 26 ai? ag sV ai? ap
1 1 2 r P\ e 1 ( r Tl}
3 0 0 — — —— 27T - 18—+ 12— | —— 277 -18—+2— g
VIn % 81V3 ai? ty u%) 81V 3w a3 dy o3
! 4 V2
31 0 — ﬁcusﬂ S AP L —(ﬁ — L)Lf"f%msﬂ
Vo 2 81Ve ai/? dg | dp 81V ap? dg J ag
301 =1 Lo Es:inﬁ' LS O A A ;(ﬁ_L)Le"ﬂ“ﬂsﬁnﬂﬁ*
Vir 2 B1VE ai? dg | dg 81V ai? ap [ do
1 10 4 ro 1 P
3 02 0 0 — T Gestt-1) ———— —e % ———— — e 3 s - 1)
Vo 4 81V30 a3 ab 81V6w ai a5
3 2 *1 ! e ! sin @ cos # ;izz_'ﬁ“" ;izs"ﬂ"-‘sinﬂmﬂfﬂ‘"
V2 81V30 a3 a3 81Vw aj da
3 2 2 L e VIS sin @ A iz.:-'ﬁae v iE'Tﬁ““smlﬁ gt
Vg 81V30 a3 aj 162Vr @@ @G

*The quanlity 4y = 4meght®me® = 3202 3 107" m 15 equal 1o the radius of the innermost Bohr orbil.

9 Mav 2018
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Example 6.1

Find the ground-state electron energy E, by substituting the radial wave
function R that corresponds to n=1, I=0 into Eq. (6.14).

Solution

From Table 6.1 we see that R = (2 jaaf He /% Hence

d_R — B E..—ra"' dy
dr ag*'f :

. 1 d(ldﬂ) ( 2 4 )_n,un
an r =| —= — e
rodr dr al’? ag’*r

Substituting in Eq. (6.14) with E = E; and [ = 0 gives

( 2 imE )+( me” 4 )1 rfay g
—5 + 5375 — =7 ] |e =
a{;.'f . 1"1,1.{:[‘5'.“"‘:l 'TTEgﬁHSH aaf “r

9 Mav 2018 MSE 228 Eneineerine Ouantum Mechanics © Dr.Cem Ozdosan 14
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Each parenthesis must equal O for the entire equation to equal 0. For the second parenthesis
this gives

=0

- Eﬂﬁz ﬂyz agf 2

ﬂ'nsgﬁz
do = — 3
me

which is the Bohr radius ag = r; given by Eq. (4.13)—we recall that # = h/2a. For the first
parenthesis,

2, 4mE _

ﬂéa“z #2 ﬂg,-*z

E].:_ —_

which agrees with Eq. (6.16).

9 Mav 2018 MSE 228 Eneineerine Ouantum Mechanics © Dr.Cem Ozdosan 15
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 Quantization of energy.

« Two guantities are conserved (maintain a constant value at all times) iIn
planetary motion:

« the scalar total energy,
« the vector angular momentum of each planet.

« Classically the total energy can have any value whatever, but it must,
of course, be negative if the planet is to be trapped permanently in the
solar system.

* In the quantum theory of the hydrogen atom the electron energy is also
a constant, but while it may have any positive value (corresponding to
an ionized atom), the only negative values the electron can have are
specified by the formula E.=E,/n?.

« The quantization of electron energy in the hydrogen atom is therefore
described by the principal quantum number n.

9 Mav 2018 MSE 228 Enecineerine Ouantum Mechanics © Dr.Cem Ozdogan 16
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« Quantization of angular-momentum magnitude.

 The kinetic energy KE of the electron has two parts, KE, i, due to its
motion toward or away from the nucleus, and KE, ., due to its
motion around the nucleus.

. . . 2
« The potential energy U of the electron is the electric energy v = _41 <
. e T

« Hence the total energy of the electron is
2
E = I{-Err:rh'rxf + I{Eﬂr'h#rﬁ +U = I{Err:rh'rxf ‘|‘I{Eﬂrh#ﬂf - ! E_
dmeg 1

Inserting this expression for E in Eqg. (6.14) we obtain, after a slight rearrangement,

1 d s d 2m | ; R+ 1)
}_gm (}L 3) L h_g |:‘r‘* Eradiat + K Egrpital — ST R=10 (6.19)

If the last two terms in the square brackets of this equation cancel each other out: a
differential equation for R(r) that involves functions of the radius vector r exclusively.
RPll+1) 1 4 L?

KE piia = = —mu . = —— with L = mvgpital
2mrl 9 orhital T g2 (6.20)

L2 B2+ 1) 0 . ) .
= - ' ::'[L =+ I{l+1)h,1=0,1,2,..(n— lﬂ (6.21 Electron angular momentum)

=

2imr? 2mrl

9 Mav 2018 MSE 228 Enecineerine Ouantum Mechanics © Dr.Cem Ozdogan 17



‘ Designation of Angular-Momentum States '4[“,\“”,':
[ Angular- 1—0123456 ]
momentum states spdfghi...
 This peculiar code originated in the empirical classification of spectra
Into series called sharp, principal, diffuse, and fundamental which
occurred before the theory of the atom was developed.
» Thus, an s state is one with no angular momentum, a p state has the
angular moment vzx, and so forth.
» The combination of the total quantum number with the letter that
represents orbital angular momentum provides a convenient and
widely used notation for atomic electron states.

 In this notation, a state in which n=2, 1=0 is a 2s state and one in which
n:4’ |:2 |S a 4d State.TahIe 6.2 Atomic Electron States

=S o= = o= =3 =
|
h oW e L e
B oo |
=
=]
|
=
|
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« Quantization of angular-momentum direction. drection

- The orbital quantum number | determines the magnitude e |
L of the electron’s angular momentum L. <<

« However, angular momentum is a vector quantity, andto
describe it completely means that its direction be direction of tottional motion
specified as well as its magnitude. (see Fig. 6.3) T e .

« What possible significance can a direction in space have for a
hydrogen atom?

« The answer becomes clear when we reflect that an electron revolving
about a nucleus is a minute current loop and has a magnetic field like
that of a magnetic dipole.

« Hence an atomic electron that possesses angular momentum interacts
with an external magnetic field B.

 The magnetic quantum number m, specifies the direction of L by
determining the component of L in the field direction.

 This phenomenon is often referred to as space quantization.
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* If we let the magnetic-field direction be parallel to the z-axis, the
component of L in this direction IS | Z: = mih m; = 0.%1.52.... =1 | (622 Space quanization)

« The number of possible orientations of the angular-momentum vector
L in a magnetic field is 21+1. (When |=2, L, may be 2h, h, 0,- h,-2h).

» The space quantization of the orbital angular momenturr %
of the hydrogen atom is show in Fig. 6.4.

« An atom with a certain value of m, will assume the
corresponding orientation of its angular momentum L
relative to an external magnetic field (if it finds itself in

0

such a field).

- In the absence of an external magnetic field, the .
direction of the z axis is arbitrary.

« What must be true is that the component of L in any ~2h L VI T
direction we choose is m, 7. Figure 6.4 Space quantization

of orbital angular momentum.

« What an external magnetic field does Is to provide an . ot ceantm

number is 1=2 and there are

experimentally meaningful reference direction. accordingly 214125 possible

values of m,.
9 Mav 2018 MSE 228 Enecineerine Ouantum Mechanics © Dr.Cem Ozdogan 20
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 No definite orbits. :

e In Bohr’s model of the hydrogen atom the electronis ‘s
visualized as revolving around the nucleus in a circular ™ |z
path. This model is pictured in a spherical polar /%“*H..r '
coordinate system in Fig. 6.7. .

o It implies that if a suitable experiment were performed Figure 6.7 The Bohr model
the electron would always be found a distance of r=n2a, prercalpole coordinte
from the nucleus and in the equatorial plane 6=90°, e
while its azimuth angle ¢ changes with time.

The quantum theory of the hydrogen atom modifies the Bohr model in two ways:

1.No definite values for r, 6, ¢ or can be given, but only the relative
probabilities for finding the electron at various locations. This
Imprecision Is a consequence of the wave nature of the electron.

2.\We cannot even think of the electron as moving around the nucleus in
any conventional sense since the probability density |y]|? is

Independent of time and varies from place to place.
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« The probability density |yl|? that corresponds to the electron

wave function y= RO® in the hydrogen atom IS v = rPef2) 62
 The likelihood of finding the electron at a particular \K
azimuth angle ¢ is a constant that does not depend upon

datall. (@(p) = Ae™?)

» The electron’s probability density is Symmetrical about the
Z axis regardless of the qguantum state it is in, and the
electron has the same chance of being found at one angle ¢
as at another.

e The radial part R of the wave function, in contrast to @,
not only varies with r but does so in a different way for ¢
each combination of quantum numbers n and |I.

 Figure 6.8 contains graphs of R versus r for 1s, 2s, Figure 6.8 The Bohr model of the
hyd t i herical pol
2p, 3s, 3p, and 3d states of the hydrogen atom. oot systom e P

 Evidently R is a maximum at r=0 -that is, at the nucleus itself- for all s
states, which correspond to L=0 since I=0 for such states.
« The value of R is zero at r=0 for states that possess angular momentum.
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‘ Probability of Finding the Electron '4 i*‘f.'{‘\iﬂ?ff",;:ﬁf,'::

 The probability density of the electron at the pointr, 0, ¢,
IS proportional to |y|?, but the actual probability of
finding it in the infinitesimal volume element dV there is _
ly|?dV. In spherical polar coordinates (Fig. 6.9) _
Figure 6.9 Volume element dV

t’” = {(II;I{F(IIHJI{F‘??IFHHT(}) = IJL':'?”HHTF{EH(I(} (6.24Vo|ume element3) in Spherica| polar coordinates

* As ® and @ are normalized functions, the actual probability P(r)dr of
finding the electron in a hydrogen atom somewhere in the spherical
shell between r and r+dr from the nucleus is

arys, r g
Agp—dV = r? sin 8 dr d6 do

T sin @ df

S

« Equation (6.25) is plotted in Fig. 6.11 for the
same states whose radial functions R were

shown in Fig. 6.8.
« The most probable value of r for a 1s electron

T 2m
P(r)dr = r?|R|*dr O%sinddo ®|°d¢ = r*|R[*dr (25 "’I
| ) o %

0 Sy 10ay 15ag 20ay 254y

turns out to be exactly a,, the orbital radius ofa -
ground-state electron in the Bohr model. Ciostron in 2 hychouen aiom at 8 istonce

between r and r+dr from the nucleus for the
quantum states of Fig. 6.8.
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Example 6.2
Verify that the average value of 1/r for a 1s electron in the hydrogen
atom is 1/a, ~c'uton

The wave function of a 1s electron is, from Table 6.1,

E—rr‘ﬂu

b= —"=373

ey
Since dV = r? sinf dr df d¢ we have for the expectation value of 1/r

(2)-[ (e

1 oo T 2
= 3 J re” 2% dr f sinfl df f ddp
g Jo o 0

The integrals have the respective values

2 @ 2
chn re—zr',ﬁ’a_o di" — |:ﬂe—2r,fao _ Le—zn.’ao:l — ﬁ
0 4‘ 2 0 4

f sin @ df = [—cos 0]5 = 2

0

2@
dgp = [$157 = 27
2
Hence <l> :( — )(E)(E)(Zw} ——
r Tmag /\ 4 dp
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Example 6.3

How much more likely is a 1s electron in a hydrogen atom to be at the
distance a, from the nucleus than at the distance a,/2?

Solution

According to Table 6.1 the radial wave function for a 1s electron is

2

R = ¢
e

From Eg. (6.25) we have for the ratio of the probabilities that an electron in a hydrogen atom
be at the distances r; and r; from the nucleus

Pr rilRaf* B g 2nfae
P r3|Ra|* r3 g 2rfas
Here r; = ag and r» = ag/2, so
F agle?
- o) = 4! =147

ch..,.fz (ao/2 }2-‘-'_ l

The electron is 47 percent more likely to be ay from the nucleus than half that distance (see
Fig. 6.11).
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« Some transitions are more likely to occur than others.

» The general condition necessary for an atom in an excited state to
radiate is that the integral Cwtde  e3n Not be zero, since the
intensity of the radiation is proportional to it.

* Transitions for which this integral is finite are called allowed

transitions,
* while those for which it is zero are called forbidden transitions.

* In the case of the hydrogen atom, three guantum numbers are needed
to specify the initial and final states involved in a radiative transition.

« If the principal, orbital, and magnetic quantum numbers of the initial
state are n’, I’, m, ’, respectively, and those of the final state are n, |,
m,, and u represents either the X, y, or z coordinate, the condition for an

allowed transition is [ /-w r“,.-#“] (6.25 Allowed ransitions)

Uy 1y Wiy 1)
G
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» It is found that the only transitions between states of different n that

Can OCCUr are
« those in which the orbital quantum number | changes by +1 or -1

» and the magnetic quantum number m, does not change or changes by +1 or -1.
That is, the condition for an allowed transition is that

— =0 11 12 123 Selection rules Al = +1 (6:36)
Am; =10, +£1 (6.37)

136 Tyn=x=

The change in total guantum number n is not restricted.
Equations (6.36) and (6.37) are known as the selection
rules for allowed transitions (Fig. 6.13).

Il Figure 6.13 Energy-level diagram for

Il hydrogen showing transitions allowed by

i the selection rule Al=%1. In this diagram,
i the vertical axis represents excitation
n=1

energy above the ground state.

0" n=
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« How atoms interact with a magnetic field.
» In an external magnetic field B, a magnetic dipole

K
has an amount of potential energy U,, that depends /ﬂ/ o
upon both the magnitude of its magnetic moment 7 "
and the orientation of this moment with respect to g
the field (Fig. 6.15). of moment a e angle reative

to a magnetic field B.

 The torgue on a magnetic dipole in a magnetic field
of flux density B is t=uBsin®.

» Set U =0 when 0=r/2=90°, that 1s, when p 1s perpendicular to B.

» The potential energy at any other orientation of u 1s equal to the
external work that must be done to rotate the dipole from 0,=n/2 to the
angle 0 that corresponds to that orientation. Hence

9 9
U, = / Tdfl = nB / sinfdf = —puBcost (6.38)
J/2 J/2

When p points in the same direction as B, then U =-uB, its minimum value.
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» The magnetic moment of a current loop has the magnitude x=IA
where I is the current and A the area it encloses.

 An electron that makes f rev/s in a circular orbit of radius r is
equivalent to a current of -ef, and its magnetic moment is therefore

[t = —efmr?
Because the linear speed of the electron is 2x=fr its angular momentum is
L =mur = Qﬂmfrz
Comparing the formulas for magnetic moment and angular momentum L shows
that = — (i) L. (6.39 Electron magnetic moment8)

2m
£ - eh
u=_(ﬁ}"' {1:,"”;. =m; | — B (6.41 Magnetic ennergy)
oL 2m
. by

ailiive [M p=—+9274x 107 V/T =5788 x 107" eV/T

-t (6.42 Bohr magneton)

¥ oo By
r
() (b
Figure 6.16 (a) Magnetic moment of a current loop
enclosing area A. (b) Magnetic moment of an orbiting
electron of angular momentum L.
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» In a magnetic field, the energy of a particular atomic state depends on
the value of m, as well as on that of n.

» A state of total guantum number n breaks up into several substates
when the atom is in a magnetic field, and their energies are slightly
more or slightly less than the energy of the state in the absence of the
field.

 This phenomenon leads to a “splitting” of individual spectral lines
Into separate lines when atoms radiate in a magnetic field. The
spacing of the lines depends on the magnitude of the field.

 The splitting of spectral lines by a magnetic field is called the Zeeman
effect (first observed in 1896). The Zeeman effect is a vivid
confirmation of space guantization.

 Because m, can have the 2l+1 values of +l through O to -1, a state of
given orbital quantum number 1 is split into 2| +1 substates that differ
In energy by ugB when the atom is in a magnetic field.
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 Because changes in m, are restricted to Am=0, £1, we expect a
spectral line from a transition between two states of different | to be
split into only three components, as shown in Fig. 6.17.

» The normal Zeeman effect consists of the splitting of a spectral line
of frequency v, into three components whose frequencies are

No magnetic field Magnetic field present
o f: nzl.;l
1-2 — my = 0
H_u'“‘-:.::__" — my = —1
T my=—2 B
c
ehB | e ] chi
(P”’“‘H) ‘ql‘;--- xfﬁ”ﬂ*ﬁ) Vy=vy— HUp— = Uy — B
o h dmm
—L ., Normal Zeeman effect vs = 1y
| N B N ¢ 5
ny = oy — [—
! 6.43 Vi=Vo+ Up7— =1
121 m =0 (0.43) h dmm
E.'=_I'

— i ¥ 3
— ¥ ) Y,
Amy = +1 Amy = -1

Amy =0
: eB eB
(‘“_ :Tf[mj ¥ (""-‘" :L‘InD

Spectrum without Spectrum with magnetic
magnetic field field present

Figure 6.17 17 In the normal Zeeman effect a spectral line of frequency vy is split into three components when the radiating atoms are in a
magnetic field of magnitude B. One component is v, and the others are less than and greater than v, by U,, There are only three components

because of the selection rule Am, =0, *1.
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Example 6.4
A sample of a certain element is placed in a 0.300 T magnetic field and
suitably excited. How far apart are the Zeeman components of the 450-

nm spectral line of this element?

Solution

The separation of the Zeeman components is

eB

Ar =
4mm

Since v = ¢/A, dv = —c dh/A\*, and so, disregarding the minus sign,

B Af Ap eBAZ

AA

C 4mmc

_ (1.60 > 107 "% ©)(0.300 T)(4.50 x 10" m)*
(4)(9.11 % 107" kgl(3.00 % 10% m/s)

=283 % 10" m=0.00283 nm
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6 Solved Problems

1. Find the normalization constant of the ground state wave function for
a particle trapped in the one-dimensional Coulomb potential energy.

OMa’ﬁm‘au( Coulomb /aoMil 4ug a(r),;_%r 2

" ko stl‘ 5 m 1D r—’%-(l)
2m Jyt Mf,w.¢’ i ’ Gr0ur 230 | Solubon -6 { 6 :4"92‘# :
Yaroas %#=0 | Yu)=Axe ”‘i g - Sl
@f{#{l” CJL A 2_ -2,51. . E:‘ﬁéé—z—-_—.*_‘ﬁ_?zi.
BR2TEH* zm Kol IV
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6 Solved Problems

2. In the ground state of an electron bound in a one-dimensional
Coulomb potential energy, what is the probability to find the electron
located between x =0 and x = a,?

Pide 2z we® . plo.a= (T¢ibhes (%%
V—; a J . l%l 43 A

Inl?al Zzable: fie . (Zf wr
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6 Solved Problems

3. An electron in a hydrogen atom is in a 3d state. What is the most
probable radius at which to find it? (Hint: use P(r) not P(r)dr and
then to find the maximqm set the derivative dP(r)/dr to zero.))

From Tadte 64 R 1) 4 12, 73%
$1Y¥2,'4, Jé -‘—Zﬂ_z
w3 Ple) = r,? (r)- rx 74 _C_f_. ~2r/34, a/p/
8/ 30% 6 =0
=, 7€ 2 Cz (l"e‘zr/g‘&" = 76 é(’ —21“/3’40 er/—Zﬂo
5/°0% | dr $7%20a,"

5‘ /3,
b’/ﬁ@@ (6' ———-P) 2l ->é-——‘—7—r—0;>r‘_\fdo
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6 Solved Problems

4. Prove that the most likely distance from the origin of an electron in
the n =2, | = 1 state Is 4a,,.

_-j. § From 7edly &1 Radil Prolabith 0"‘”‘3

ot J/le o = 2'/ f' ""A’o
%/r)_zf?a% 4:‘ ~2 Alr)=rIR ( )] = r 9403

UJ‘&e {A‘d MM /P/r))»u mansmunt : J

2%’, d(r "/“) / ){e\’g 1)\@) .0
Ha(-ghe o
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5. Forthe n=2states (I =0 and | = 1), compare the probabilities of the
electron being found inside the Bohr radius.

am/pm: the ;)m&é'/ﬁr %E.{’(t aéo&:/ﬂ @W 94"4&; G
N=2 4=0 r\..,ew(,;gmﬁ- a{.)g 22 ,,.,psfa /R, () dr

N=2. L=+t S~ Zl(i'): / r e-r/ﬁdo o3 P ,'zlﬁzl(r)/%/f
/ 4, z(Za,y" a‘ D
~SpP - = 27, 2 =2r/4 %
o B 5 r (1 %) - < ;é’f@ri_ﬁﬂj-&é)e.r/@ak: 0.034
do a,
~» /3,’0 - __!__3]%,-4 — :
% 0 %L € :&'w-??'
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6 Solved Problems

6. What is the expectation value of the radius of an electron in
hydrogen atom in a 3d state? Just write the expression without
evaluating the mtegral

ez

<r>= jqrw{r../ Yy frpzr);lricolereﬂ&) = Ik ‘EL)
=< > j,,. /6 /4 *zr/g()a{r ]r —zr/jmézr
= L= e

8/ 3’0% 44 3 3(7%

— s SUR
Frem /d“/é/rf X né f/l /n//é’"‘fl f w/{é/é m = 7«@5‘%
q

; 5. B
( - —'2 _ _:?__%_‘_. eZx 3 g x Sxéx?
8/ 304:) 3 = 35{2 »3 %5) (107 Z 3

= 11' fo lub5P =< r> = <r>=/0-340
b
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6 Solved Problems

7. Astone with mass 1.00 kg is whirled in a horizontal circle of radius
1.00 m with a period of revolution equal to 1.00 s. What value of
orbital quantum number | describes this motion?

C&/Hl'al qoyu.ér mmlm, Z = ;‘:‘ F

/L/:I‘mu- _ 27 7l im)
m:/g s U= —7-.—3 ‘}:./7_"_’_: (-””/5 $ /4: rm uz({n:)(/g)‘ZJ"Z{
" = ‘o”éjﬂ/‘

r=im :
T={5 fbff»?t/a/mm a;«médas ﬂ/(ﬂ){

. Lyt
whom L.is (41( = {h=It= 5-”?‘};’ ﬁ{"i::‘%@
=

- i- 5.96):/0” 2
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6 Solved Problems

8. Consider an atomic electron in the I=3 state. Calculate the magnitude
IL| of the total angular momentum and the allowed values of L, and
0

{-3 &aémin ILI =Y2Usl'h =VTTK = 205 H 4 Ly=m with

7, =0 zl:.rl
> M=, 2/, 2223 ~ L3 =-3%,-26,-14,0, 4, 24 34

ﬁf 6: Lf“abG/él NG:&:—MA
23h 203

= (050.20.866,+ 0.577% £0.229, 0
2 O=230, 150, 1722, %0°

i
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9. Compute the change in wavelength of the 2p — 1s photon when a

hydrogen atom is placed in a magnetic field of 2.00 T.

r’MS/AﬁL 2 >4s: m,a.ayg z f’ﬂ 2.77 Wdéﬁ.

(__ - ) = /3.4 ) o~y N éﬂozv/)/&&za’xm 7s) 4. .- 122 nm

M E = /)c C/J écVY:JAIO""a/gv) 3
"%_2 =lW0.2eV muagcéwvmmdg?q.

E= fy B= (32310 o/;—)(zﬁ

~ L4
=/8.5
~ BX= ﬁ— AE-_{/ZZ)UO n) (12.5x007%% 6, !/‘/(; 070/;;‘:,:0 ev
({'5'25#/0 3’:)(3)«0"'»;/5 )
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5 Quantum Mechanics

Additional Materials
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