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• The first problem that Schrödinger tackled with his new wave 

equation was that of the hydrogen atom. 

• The discovery of how naturally quantization occurs in wave 

mechanics:  

• “It has its basis in the requirement that a certain spatial function be 

finite and single-valued.” 
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• Symmetry suggests spherical polar coordinates.  

• A hydrogen atom consists of a proton, a particle of 

electric charge +e, and an electron, a particle of charge -e 

which is 1836 times lighter than the proton.  

• We shall consider the proton to be stationary, with the 

electron moving about in its vicinity but prevented from 

escaping by the proton’s electric field.  

• Schrödinger’s equation for the electron in three 

dimensions, which is what we must use for the hydrogen 

atom, is 

Figure 6.1 (a) Spherical polar coordinates.       

(b) A line of constant  zenith angle θ on a sphere 

is a circle whose plane is perpendicular to the z 

axis. (c) A line of constant azimuth angle  is a 

circle whose plane includes  the z axis. 

The potential energy U here is the electric potential energy 

of a charge -e when it is the distance r from another charge +e. 

(6.2 Electric potential energy) 

(6.1) 
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• Since U is a function of r rather than of x, y, z, we cannot 

substitute Eq. (6.2) directly into Eq. (6.1). Two alternatives:: 

1. One is to express U in terms of the cartesian coordinates 

x, y, z by replacing r by 

2. The other is to express Schrödinger’s equation in terms of 

the spherical polar coordinates r, θ,  defined in Fig. 6.1. 

The spherical polar coordinates r, θ,  of the point P shown in Fig. 6.1 

have the following interpretations: 

(Spherical polar coordinates) 
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• In spherical polar coordinates Schrödinger’s equation is written 

 

 

• Substituting Eq. (6.2) for the potential energy U and multiplying the 

entire equation by r2sin2θ, we obtain 

(6.3) 

(6.4) 

• Equation (6.4) is the partial differential equation for the wave function 

ψ of the electron in a hydrogen atom. 

• Together with the various conditions ψ must obey:  

• ψ be normalizable 

• ψ and its derivatives be continuous and single-valued at each point   

r, θ,  

•  This equation completely specifies the behavior of the electron. 

In order to see exactly what this behavior is, we must solve Eq. (6.4) for ψ. 
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• A particle in a three-dimensional box needs three quantum numbers for 

its description, since there are now three sets of boundary conditions 

that the particle’s wave function ψ must obey: 

• ψ must be 0 at the walls of the box in the x, y, and z directions 

independently.  

• In a hydrogen atom the electron’s motion is restricted by the inverse-

square electric field of the nucleus instead of by the walls of a box. 

(6.5 Hydrogen atom  wave function) 

• A differential equation for each variable.  

• Here the wave function ψ (r, θ, ) has the form of a product of three 

different functions:  

1. R(r) which depends on r alone;  

2. Θ(θ) which depends on θ alone; 

3. Φ() which depends on  alone. 
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• The function R(r) describes how the wave function ψ of the electron 

varies along a radius vector from the nucleus, with θ and  constant. 

• The function Θ(θ) describes how ψ varies with zenith angle θ along a 

meridian on a sphere centered at the nucleus, with r and  constant 

(Fig. 6.1c).  

• The function Φ() describes how ψ varies with azimuth angle  along 

a parallel on a sphere centered at the nucleus, with r and θ constant 

(Fig. 6.1b).  

When we substitute R Θ Φ for  in Schrödinger’s 

equation for the hydrogen atom and divide the 

entire equation by R Θ Φ , we find that 

(6.6) 
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• The third term of Eq. (6.6) is a function of azimuth angle  only, 

whereas the other terms are functions of r and θ only. 

• Rearrange Eq. (6.6) to read 

• This equation can be correct only if both sides of it are equal to the same constant, 

since they are functions of different variables. 

•  It is convenient to call this constant ml
2 . The differential equation for the function 

 is 

Next we substitute ml
2  for the right-hand side of Eq. (6.7), divide the 

entire equation by sin2 θ, and rearrange the various terms, which yields 

(6.7) 

(6.8) 

(6.9) 

• Again we have an equation in which different variables appear on each side, 

requiring that both sides be equal to the same constant. 
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• This costant is called l(l+1). The equations for the functions Θ and R 

are therefore 

(6.10) 

(6.11) 

(6.12 Equations for Φ ) 

Equations (6.8), (6.10), and (6.11) are usually written 

• Each of these is an ordinary differential equation for a single function 

of a single variable.  

• Only the equation for R depends on the potential energy U(r). 

(6.13 Equations for Θ ) 

(6.14 Equations for R ) 
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• Three dimensions, three quantum numbers. 

• The first of these equations, Eq. (6.12), is readily solved. The result is  
(6.15) 

From Fig. 6.2, it is clear that  and +2p 

both identify the same meridian plane. 

Hence it must be true that Φ()=Φ(+2p), or 

Figure 6.2 The angles 

 and  +2π both 

indentify the same 

meridian plane. 

which can happen only when ml is 0 or a positive or 

negative integer (1, 2, 3, . . .). 

• The constant ml is known as the magnetic quantum number of the 

hydrogen atom.  

• The differential equation for Θ(θ), Eq. (6.13), has a solution provided 

that the constant l is an integer equal to or greater than ml, the absolute 

value of ml.  ml =0,1, 2, 3, . . ., l 

• The constant l is known as the orbital quantum number. 
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• The solution of the final equation, Eq. (6.14), for the radial part R(r) of 

the hydrogen atom wave function also requires that a certain condition 

be fulfilled 
(6.16) 

• Another condition that must be obeyed in order to solve Eq. (6.14) is 

that n, known as the principal quantum number, must be equal to or 

greater than l+1.     [l=0,1,2,…,(n-1)] 

• Hence, we may tabulate the three quantum numbers n, l, and ml 

together with their permissible values as follows: 

(6.17) 

• The electron wave functions of the hydrogen atom  
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Example 6.1 

Find the ground-state electron energy E1 by substituting the radial wave 

function R that corresponds to n=1, l=0 into Eq. (6.14). 
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• Quantization of energy. 

• Two quantities are conserved (maintain a constant value at all times) in 

planetary motion: 

• the scalar total energy,  

• the vector angular momentum of each planet. 

• Classically the total energy can have any value whatever, but it must, 

of course, be negative if the planet is to be trapped permanently in the 

solar system. 

• In the quantum theory of the hydrogen atom the electron energy is also 

a constant, but while it may have any positive value (corresponding to 

an ionized atom), the only negative values the electron can have are 

specified by the formula En=E1/n
2.  

• The quantization of electron energy in the hydrogen atom is therefore 

described by the principal quantum number n. 
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• Quantization of angular-momentum magnitude. 

• The kinetic energy KE of the electron has two parts, KEradial due to its 

motion toward or away from the nucleus, and KEorbital due to its 

motion around the nucleus. 

• The potential energy U of the electron is the electric energy 

• Hence the total energy of the electron is 

Inserting this expression for E in Eq. (6.14) we obtain, after a slight rearrangement, 

(6.19) 

If the last two terms in the square brackets of this equation cancel each other out: a 

differential equation for R(r) that involves functions of the radius vector r exclusively. 

(6.21 Electron angular momentum) 

(6.20) 
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• This peculiar code originated in the empirical classification of spectra 

into series called sharp, principal, diffuse, and fundamental which 

occurred before the theory of the atom was developed.  

• Thus, an s state is one with no angular momentum, a p state has the 

angular moment      , and so forth. 

• The combination of the total quantum number with the letter that 

represents orbital angular momentum provides a convenient and 

widely used notation for atomic electron states. 

• In this notation, a state in which n=2, l=0 is a 2s state and one in which 

n=4, l=2 is a 4d state. 
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• Quantization of angular-momentum direction. 

• The orbital quantum number l determines the magnitude 

L of the electron’s angular momentum L. 

• However, angular momentum is a vector quantity, and to 

describe it completely means that its direction be 

specified as well as its magnitude. (see Fig. 6.3) Figure 6.3 The right-hand 

rule for angular momentum.. 

• What possible significance can a direction in space have for a 

hydrogen atom?  

• The answer becomes clear when we reflect that an electron revolving 

about a nucleus is a minute current loop and has a magnetic field like 

that of a magnetic dipole.  

• Hence an atomic electron that possesses angular momentum interacts 

with an external magnetic field B.  

• The magnetic quantum number ml specifies the direction of L by 

determining the component of L in the field direction.  

• This phenomenon is often referred to as space quantization.  
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• If we let the magnetic-field direction be parallel to the z-axis, the 

component of L in this direction is 

• The number of possible orientations of the angular-momentum vector 

L in a magnetic field is 2l+1. (When l=2, Lz may be 2ħ, ħ, 0,- ħ,-2ħ). 

Figure 6.4 Space quantization 

of orbital angular momentum. 

Here the orbital quantum 

number is l=2 and there are 

accordingly 2l+1=5 possible 

values of  ml. 

• The space quantization of the orbital angular momentum 

of the hydrogen atom is show in Fig. 6.4. 

• An atom with a certain value of ml will assume the 

corresponding orientation of its angular momentum L 

relative to an external magnetic field (if it finds itself in 

such a field). 

• In the absence of an external magnetic field, the 

direction of the z axis is arbitrary.  

• What must be true is that the component of L in any 

direction we choose is ml ħ.  

• What an external magnetic field does is to provide an 

experimentally meaningful reference direction. 

(6.22 Space quantization) 
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Figure 6.7 The Bohr model 

of the hydrogen atom in a 

pherical polar coordinate 

system. 

• No definite orbits. 

• In Bohr’s model of the hydrogen atom the electron is 

visualized as revolving around the nucleus in a circular 

path. This model is pictured in a spherical polar 

coordinate system in Fig. 6.7.  

• It implies that if a suitable experiment were performed, 

the electron would always be found a distance of r=n2a0 

from the nucleus and in the equatorial plane θ=90o, 

while its azimuth angle  changes with time. 
The quantum theory of the hydrogen atom modifies the Bohr model in two ways: 

1.No definite values for r, θ,  or  can be given, but only the relative 

probabilities for finding the electron at various locations. This 

imprecision is a consequence of the wave nature of the electron. 

2.We cannot even think of the electron as moving around the nucleus in 

any conventional sense since the probability density |ψ|2 is 

independent of time and varies from place to place. 
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Figure 6.8 The Bohr model of the 

hydrogen atom in a spherical polar 

coordinate system. 

• The probability density |ψ|2 that corresponds to the electron 

wave function ψ= RΘΦ in the hydrogen atom is (6.23) 

• The likelihood of finding the electron at a particular 

azimuth angle  is a constant that does not depend upon 

 at all.   (                  )  
• The electron’s probability density is symmetrical about the 

z axis regardless of the quantum state it is in, and the 

electron has the same chance of being found at one angle  

as at another. 

• The radial part R of the wave function, in contrast to Φ, 

not only varies with r but does so in a different way for 

each combination of quantum numbers n and l.  

• Figure 6.8 contains graphs of R versus r for 1s, 2s,                                         

2p, 3s, 3p, and 3d states of the hydrogen atom.  

• Evidently R is a maximum at r=0 -that is, at the nucleus itself- for all s 

states, which correspond to L=0 since l=0 for such states. 

• The value of R is zero at r=0 for states that possess angular momentum. 
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Figure 6.9 Volume element dV 

in spherical polar coordinates 

• The probability density of the electron at the point r, θ, ,  

is proportional to |ψ|2, but the actual probability of 

finding it in the infinitesimal volume element dV there is 

|ψ|2dV. In spherical polar coordinates (Fig. 6.9) 

(6.24 Volume element3) 

• As Θ and Φ are normalized functions, the actual probability P(r)dr of 

finding the electron in a hydrogen atom somewhere in the spherical 

shell between r and r+dr from the nucleus is 

Figure 6.11 The probability of finding the 

electron in a hydrogen atom at a distance 

between r and r+dr from the nucleus for the 

quantum states of Fig. 6.8. 

• Equation (6.25) is plotted in Fig. 6.11 for the 

same states whose radial functions R were 

shown in Fig. 6.8.  

• The most probable value of r for a 1s electron 

turns out to be exactly a0, the orbital radius of a 

ground-state electron in the Bohr model.  

(6.25) 
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Example 6.2 

Verify that the average value of 1/r for a 1s electron in the hydrogen 

atom is 1/a0. 
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Example 6.3 

How much more likely is a 1s electron in a hydrogen atom to be at the 

distance a0 from the nucleus than at the distance a0 /2? 
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• Some transitions are more likely to occur than others. 

• The general condition necessary for an atom in an excited state to 

radiate is that the integral                               not be zero, since the 

intensity of the radiation is proportional to it.  

• Transitions for which this integral is finite are called allowed 

transitions,  

• while those for which it is zero are called forbidden transitions. 

(6.34) 

• In the case of the hydrogen atom, three quantum numbers are needed 

to specify the initial and final states involved in a radiative transition. 

• If the principal, orbital, and magnetic quantum numbers of the initial 

state are n’, l’, ml ’, respectively, and those of the final state are n, l, 

ml, and u represents either the x, y, or z coordinate, the condition for an 

allowed transition is 
(6.25 Allowed transitions) 
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• It is found that the only transitions between states of different n that 

can occur are  
• those in which the orbital quantum number l changes by +1 or -1  

• and the magnetic quantum number ml does not change or changes by +1 or -1. 

• That is, the condition for an allowed transition is that 

Figure 6.13 Energy-level diagram for 

hydrogen showing transitions allowed by 

the selection rule Δl=±1. In this diagram, 

the vertical axis represents excitation 

energy above the ground state. 

(6.36) 

(6.37) 

The change in total quantum number n is not restricted. 

Equations (6.36) and (6.37) are known as the selection 

rules for allowed transitions (Fig. 6.13). 
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• How atoms interact with a magnetic field.  

• In an external magnetic field B, a magnetic dipole 

has an amount of potential energy Um that depends 

upon both the magnitude of its magnetic moment 

and the orientation of this moment with respect to 

the field (Fig. 6.15).  

• The torque on a magnetic dipole in a magnetic field 

of flux density B is τ=μBsinθ. 

Figure 6.15 A magnetic dipole 

of moment at the angle relative 

to a magnetic field B.  

(6.38) 

• Set Um=0 when θ=π/2=90o, that is, when μ is perpendicular to B. 

• The potential energy at any other orientation of μ is equal to the 

external work that must be done to rotate the dipole from θ0=π/2 to the 

angle θ that corresponds to that orientation. Hence 

When μ points in the same direction as B, then Um=-μB, its minimum value.  
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• The magnetic moment of a current loop has the magnitude μ=IA 

where I is the current and A the area it encloses. 

• An electron that makes f rev/s in a circular orbit of radius r is 

equivalent to a current of -ef, and its magnetic moment is therefore 

Figure 6.16 (a) Magnetic moment of a current loop 

enclosing area A. (b) Magnetic moment of an orbiting 

electron of angular momentum L. 

Because the linear speed  of the electron is 2pfr its angular momentum is 

Comparing the formulas for magnetic moment  and angular momentum L shows 

that (6.39 Electron magnetic moment8) 

(6.42 Bohr magneton) 

(6.41 Magnetic ennergy) 
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• In a magnetic field, the energy of a particular atomic state depends on 

the value of ml as well as on that of n. 

• A state of total quantum number n breaks up into several substates 

when the atom is in a magnetic field, and their energies are slightly 

more or slightly less than the energy of the state in the absence of the 

field.  

• This phenomenon leads to a “splitting” of individual spectral lines 

into separate lines when atoms radiate in a magnetic field. The 

spacing of the lines depends on the magnitude of the field. 

• The splitting of spectral lines by a magnetic field is called the Zeeman 

effect (first observed in 1896). The Zeeman effect is a vivid 

confirmation of space quantization.  

• Because ml can have the 2l+1 values of +l through 0 to -l, a state of 

given orbital quantum number l is split into 2l +1 substates that differ 

in energy by μBB when the atom is in a magnetic field. 
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• Because changes in ml are restricted to ml=0, 1, we expect a 

spectral line from a transition between two states of different l to be 

split into only three components, as shown in Fig. 6.17.  

• The normal Zeeman effect consists of the splitting of a spectral line 

of frequency 0 into three components whose frequencies are 

Figure 6.17 17 In the normal Zeeman effect a spectral line of frequency υ0 is split into three components when the radiating atoms are in a 

magnetic field of magnitude B. One component is υ0 and the others are less than and greater than υ0 by Um. There are only three components 

because of the selection rule Δml =0, ±1. 

(6.43) 
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Example 6.4 

A sample of a certain element is placed in a 0.300 T magnetic field and 

suitably excited. How far apart are the Zeeman components of the 450-

nm spectral line of this element? 
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6 Solved Problems   

1. Find the normalization constant of the ground state wave function for 

a particle trapped in the one-dimensional Coulomb potential energy. 
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6 Solved Problems   

2. In the ground state of an electron bound in a one-dimensional 

Coulomb potential energy, what is the probability to find the electron 

located between x = 0 and x = a0? 
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6 Solved Problems   

3. An electron in a hydrogen atom is in a 3d state. What is the most 

probable radius at which to find it? (Hint: use P(r) not P(r)dr and 

then to find the maximum set the derivative dP(r)/dr to zero.)) 
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6 Solved Problems   

4. Prove that the most likely distance from the origin of an electron in 

the n = 2, l = 1 state is 4a0. 
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6 Solved Problems   

5. For the n = 2 states (l = 0 and l = 1), compare the probabilities of the 

electron being found inside the Bohr radius. 
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6 Solved Problems   

6. What is the expectation value of the radius of an electron in 

hydrogen atom in a 3d state? Just write the expression without 

evaluating the integral. 
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6 Solved Problems   

7. A stone with mass 1.00 kg is whirled in a horizontal circle of radius 

1.00 m with a period of revolution equal to 1.00 s. What value of 

orbital quantum number  l describes this motion?  
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6 Solved Problems   

8. Consider an atomic electron in the l=3 state. Calculate the magnitude 

|L| of the total angular momentum and the allowed values of Lz and 

. 
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6 Solved Problems   

9. Compute the change in wavelength of the 2p → 1s photon when a 

hydrogen atom is placed in a magnetic field of 2.00 T. 
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