Chapter 6: Quantum Theory of the Hydrogen Atom

e The first problem that Schrodinger tackled with his new wave equation was that of the
hydrogen atom.
e The discovery of how naturally quantization occurs in wave mechanics:
> “It has its basis in the requirement that a certain spatial function be finite and single-
valued.”
6.1 SCHRODINGER'S EQUATION FOR THE HYDROGEN ATOM
e Symmetry suggests spherical polar coordinates.

e A hydrogen atom consists of a proton, a particle of electric o I .
charge +e, and an electron, a particle of charge -e which is 1836 o z
times lighter than the proton. = / :

e For the sake of convenience, we shall consider the proton to be -
stationary, with the electron moving about in its vicinity but x '
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prevented from escaping by the proton’s electric field. y = sin @ sin ¢
Schradinger’s equation for the electron in three dimensions, which is z=rcos B
what we must use for the hydrogen atom, is (a)
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The potential energy U here is the electric potential energy ®
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of a charge —e when it is the distance r from another charge +e¢. \ /
e Since U is a function of r rather than of x, y, z, we cannot b)

substitute Eq. (6.2) directly into Eq. (6.1).
e There are two alternatives. 2
1. One is to express U in terms of the cartesian coordinates X, y, z

by replacing r by
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2. The other is to express Schrodinger’s equation in terms of the '., 5 |
. . . R A= /
spherical polar coordinates r, 6, ¢ defined in Fig. 6.1. x=Y J /
The spherical polar coordinates r, #, ¢ of the point P shown in Fig. 6.1 ha
following interpretations:
Spherical r = length of radius vector from origin O to point P HH'_¢_ e
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coordinates - Figure 6.1 (a) Spherical
' lar coordinates.
fi = angle between radius vector and 4z axis pofar ¢
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r includes the z axis.



¢ = angle between the projection of the radius vector in the xy
plane and the +x axis, measured in the direction shown

azimuth angle

—1 _\’r
= tan —

In spherical polar coordinates Schrédingers equation is written
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Substituting Eq. (6.2) for the potential energy U and multiplying the entire equation
) pi
by r* sin”#f, we obtain
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e Equation (6.4) is the partial differential equation for the wave function y of the electron in a
hydrogen atom.

e Together with the various conditions y must obey,
>\ be normalizable

>y and its derivatives be continuous and single-valued at each point r, 0, ¢ this equation
completely specifies the behavior of the electron.

e In order to see exactly what this behavior is, we must solve Eq. (6.4) for .

e A particle in a three-dimensional box needs three quantum numbers for its description, since
there are now three sets of boundary conditions that the particle’s wave function y must
obey:
>y must be 0 at the walls of the box in the X, y, and z directions independently.

> In a hydrogen atom the electron’s motion is restricted by the inverse-square electric field
of the nucleus instead of by the walls of a box.

6.2 SEPARATION OF VARIABLES
e A differential equation for each variable.
e Here the wave function v (r, 6, ¢) has the form of a product of three different functions:
1. R(r) which depends on r alone;
2. ©(0) which depends on 0 alone;
3. ®(¢) which depends on ¢ alone.

Hydrogen-atom

: Wir, B, &) = R(NOEID(H) (6.5)
wave function A ' T .



The function R(r) describes how the wave function y of the electron varies along a radius
vector from the nucleus, with 6 and ¢ constant.

The function @(0) describes how y varies with zenith angle 0 along a meridian on a sphere
centered at the nucleus, with r and ¢ constant (Fig. 6.1c).
The function ®(¢) describes how y varies with azimuth angle ¢ along a parallel on a sphere
centered at the nucleus, with r and 0 constant (Fig. 6.1b).
we see that
W _ [aTii) R _ od dr
ir ar dr
W o O _ 40
ot ot df
nd wd 2
A R T
ad> A dep

The change from partial derivatives to ordinary derivatives can be made because we
are assuming that each of the functions R, 9, and @ depends only on the respective
variables r, #, and ¢.

‘When we substitute RO® for ¢ in Schrodingers equation for the hydrogen atom
and divide the entire equation by RO®, we find that
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The third term of Eq. (6.6) is a function of azimuth angle ¢ only, whereas the other terms are
functions of r and 6 only.

Let us rearrange Eq. (6.6) to read
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This equation can be correct only if both sides of it are equal to the same constant, since they
are functions of different variables. As we shall see, it is convenient to call this constant

m;. The differential equation for the function ¢ is therefore
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Mext we substitute mil for the right-hand side of Eq. (6.7), divide the entire equa-

tion by sin”#, and rearrange the various terms, which yields
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Again we have an equation in which different variables appear on each side, requiring
that both sides be equal to the same constant. This constant is called I{1 + 1), once
more for reasons that will be apparent later. The equations for the functions © and R
are therefore
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Equations (6.8), (6.10), and (6.11) are usually written
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Each of these is an ordinary differential equation for a single function of a single vari-
able. Only the equation for R depends on the potential energy U(r).

6.3 QUANTUM NUMBERS

which can happen only when my is O or a positive or negative integer (1, £2,

13, .

Three dimensions, three quantum numbers.
The first of these equations, Eq. (6.12), is readily solved. The result is

i

D(p) = Ac™ (6.15)

From Fig. 6.2, it is clear that ¢ and ¢+2x both identify the same
meridian plane. Hence it must be true that ®($p)=P($p+27), or
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Figure 6.2 The angles ¢ and ¢+2xn both indentify the same meridian plane.

The constant m; is known as the magnetic quantum number of the hydrogen atom.
The differential equation for ®(0), Eq. (6.13), has a solution provided that the constant | is
an integer equal to or greater than my, the absolute value of m.

m=0 *1, =2, _, *I

The constant | is known as the orbital quantum number.



The solution of the final equation, Eq. (6.14), for the radial part R(r) of the hydrogen atom
wave function also requires that a certain condition be fulfilled.
4
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Recognize that this is precisely the same formula for the energy levels of the hydrogen atom
that Bohr obtained.

Another condition that must be obeyed in order to solve Eq. (6.14) is that n, known as the
principal quantum number, must be equal to or greater than I+1.

I=0,1,2,...,(n—1)

Hence, we may tabulate the three quantum numbers n, I, and m together with their
permissible values as follows:

Principal quantum number n=1273...
Orbital quantum number l=0,1,2,....n—1) (6.17)
Magnetic quantum number m=0 =1, *2, ..., *l

The electron wave functions of the hydrogen atom
ydrog = R,0,,®,,

Table 6.1 Normalized Wave Functions of the Hydrogen Atom for n = 1, 2, and 3*
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Example 6.1
Find the ground-state electron energy E; by substituting the radial wave function R that corresponds
to n=1, 1=0 into Eq. (6.14).

Solution
. - 357 Foin
From Table 6.1 we see that R = (2/a3 *)e™ "%, Hence
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Substituting in Eq. (6.14) with E = E, and | = 0 gives
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Each parenthesis must equal O for the entire equation to equal 0. For the second parenthesis
this gives
me _ 0
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which is the Bohr radius ay = ry given by Eq. (4.13)}—we recall that & = h/2ar. For the first
parenthesis,
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which agrees with Eq. (6.16).

6.4 PRINCIPAL QUANTUM NUMBER

e Quantization of energy.

e Two quantities are conserved -that is, maintain a constant value at all times- in planetary
motion:

e the scalar total energy
e the vector angular momentum of each planet.

e Classically the total energy can have any value whatever, but it must, of course, be negative
if the planet is to be trapped permanently in the solar system.

e In the quantum theory of the hydrogen atom the electron energy is also a constant, but while
it may have any positive value (corresponding to an ionized atom), the only negative values
the electron can have are specified by the formula En=E1/n?.

e The quantization of electron energy in the hydrogen atom is therefore described by the
principal quantum number n.

6.5 ORBITAL QUANTUM NUMBER
e Quantization of angular-momentum magnitude.
e The kinetic energy KE of the electron has two parts, KE;adia due to its motion toward or
away from the nucleus, and KEomital due to its motion around the nucleus.
e The potential energy U of the electron is the electric energy

. v=—©
o Hence the total energy of the electron is 4aregr
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Inserting this expression for E in Eq. (6.14) we obtain, after a slight rearrangement,
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If the last two terms in the square brackets of this equation cancel each other out, we
shall have what we want: a differential equation for R(r) that involves functions of the
radius vector r exclusively.

We therefore require that

CE R0+ 1) 6.20)
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Since the orbital kinetic energy of the electron and the magnitude of its angular
momentum are respectively
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we may write for the orbital kinetic energy
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Hence, from Eq. (6.20),
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momentum
With the orbital quantum number 1 restricted to the values

I=0,1,2,....n—1)

Designation of Angular-Momentum States

It is customary to specify electron angular-momentum states by a letter, with s corre-
sponding to ] = 0, ptol = 1, and so on, according to the following scheme:

Angular- =01 2 3 4 5 6 ...
momentum states s pdf g hoi

This peculiar code originated in the empirical classification of spectra into series called
sharp, principal, diffuse, and fundamental which occurred before the theory of the atom
was developed.

Thus, an s state is one with no angular momentum, a p state has the angular moment, + /5 3
and so forth.



e The combination of the total quantum number with the letter that represents orbital angular
momentum provides a convenient and widely used notation for atomic electron states.

« Inthis notation, a state in which n=2, 1=0 is a 2s state, for example, and one in which n=4,
I=2 is a 4d state. Table 6.2 gives the designations of electron states in an atom through n=6,
|=5.

Table 6.2 Atomic Electron States

=0 =1 =2 =3 =4 I=5
n=1 ls
n=21 25 Ip
n=23 3s 3p 3d
n=4 45 4p 4d 4f
n=735 35 3p 5d 5f 5¢
n==6 fis fip 6d of o 6h

6.6 MAGNETIC QUANTUM NUMBER

e Quantization of angular-momentum direction.The orbital quantum number | determines the
magnitude L of the electron’s angular momentum L.

e However, angular momentum, like linear momentum, is a vector Thumb in

quantity, and to describe it completely means that its direction be ~ &<on
specified as well as its magnitude. (see Fig. 6.3) momentum
e What possible significance can a direction in space have for a veetor

hydrogen atom? The answer becomes clear when we reflect that an
electron revolving about a nucleus is a minute current loop and has a
magnetic field like that of a magnetic dipole.

e Hence an atomic electron that possesses angular momentum Fingers of right hand in

interacts with an external magnetic field B. direction of rotational morion
Figure 6.3 The right-hand rule for angular momentum.

« The magnetic quantum number m; specifies the direction of L by determining the
component of L in the field direction. This phenomenon is often referred to as space
guantization.

o If we let the magnetic-field direction be parallel to the z axis, the component of L in this
direct

1on 1s Space quantization L, = mi m=0*1*2 .. . =] (6.22)

The possible values of m; for a given value of I range from +I through 0 to —I, so
that the number of possible orientations of the angular-momentum vector L in a
magnetic field is 21 + 1. When [ = 0, L, can have only the single value of 0; when
Il =1,L, may be &, 0, or —#i; when I = 2, L, may be 2#&, f, 0, —fi, or —2#i; and
50 on.

e The space quantization of the orbital angular momentum of the
hydrogen atom is show in Fig. 6.4.

e An atom with a certain value of m; will assume the corresponding
orientation of its angular momentum L relative to an external magnetic 2k
field if it finds itself in such a field. m=2 % 1.2

e Inthe absence of an external magnetic field, the direction of the zaxis
is arbitrary.

o What must be true is that the component of L in any direction we 0
choose is mih.

« What an external magnetic field does is to provide an experimentally

meaningful reference direction.
Figure 6.4 Space quantization of orbital angular momentum. Here the orbital quantum number
is =2 and there are accordingly 21+1=5 possible values of the magnetic quantum number m;, ~
with each value corresponding to a different orientation relative to the z-axis.




6.7 ELECTRON PROBABILITY DENSITY

e No definite orbits.

e In Bohr’s model of the hydrogen atom the electron is visualized as revolving around the
nucleus in a circular path. This model is pictured in a spherical polar coordinate system in
Fig. 6.7.

e Itimplies that if a suitable experiment were performed, the electron would always be found
a distance of r=n?a from the nucleus and in the equatorial plane 6=90°, while its azimuth
angle ¢ changes with time.

e The quantum theory of the hydrogen atom modifies the Bohr model in two ways:

Bohr 1 Mo definite values for r, @, or ¢ can be given, but only the relative probabilities for
electron finding the electron at various locations. This imprecision is, of course, a consequence
— of the wave nature of the electron.

orbit

Figure 6.7 The Bohr model of the

N =2 2 We cannot even think of the electron as moving around the nucleus in any
conventional sense since the probability density [f]” is independent of time and varies
from place to place.

The probability density |1~ that corresponds to the electron wave function ¥ = ROE
in the hydrogen atom is

hydrogen atom in a spherical po-
lar coordinate system |,|{,—1 = |R|3 [—)|3|1:I:- 2 (6.23)

From Eqg. (6.15) we see that the azimuthal wave function is given by
D(p) = Ac™
The azimuthal probability density |®|* is therefore
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The likelihood of finding the electron at a particular azimuth angle
¢ is a constant that does not depend upon ¢ at all.

The electron’s probability density is symmetrical about the z axis
regardless of the quantum state it is in, and the electron has the
same chance of being found at one angle ¢ as at another.

The radial part R of the wave function, in contrast to ®, not only N —
varies with r but does so in a different way for each combination
of quantum numbers n and .

Figure 6.8 contains graphs of R versus r for 1s, 2s, 2p, 3s, 3p, and
3d states of the hydrogen atom.

> Evidently R is a maximum at r 0 -that is, at the nucleus itself-
for all s states, which correspond to L=0 since 1=0 for such
states.

> The value of R is zero at r=0 for states that possess angular
momentum.

Ryqr)

Ry r
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Ryir)

Sag 10ag 15ag

Figure 6.8 The variation with distance from the nucleus of the radial part of the electron r—
wave function in hydrogen for various quantum states. The quantity a;=0.053 nm is the radius of the first Bohr orbit.



Probability of Finding the Electron

- - ] L 2
The probability density of the electron at the point r, #, ¢ is proportional to ¢, but
the actual probability of finding it in the infinitesimal volume element dV there is |[ff]" dV.
In spherical polar coordinates (Fig. 6.9),

dV = (dr) (r d8) (r sin # ddp)

Volume element =+ sin 6 dr df ddb (6.24)
i
N
dr¥\ rdf
,}\@_ —dV =72sin 8 dr d8 dp
dav/ |} \
Yol
rsin @ i J::-‘—j—_',__:_/__*l
* rsin @ dib

Figure 6.9 Volume element dV in spherical polar coordinates.

e As O and @ are normalized functions, the actual probability P(r)dr of finding the electron in
a hydrogen atom somewhere in the spherical shell between r and r+dr from the nucleus is

-

P(r) dr = r*|R|* dr ] . O|* sin @ df J @ d
Jo 0
= IR dr (6.25)

e Equation (6.25) is plotted in Fig. 6.11 for the
same states whose radial functions R were
shown in Fig. 6.8. The curves are quite
different as a rule.

e The most probable value of r for a 1s electron
turns out to be exactly ao, the orbital radius of
a ground-state electron in the Bohr model.

Pir)dr = v Ry 2dr

Figure 6.11 The probability of finding the electron in a hydrogen
atom at a distance between r and r+dr from the nucleus for the

: 0 3a 10a, 15a, 20 I5a
quantum states of Fig. 6.8. L g 0 iy D

.
Example 6.2
Verify that the average value of 1/r for a 1s electron in the hydrogen atom is 1/ac.

Solution
The wave function of a 1s electron is, from Table 6.1,
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Since dV = r” sinfl dr dff d¢p we have for the expectation value of 1/r

2)-[2)orr

_ ! ’.rf 1’-’%er sinr;d.uf dib
1]

g o 0

The integrals have the respective values
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Example 6.3
How much more likely is a 1s electron in a hydrogen atom to be at the distance ao from the nucleus
than at the distance ao/2?

Solution

According to Table 6.1 the radial wave function for a 1s electron is

From Eq. (6.25) we have for the ratio of the probabilities that an electron in a hydrogen atom
be at the distances r; and r; from the nucleus

2 |2 2 —2rfa,
P| ?'||R||‘ e “Tufe
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Here r; = ag and r: = ag/2, so
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Py (ao) e 4e ' =147
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The electron is 47 percent more likely to be a, from the nucleus than half that distance (see
Fig. 6.11).

6.9 SELECTION RULES
e Some transitions are more likely to occur than others.
e The general condition necessary for an atom in an excited state to radiate is that the integral

J sl le® (6.34)

not be zero, since the intensity of the radiation is proportional to it.
e Transitions for which this integral is finite are called allowed transitions, while those for
which it is zero are called forbidden transitions.



In the case ol the hydrogen atom, three quantum numbers are needed to specily
the initial and final states involved in a radiative transition. If the principal, orbital,
and magnetic quantum numbers of the initial state are n', I, my, respectively, and those
of the final state are n, I, m;, and u represents either the x, y, or z coordinate, the con-
dition for an allowed transition is

Allowed transitions J utlr, ;i e dV #F 0 (6.35)

where the integral is now over all space. When u is taken as x, for example, the radiation
would be that produced by a dipole antenna lying on the x axis.

e It is found that the only transitions between states of different n that can occur are
> those in which the orbital quantum number | changes by +1 or -1

> and the magnetic quantum number ml does not change or changes by +1 or -1.
e That s, the condition for an allowed transition is that

Al = *1 (6.36)
Am =0, =1 (6.37)

Selection rules

The change in total quantum number n is not restricted. Equations (6.36) and (6.37)
are known as the selection rules for allowed transitions (Fig. 6.13).

Excitation

energy, eV 1=0 =1 1=2 I=3
13.6 77
10
5 -
Figure 6.13 Energy-level diagram for hydrogen showing
transitions allowed by the selection rule Al=*1. In this
0 diagram, the vertical axis represents excitation energy above

the ground state.



6.10 ZEEMAN EFFECT
e How atoms interact with a magnetic field.
e Inan external magnetic field B, a magnetic dipole has an

L |

L

amount of potential energy Um that depends upon both the S a N
magnitude of its magnetic moment and the orientation of this / B
moment with respect to the field (Fig. 6.15). ki .

e The torque on a magnetic dipole in a magnetic field of flux ’

density B is 7=uBsin®.

Y

Figure 6.15 A magnetic dipole of moment at the angle relative to a magnetic field B.

e Set Un=0 when 0=n/2=90°, that is, when p is perpendicular to B.

e The potential energy at any other orientation of p is equal to the external work that must be
done to rotate the dipole from 8o=mn/2 to the angle 0 that corresponds to that orientation.
Hence

" "
U =J ) Tu’ﬂ=,uEJ sinf do
T, 2
— B cos @ (6.38)

Tl 2

When p points in the same direction as B, then Un=-uB, its minimum value.
e The magnetic moment of a current loop has the magnitude

p = 1A
where [ is the current and A the area it encloses. An electron that makes f rev/s in a
circular orbit of radius r is equivalent to a current of —ef (since the electronic charge
is —¢), and its magnetic moment is therefore
,
p = —efmr”
Because the linear speed v of the electron is 2#rfr its angular momentum is

-7
L = mur = 2amfr*

Comparing the formulas for magnetic moment g and angular momentum L shows
that

Electron magnetic [« ."L 10
moment o= _l m | (6.3¢
S
= (EmjL
L
B L o4l
T A

F oo Figure 6.16 (a) Magnetic moment of a current
. . loop enclosing area A. (b) Magnetic moment of
la) (b) an orbiting electron of angular momentum L.



ef )
(Ern)ﬂ (6.41)

Magnetic energy Un=m

The quantity ef/2m is called the Bohr magneton:

Bohr h .
o Uy = — =0274% 1072 /T = 5.788 X 10~ eW/T (6.42)
magneton Im

In a magnetic field, then, the energy of a particular atomic state depends on the value of m
as well as on that of n.

A state of total quantum number n breaks up into several substates when the atom is in a
magnetic field, and their energies are slightly more or slightly less than the energy of the
state in the absence of the field.

This phenomenon leads to a “splitting” of individual spectral lines into separate lines when
atoms radiate in a magnetic field. The spacing of the lines depends on the magnitude of the
field.

The splitting of spectral lines by a magnetic field is called the Zeeman effect (first observed
in 1896). The Zeeman effect is a vivid confirmation of space quantization.

Because my; can have the 21 + 1 values of +1 through 0 to —I, a state of given orbital
quantum number [ is split into 21 + 1 substates that differ in energy by wpB when
the atom is in a magnetic field. However, because changes in m; are restricted to
Am; = 0, =1, we expect a spectral line from a transition between two states of differ-
ent [ to be split into only three components, as shown in Fig. 6.17. The normal Zeeman
effect consists of the splitting of a spectral line of frequency v, into three components
whose frequencies are
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Example 6.4
A sample of a certain element is placed in a 0.300 T magnetic field and suitably excited. How far
apart are the Zeeman components of the 450-nm spectral line of this element?

Solution

The separation of the Zeeman components is

eB

+mm

Av =

Since v = ¢/, dv = —c dh /A%, and so, disregarding the minus sign,
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(160 % 107" CH0.300 TH(4.50 = 1077 m)®
(4m)(9.11 % 107" kg)(3.00 ¥ 10% m/s)
=283 %10 " m = 000283 nm




