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Function Summary
The linear algebra functions are located in the MATLAB matfun directory.

Function Summary 

Category Function Description

Matrix analysis norm Matrix or vector norm.

normest Estimate the matrix 2-norm.

rank Matrix rank.

det Determinant.

trace Sum of diagonal elements.

null Null space.

orth Orthogonalization.

rref Reduced row echelon form.

subspace Angle between two subspaces.

Linear equations \ and / Linear equation solution.

inv Matrix inverse.

cond Condition number for inversion.

condest 1-norm condition number estimate.

chol Cholesky factorization.

cholinc Incomplete Cholesky factorization.

linsolve Solve a system of linear equations.

lu LU factorization.

luinc Incomplete LU factorization.
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qr Orthogonal-triangular decomposition.

lsqnonneg Nonnegative least-squares.

pinv Pseudoinverse.

lscov Least squares with known covariance.

Eigenvalues and 
singular values

eig Eigenvalues and eigenvectors.

svd Singular value decomposition.

eigs A few eigenvalues.

svds A few singular values.

poly Characteristic polynomial.

polyeig Polynomial eigenvalue problem.

condeig Condition number for eigenvalues.

hess Hessenberg form.

qz QZ factorization.

schur Schur decomposition.

Matrix functions expm Matrix exponential.

logm Matrix logarithm.

sqrtm Matrix square root.

funm Evaluate general matrix function.

Function Summary  (Continued)

Category Function Description
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Matrices in MATLAB
A matrix is a two-dimensional array of real or complex numbers. Linear 
algebra defines many matrix operations that are directly supported by 
MATLAB. Linear algebra includes matrix arithmetic, linear equations, 
eigenvalues, singular values, and matrix factorizations.

For more information about creating and working with matrices, see Data 
Structures in the MATLAB Programming documentation.

This section describes the following topics:

• “Creating Matrices” on page 1-4

• “Adding and Subtracting Matrices” on page 1-6

• “Vector Products and Transpose” on page 1-6

• “Vector Products and Transpose” on page 1-6

• “Multiplying Matrices” on page 1-8

• “The Identity Matrix” on page 1-10

• “The Kronecker Tensor Product” on page 1-10

• “Vector and Matrix Norms” on page 1-11

Creating Matrices
Informally, the terms matrix and array are often used interchangeably. More 
precisely, a matrix is a two-dimensional rectangular array of real or complex 
numbers that represents a linear transformation. The linear algebraic 
operations defined on matrices have found applications in a wide variety of 
technical fields. (The optional Symbolic Math Toolbox extends the capabilities 
of MATLAB to operations on various types of nonnumeric matrices.)

MATLAB has dozens of functions that create different kinds of matrices. Two 
of them can be used to create a pair of 3-by-3 example matrices for use 
throughout this chapter. The first example is symmetric.

A = pascal(3)

A =
       1     1     1
       1     2     3
       1     3     6
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The second example is not symmetric.

B = magic(3)

B =
       8     1     6
       3     5     7
       4     9     2

Another example is a 3-by-2 rectangular matrix of random integers.

  C = fix(10*rand(3,2))

  C =
       9     4
       2     8
       6     7

A column vector is an m-by-1 matrix, a row vector is a 1-by-n matrix and a 
scalar is a 1-by-1 matrix. The statements

u = [3; 1; 4]

v = [2 0 -1]

s = 7

produce a column vector, a row vector, and a scalar.

u =
       3
       1
       4

v =
       2     0    -1

s =
       7
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Adding and Subtracting Matrices
Addition and subtraction of matrices is defined just as it is for arrays, 
element-by-element. Adding A to B and then subtracting A from the result 
recovers B. 

A = pascal(3);
B = magic(3);
X = A + B

X =
       9     2     7
       4     7    10
       5    12     8

Y = X - A

Y =
       8     1     6
       3     5     7
       4     9     2

Addition and subtraction require both matrices to have the same dimension, or 
one of them be a scalar. If the dimensions are incompatible, an error results.

C = fix(10*rand(3,2))
X = A + C
Error using ==> +
Matrix dimensions must agree.

w = v + s

w = 
       9     7     6

Vector Products and Transpose
A row vector and a column vector of the same length can be multiplied in either 
order. The result is either a scalar, the inner product, or a matrix, the outer 
product.

u = [3; 1; 4];
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v = [2 0 -1];
x = v*u

x =
       2

X = u*v

X =
       6     0 -3
       2     0 -1
       8     0 -4

For real matrices, the transpose operation interchanges  and . MATLAB 
uses the apostrophe (or single quote) to denote transpose. Our example matrix 
A is symmetric, so A' is equal to A. But B is not symmetric.

B = magic(3);
X = B'

X =
       8     3     4
       1     5     9
       6     7     2

Transposition turns a row vector into a column vector.

x = v'

x =
       2
       0
      -1

If x and y are both real column vectors, the product x*y is not defined, but the 
two products

x'*y

and

y'*x

aij aji
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are the same scalar. This quantity is used so frequently, it has three different 
names: inner product, scalar product, or dot product.

For a complex vector or matrix, z, the quantity z' denotes the complex 
conjugate transpose, where the sign of the complex part of each element is 
reversed. The unconjugated complex transpose, where the complex part of each 
element retains its sign, is denoted by z.'. So if

z = [1+2i 3+4i]

then z' is

1-2i
3-4i

while z.' is

1+2i
3+4i

For complex vectors, the two scalar products x'*y and y'*x are complex 
conjugates of each other and the scalar product x'*x of a complex vector with 
itself is real.

Multiplying Matrices
Multiplication of matrices is defined in a way that reflects composition of the 
underlying linear transformations and allows compact representation of 
systems of simultaneous linear equations. The matrix product C = AB is 
defined when the column dimension of A is equal to the row dimension of B, or 
when one of them is a scalar. If A is m-by-p and B is p-by-n, their product C is 
m-by-n. The product can actually be defined using MATLAB for loops, colon 
notation, and vector dot products.

A = pascal(3);
B = magic(3);
m = 3; n = 3;
for i = 1:m
     for j = 1:n
        C(i,j) = A(i,:)*B(:,j);
     end
end 
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MATLAB uses a single asterisk to denote matrix multiplication. The next two 
examples illustrate the fact that matrix multiplication is not commutative; AB 
is usually not equal to BA.

X = A*B

X =
      15    15    15
      26    38    26
      41    70    39

Y = B*A

Y =
      15    28    47
      15    34    60
      15    28    43

A matrix can be multiplied on the right by a column vector and on the left by a 
row vector.

u = [3; 1; 4];
x = A*u

x =
       8
      17
      30

v = [2 0 -1];
y = v*B

y =
      12    -7    10

Rectangular matrix multiplications must satisfy the dimension compatibility 
conditions.

C = fix(10*rand(3,2));
X = A*C
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X =
      17    19
      31    41
      51    70

Y = C*A

Error using ==> *
Inner matrix dimensions must agree.

Anything can be multiplied by a scalar.

s = 7;
w = s*v

w =
      14     0    -7

The Identity Matrix
Generally accepted mathematical notation uses the capital letter  to denote 
identity matrices, matrices of various sizes with ones on the main diagonal and 
zeros elsewhere. These matrices have the property that  and  
whenever the dimensions are compatible. The original version of MATLAB 
could not use  for this purpose because it did not distinguish between upper 
and lowercase letters and  already served double duty as a subscript and as 
the complex unit. So an English language pun was introduced. The function

eye(m,n)

returns an m-by-n rectangular identity matrix and eye(n) returns an n-by-n 
square identity matrix.

The Kronecker Tensor Product
The Kronecker product, kron(X,Y), of two matrices is the larger matrix formed 
from all possible products of the elements of X with those of Y. If X is m-by-n and 

I

AI A= IA A=

I
i
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Y is p-by-q, then kron(X,Y) is mp-by-nq.   The elements are arranged in the 
following order:

[X(1,1)*Y  X(1,2)*Y  . . .  X(1,n)*Y
                     . . .
 X(m,1)*Y  X(m,2)*Y  . . .  X(m,n)*Y]

The Kronecker product is often used with matrices of zeros and ones to build 
up repeated copies of small matrices. For example, if X is the 2-by-2 matrix

X =
       1     2
       3     4

and I = eye(2,2) is the 2-by-2 identity matrix, then the two matrices

kron(X,I)

and

kron(I,X)

are

       1     0     2     0
       0     1     0     2
       3     0     4     0
       0     3     0     4

and

       1     2     0     0
       3     4     0     0
       0     0     1     2
       0     0     3     4

Vector and Matrix Norms
The p-norm of a vector x

x p Σ xi
p

⎝ ⎠
⎛ ⎞

1 p⁄
=
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is computed by norm(x,p). This is defined by any value of p > 1, but the most 
common values of p are 1, 2, and . The default value is p = 2, which 
corresponds to Euclidean length. 

v = [2 0 -1];
[norm(v,1) norm(v) norm(v,inf)]

ans =
      3.0000    2.2361    2.0000

The p-norm of a matrix A,

can be computed for p = 1, 2, and  by norm(A,p). Again, the default value is 
p = 2.

C = fix(10*rand(3,2));
[norm(C,1) norm(C) norm(C,inf)]

ans =
     19.0000   14.8015   13.0000 

∞

A p
max

x

Ax p
x p

---------------=

∞



Solving Linear Systems of Equations

1-13

Solving Linear Systems of Equations
This section describes: 

• Computational considerations

• The general solution to a system

It also discusses particular solutions to:

• Square systems

• Overdetermined systems

• Underdetermined systems

Computational Considerations
One of the most important problems in technical computing is the solution of 
simultaneous linear equations. In matrix notation, this problem can be stated 
as follows.

Given two matrices A and B, does there exist a unique matrix X so that AX = B 
or XA = B?

It is instructive to consider a 1-by-1 example. 

Does the equation

have a unique solution ?

The answer, of course, is yes. The equation has the unique solution x = 3. The 
solution is easily obtained by division.

The solution is not ordinarily obtained by computing the inverse of 7, that is 
7-1 = 0.142857…, and then multiplying 7-1 by 21. This would be more work and, 
if 7-1 is represented to a finite number of digits, less accurate. Similar 
considerations apply to sets of linear equations with more than one unknown; 
MATLAB solves such equations without computing the inverse of the matrix.

Although it is not standard mathematical notation, MATLAB uses the division 
terminology familiar in the scalar case to describe the solution of a general 
system of simultaneous equations. The two division symbols, slash, /, and 

7x 21=

x 21 7⁄ 3= =
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backslash, \, are used for the two situations where the unknown matrix 
appears on the left or right of the coefficient matrix.

You can think of “dividing” both sides of the equation AX = B or XA = B by A. 
The coefficient matrix A is always in the “denominator.” 

The dimension compatibility conditions for X = A\B require the two matrices A 
and B to have the same number of rows. The solution X then has the same 
number of columns as B and its row dimension is equal to the column dimension 
of A. For X = B/A, the roles of rows and columns are interchanged.

In practice, linear equations of the form AX = B occur more frequently than 
those of the form XA = B. Consequently, backslash is used far more frequently 
than slash. The remainder of this section concentrates on the backslash 
operator; the corresponding properties of the slash operator can be inferred 
from the identity

(B/A)' = (A'\B')

The coefficient matrix A need not be square. If A is m-by-n, there are three 
cases.

The backslash operator employs different algorithms to handle different kinds 
of coefficient matrices. The various cases, which are diagnosed automatically 
by examining the coefficient matrix, include:

• Permutations of triangular matrices

• Symmetric, positive definite matrices

• Square, nonsingular matrices

• Rectangular, overdetermined systems

• Rectangular, underdetermined systems

X = A\B Denotes the solution to the matrix equation AX = B.

X = B/A Denotes the solution to the matrix equation XA = B.

m = n Square system. Seek an exact solution.

m > n Overdetermined system. Find a least squares solution.

m < n Underdetermined system. Find a basic solution with at most m 
nonzero components.
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General Solution
The general solution to a system of linear equations AX = b describes all 
possible solutions. You can find the general solution by:

1 Solving the corresponding homogeneous system AX = 0. Do this using the 
null command, by typing null(A). This returns a basis for the solution 
space to AX = 0. Any solution is a linear combination of basis vectors.

2 Finding a particular solution to the non-homogeneous system AX = b.

You can then write any solution to AX = b as the sum of the particular solution 
to AX = b, from step 2, plus a linear combination of the basis vectors from step 
1.

The rest of this section describes how to use MATLAB to find a particular 
solution to AX = b, as in step 2.

Square Systems
The most common situation involves a square coefficient matrix A and a single 
right-hand side column vector b. 

Nonsingular Coefficient Matrix
If the matrix A is nonsingular, the solution, x = A\b, is then the same size as 
b. For example,

A = pascal(3);
u = [3; 1; 4];
x = A\u

x =
      10

-12
       5

It can be confirmed that A*x is exactly equal to u.

If A and B are square and the same size, then X = A\B is also that size.

B = magic(3);
X = A\B
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X =
      19 -3 -1

-17     4    13
       6     0 -6

It can be confirmed that A*X is exactly equal to B.

Both of these examples have exact, integer solutions. This is because the 
coefficient matrix was chosen to be pascal(3), which has a determinant equal 
to one. A later section considers the effects of roundoff error inherent in more 
realistic computations.

Singular Coefficient Matrix
A square matrix A is singular if it does not have linearly independent columns. 
If A is singular, the solution to AX = B either does not exist, or is not unique. 
The backslash operator, A\B, issues a warning if A is nearly singular and raises 
an error condition if it detects exact singularity.

If A is singular and AX = b has a solution, you can find a particular solution 
that is not unique, by typing 

P = pinv(A)*b

P is a pseudoinverse of A. If AX = b does not have an exact solution, pinv(A) 
returns a least-squares solution.

For example,

A = [ 1     3     7
     -1     4     4
      1    10    18 ]

is singular, as you can verify by typing 

det(A)

ans =
     0
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Note  For information about using pinv to solve systems with rectangular 
coefficient matrices, see “Pseudoinverses” on page 1-24. 

Exact Solutions. For b =[5;2;12], the equation AX = b has an exact solution, 
given by

pinv(A)*b

ans =
    0.3850
   -0.1103
    0.7066

You can verify that pinv(A)*b is an exact solution by typing

A*pinv(A)*b

ans =
    5.0000
    2.0000
   12.0000

Least Squares Solutions. On the other hand, if b = [3;6;0], then AX = b does not 
have an exact solution. In this case, pinv(A)*b returns a least squares solution. 
If you type

A*pinv(A)*b

ans =
   -1.0000
    4.0000
    2.0000

you do not get back the original vector b.
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You can determine whether AX = b has an exact solution by finding the row 
reduced echelon form of the augmented matrix [A b]. To do so for this example, 
enter

rref([A b])
ans =
    1.0000         0    2.2857         0
         0    1.0000    1.5714         0
         0         0         0    1.0000

Since the bottom row contains all zeros except for the last entry, the equation 
does not have a solution. In this case, pinv(A) returns a least-squares solution.

Overdetermined Systems
Overdetermined systems of simultaneous linear equations are often 
encountered in various kinds of curve fitting to experimental data. Here is a 
hypothetical example. A quantity y is measured at several different values of 
time, t, to produce the following observations.

Enter the data into MATLAB with the statements

t = [0 .3 .8 1.1 1.6 2.3]';
y = [.82 .72 .63 .60 .55 .50]';

Try modeling the data with a decaying exponential function.

t y

0.0 0.82

0.3 0.72

0.8 0.63

1.1 0.60

1.6 0.55

2.3 0.50

y t( ) c1≈ c2+ e t–
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The preceding equation says that the vector y should be approximated by a 
linear combination of two other vectors, one the constant vector containing all 
ones and the other the vector with components e-t. The unknown coefficients, 
c1 and c2, can be computed by doing a least squares fit, which minimizes the 
sum of the squares of the deviations of the data from the model. There are six 
equations in two unknowns, represented by the 6-by-2 matrix.

E = [ones(size(t)) exp(-t)]

E =
      1.0000    1.0000
      1.0000    0.7408
      1.0000    0.4493
      1.0000    0.3329
      1.0000    0.2019
      1.0000    0.1003

Use the backslash operator to get the least squares solution.

c = E\y

c =
      0.4760
      0.3413

In other words, the least squares fit to the data is

The following statements evaluate the model at regularly spaced increments in 
t, and then plot the result, together with the original data.

T = (0:0.1:2.5)';
Y = [ones(size(T)) exp(-T)]*c;
plot(T,Y,'-',t,y,'o')

You can see that E*c is not exactly equal to y, but that the difference might well 
be less than measurement errors in the original data.

y t( ) 0.4760≈ 0.3413+ e t–
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A rectangular matrix A is rank deficient if it does not have linearly independent 
columns. If A is rank deficient, the least squares solution to AX = B is not 
unique. The backslash operator, A\B, issues a warning if A is rank deficient and 
produces a least squares solution that has at most rank(A) nonzeros.

Underdetermined Systems
Underdetermined linear systems involve more unknowns than equations. 
When they are accompanied by additional constraints, they are the purview of 
linear programming. By itself, the backslash operator deals only with the 
unconstrained system. The solution is never unique. MATLAB finds a basic 
solution, which has at most m nonzero components, but even this may not be 
unique. The particular solution actually computed is determined by the QR 
factorization with column pivoting (see a later section on the QR factorization). 
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Here is a small, random example.

R = fix(10*rand(2,4))

R =
       6     8     7     3
       3     5     4     1

b = fix(10*rand(2,1))
b =
       1
       2

The linear system Rx = b involves two equations in four unknowns. Since the 
coefficient matrix contains small integers, it is appropriate to use the format 
command to display the solution in rational format. The particular solution is 
obtained with

format rat
p = R\b
p =
      0 
     5/7
      0 
   -11/7

One of the nonzero components is p(2) because R(:,2) is the column of R with 
largest norm. The other nonzero component is p(4) because R(:,4) dominates 
after R(:,2) is eliminated.

The complete solution to the underdetermined system can be characterized by 
adding an arbitrary vector from the null space, which can be found using the 
null function with an option requesting a “rational” basis.

Z = null(R,'r')
Z =
      -1/2         -7/6     
      -1/2          1/2     
        1            0      
        0            1
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It can be confirmed that R*Z is zero and that any vector x where

x = b + Z*q

for an arbitrary vector q satisfies R*x = b.
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Inverses and Determinants
This section provides:

• An overview of the use of inverses and determinants for solving square 
nonsingular systems of linear equations

• A discussion of the Moore-Penrose pseudoinverse for solving rectangular 
systems of linear equations

Overview
If A is square and nonsingular, the equations AX = I and XA = I have the same 
solution, X. This solution is called the inverse of A, is denoted by A-1, and is 
computed by the function inv. The determinant of a matrix is useful in 
theoretical considerations and some types of symbolic computation, but its 
scaling and roundoff error properties make it far less satisfactory for numeric 
computation. Nevertheless, the function det computes the determinant of a 
square matrix.

A = pascal(3)

A =
       1     1     1
       1     2     3
       1     3     6

d = det(A)
X = inv(A)

d =
       1

X = 
       3 -3     1

-3     5 -2
       1 -2     1
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Again, because A is symmetric, has integer elements, and has determinant 
equal to one, so does its inverse. On the other hand,

B = magic(3)

B =
       8     1     6
       3     5     7
       4     9     2

d = det(B)
X = inv(B)

d =
   -360

X =
      0.1472 -0.1444    0.0639

-0.0611    0.0222    0.1056
-0.0194    0.1889 -0.1028

Closer examination of the elements of  X, or use of format rat, would reveal 
that they are integers divided by 360.

If A is square and nonsingular, then without roundoff error, X = inv(A)*B 
would theoretically be the same as X = A\B and Y = B*inv(A) would 
theoretically be the same as Y = B/A. But the computations involving the 
backslash and slash operators are preferable because they require less 
computer time, less memory, and have better error detection properties.

Pseudoinverses
Rectangular matrices do not have inverses or determinants. At least one of the 
equations AX = I and XA = I does not have a solution. A partial replacement for 
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the inverse is provided by the Moore-Penrose pseudoinverse, which is computed 
by the pinv function.

C = fix(10*rand(3,2));
X = pinv(C)

X =
    0.0401   -0.1492    0.1050
    0.0110    0.1657   -0.0055

The matrix

Q = X*C

Q =
      1.0000    0.0000
      0.0000    1.0000

is the 2-by-2 identity, but the matrix

P = C*X

P =
    0.2044    0.0663    0.3978
    0.0663    0.9945   -0.0331
    0.3978   -0.0331    0.8011

is not the 3-by-3 identity. However, P acts like an identity on a portion of the 
space in the sense that P is symmetric, P*C is equal to C and X*P is equal to X.

Solving a Rank-Deficient System
If A is m-by-n with m > n and full rank n, then each of the three statements

x = A\b
x = pinv(A)*b
x = inv(A'*A)*A'*b

theoretically computes the same least squares solution x, although the 
backslash operator does it faster.

However, if A does not have full rank, the solution to the least squares problem 
is not unique. There are many vectors x that minimize

norm(A*x -b)
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The solution computed by x = A\b is a basic solution; it has at most r nonzero 
components, where r is the rank of A. The solution computed by x = pinv(A)*b 
is the minimal norm solution because it minimizes norm(x). An attempt to 
compute a solution with x = inv(A'*A)*A'*b fails because A'*A is singular.

Here is an example that illustrates the various solutions.

A = [ 1  2  3
      4  5  6
      7  8  9
     10 11 12 ]

does not have full rank. Its second column is the average of the first and third 
columns. If

b = A(:,2)

is the second column, then an obvious solution to A*x = b is x = [0 1 0]'. But 
none of the approaches computes that x. The backslash operator gives

x = A\b

Warning: Rank deficient, rank = 2.  

x =
      0.5000
      0
      0.5000

This solution has two nonzero components. The pseudoinverse approach gives

y = pinv(A)*b

y =
      0.3333
      0.3333
      0.3333
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There is no warning about rank deficiency. But norm(y) = 0.5774 is less than 
norm(x) = 0.7071. Finally

z = inv(A'*A)*A'*b

fails completely.

Warning: Matrix is singular to working precision.

z =
     Inf
     Inf
     Inf
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Cholesky, LU, and QR Factorizations
The MATLAB linear equation capabilities are based on three basic matrix 
factorizations:

• Cholesky factorization for symmetric, positive definite matrices

• LU factorization (Gaussian elimination) for general square matrices

• QR (orthogonal) for rectangular matrices

These three factorizations are available through the chol, lu, and qr functions.

All three of these factorizations make use of triangular matrices where all the 
elements either above or below the diagonal are zero. Systems of linear 
equations involving triangular matrices are easily and quickly solved using 
either forward or back substitution.

Cholesky Factorization
The Cholesky factorization expresses a symmetric matrix as the product of a 
triangular matrix and its transpose

where R is an upper triangular matrix.

Not all symmetric matrices can be factored in this way; the matrices that have 
such a factorization are said to be positive definite. This implies that all the 
diagonal elements of A are positive and that the offdiagonal elements are “not 
too big.” The Pascal matrices provide an interesting example. Throughout this 
chapter, our example matrix A has been the 3-by-3 Pascal matrix. Let’s 
temporarily switch to the 6-by-6. 

A = pascal(6)

A =
       1     1     1     1     1     1
       1     2     3     4     5     6
       1     3     6    10    15    21
       1     4    10    20    35    56
       1     5    15    35    70   126
       1     6    21    56   126   252

A R′R=
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The elements of A are binomial coefficients. Each element is the sum of its 
north and west neighbors.  The Cholesky factorization is

R = chol(A)

R =
     1     1     1     1     1     1
     0     1     2     3     4     5
     0     0     1     3     6    10
     0     0     0     1     4    10
     0     0     0     0     1     5
     0     0     0     0     0     1

The elements are again binomial coefficients. The fact that R'*R is equal to A 
demonstrates an identity involving sums of products of binomial coefficients.

Note  The Cholesky factorization also applies to complex matrices. Any 
complex matrix which has a Cholesky factorization satisfies A' = A and is said 
to be Hermitian positive definite.

The Cholesky factorization allows the linear system

to be replaced by

Because the backslash operator recognizes triangular systems, this can be 
solved in MATLAB quickly with

x = R\(R'\b)

If A is n-by-n, the computational complexity of chol(A) is O(n3), but the 
complexity of the subsequent backslash solutions is only O(n2).

Ax b=

R′Rx b=
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LU Factorization
LU factorization, or Gaussian elimination, expresses any square matrix A as 
the product of a permutation of a lower triangular matrix and an upper 
triangular matrix

where L is a permutation of a lower triangular matrix with ones on its diagonal 
and U is an upper triangular matrix.

The permutations are necessary for both theoretical and computational 
reasons. The matrix

cannot be expressed as the product of triangular matrices without 
interchanging its two rows. Although the matrix

can be expressed as the product of triangular matrices, when  is small the 
elements in the factors are large and magnify errors, so even though the 
permutations are not strictly necessary, they are desirable. Partial pivoting 
ensures that the elements of L are bounded by one in magnitude and that the 
elements of U are not much larger than those of A.

For example

[L,U] = lu(B)

L =
    1.0000         0         0
    0.3750    0.5441    1.0000
    0.5000    1.0000         0

U =
    8.0000    1.0000    6.0000
         0    8.5000 -1.0000
         0         0    5.2941

A LU=

0 1
1 0

ε 1
1 0

ε
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The LU factorization of A allows the linear system

A*x = b

to be solved quickly with

x = U\(L\b)

Determinants and inverses are computed from the LU factorization using

det(A) = det(L)*det(U)

and

inv(A) = inv(U)*inv(L)

You can also compute the determinants using det(A) = prod(diag(U)), 
though the signs of the determinants may be reversed.

QR Factorization
An orthogonal matrix, or a matrix with orthonormal columns, is a real matrix 
whose columns all have unit length and are perpendicular to each other. If Q 
is orthogonal, then

The simplest orthogonal matrices are two-dimensional coordinate rotations.

For complex matrices, the corresponding term is unitary.  Orthogonal and 
unitary matrices are desirable for numerical computation because they 
preserve length, preserve angles, and do not magnify errors.

The orthogonal, or QR, factorization expresses any rectangular matrix as the 
product of an orthogonal or unitary matrix and an upper triangular matrix. A 
column permutation may also be involved. 

or

Q′Q 1=

θ( )cos θ( )sin
θ( )sin– θ( )cos

A Q R=

A P Q R=
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where Q is orthogonal or unitary, R is upper triangular, and P is a 
permutation.

There are four variants of the QR factorization– full or economy size, and with 
or without column permutation.

Overdetermined linear systems involve a rectangular matrix with more rows 
than columns, that is m-by-n with m > n.  The full size QR factorization 
produces a square, m-by-m orthogonal Q and a rectangular m-by-n upper 
triangular R.

[Q,R] = qr(C)

Q =
-0.8182    0.3999 -0.4131
-0.1818 -0.8616 -0.4739
-0.5455 -0.3126    0.7777

R =
-11.0000 -8.5455

         0 -7.4817
         0         0

In many cases, the last m - n columns of Q are not needed because they are 
multiplied by the zeros in the bottom portion of R. So the economy size QR 
factorization produces a rectangular, m-by-n Q with orthonormal columns and 
a square n-by-n upper triangular R. For our 3-by-2 example, this is not much 
of a saving, but for larger, highly rectangular matrices, the savings in both time 
and memory can be quite important.

[Q,R] = qr(C,0)

Q =
-0.8182    0.3999
-0.1818 -0.8616
-0.5455 -0.3126

R =
-11.0000 -8.5455

         0 -7.4817
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In contrast to the LU factorization, the QR factorization does not require any 
pivoting or permutations. But an optional column permutation, triggered by 
the presence of a third output argument, is useful for detecting singularity or 
rank deficiency. At each step of the factorization, the column of the remaining 
unfactored matrix with largest norm is used as the basis for that step. This 
ensures that the diagonal elements of R occur in decreasing order and that any 
linear dependence among the columns is almost certainly be revealed by 
examining these elements. For our small example, the second column of C has 
a larger norm than the first, so the two columns are exchanged.

[Q,R,P] = qr(C)

Q =
-0.3522    0.8398 -0.4131
-0.7044 -0.5285 -0.4739
-0.6163    0.1241    0.7777

R =
-11.3578 -8.2762

         0    7.2460
         0         0

P =
     0     1
     1     0

When the economy size and column permutations are combined, the third 
output argument is a permutation vector, rather than a permutation matrix.

[Q,R,p] = qr(C,0)

Q =
-0.3522    0.8398
-0.7044 -0.5285
-0.6163    0.1241

R =
-11.3578 -8.2762

         0    7.2460
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p =
     2     1

The QR factorization transforms an overdetermined linear system into an 
equivalent triangular system.  The expression

norm(A*x - b)

is equal to

norm(Q*R*x - b)

Multiplication by orthogonal matrices preserves the Euclidean norm, so this 
expression is also equal to

norm(R*x - y)

where y = Q'*b.   Since the last m-n rows of R are zero, this expression breaks 
into two pieces

norm(R(1:n,1:n)*x - y(1:n))

and

norm(y(n+1:m))

When A has full rank, it is possible to solve for x so that the first of these 
expressions is zero.  Then the second expression gives the norm of the residual.  
When A does not have full rank, the triangular structure of R makes it possible 
to find a basic solution to the least squares problem.



Matrix Powers and Exponentials

1-35

Matrix Powers and Exponentials 
This section tells you how to obtain the following matrix powers and 
exponentials in MATLAB:

• Positive integer

• Inverse and fractional

• Element-by-element

• Exponentials

Positive Integer Powers
If A is a square matrix and p is a positive integer, then A^p effectively multiplies 
A by itself p-1 times. For example,

A = [1 1 1;1 2 3;1 3 6]

A =

     1     1     1
     1     2     3
     1     3     6

X = A^2

X =
     3     6    10
     6    14    25
    10    25    46

Inverse and Fractional Powers
If A is square and nonsingular, then A^(-p) effectively multiplies inv(A) by 
itself p-1 times.

Y = A^(-3)

Y =

  145.0000 -207.0000   81.0000
 -207.0000  298.0000 -117.0000
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   81.0000 -117.0000   46.0000

Fractional powers, like A^(2/3), are also permitted; the results depend upon 
the distribution of the eigenvalues of the matrix.

Element-by-Element Powers 
The .^ operator produces element-by-element powers. For example,

X = A.^2

A =
     1     1     1
     1     4     9
     1     9    36    

Exponentials
The function

sqrtm(A)

computes A^(1/2) by a more accurate algorithm. The m in sqrtm distinguishes 
this function from sqrt(A) which, like A.^(1/2), does its job 
element-by-element.

A system of linear, constant coefficient, ordinary differential equations can be 
written

where x = x(t) is a vector of functions of t and A is a matrix independent of t. 
The solution can be expressed in terms of the matrix exponential,

The function

expm(A)

computes the matrix exponential.  An example is provided by the 3-by-3 
coefficient matrix

A =
     0 -6 -1

dx dt⁄ Ax=

x t( ) etA= x 0( )
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     6     2 -16
-5    20 -10

and the initial condition, x(0)

x0 =
     1
     1
     1

The matrix exponential is used to compute the solution, x(t), to the differential 
equation at 101 points on the interval 0 ≤ t ≤ 1 with

X = [];
for t = 0:.01:1
   X = [X expm(t*A)*x0]; 
end

A three-dimensional phase plane plot obtained with

plot3(X(1,:),X(2,:),X(3,:),'-o')

shows the solution spiraling in towards the origin. This behavior is related to 
the eigenvalues of the coefficient matrix, which are discussed in the next 
section.
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Eigenvalues
An eigenvalue and eigenvector of a square matrix A are a scalar  and a 
nonzero vector v that satisfy

This section explains:

• Eigenvalue decomposition

• Problems associated with defective (not diagonalizable) matrices

• The use of Schur decomposition to avoid problems associated with 
eigenvalue decomposition

Eigenvalue Decomposition
With the eigenvalues on the diagonal of a diagonal matrix  and the 
corresponding eigenvectors forming the columns of a matrix V, we have

If V is nonsingular, this becomes the eigenvalue decomposition

A good example is provided by the coefficient matrix of the ordinary differential 
equation in the previous section.

A =
     0  -6 -1
     6     2 -16

-5    20   -10

The statement

lambda = eig(A)

produces a column vector containing the eigenvalues.  For this matrix, the 
eigenvalues are complex.

lambda =
   -3.0710         
   -2.4645+17.6008i
   -2.4645-17.6008i

λ

Av λ= v

Λ

AV VΛ=

A VΛV 1–=
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The real part of each of the eigenvalues is negative, so  approaches zero as 
t increases.  The nonzero imaginary part of two of the eigenvalues, , 
contributes the oscillatory component, , to the solution of the 
differential equation.

With two output arguments, eig computes the eigenvectors and stores the 
eigenvalues in a diagonal matrix.

[V,D] = eig(A)

V =
-0.8326 0.2003 - 0.1394i 0.2003 + 0.1394i
-0.3553 -0.2110 - 0.6447i -0.2110 + 0.6447i
-0.4248 -0.6930 -0.6930          

D =
-3.0710                 0                 0         

        0 -2.4645+17.6008i        0         
        0                 0 -2.4645-17.6008i

The first eigenvector is real and the other two vectors are complex conjugates 
of each other.  All three vectors are normalized to have Euclidean length, 
norm(v,2), equal to one.

The matrix V*D*inv(V), which can be written more succinctly as V*D/V, is 
within roundoff error of A. And, inv(V)*A*V, or V\A*V, is within roundoff error 
of D.

Defective Matrices
Some matrices do not have an eigenvector decomposition.  These matrices are 
defective, or not diagonalizable.  For example,

A = [ 6    12    19
-9 -20 -33
4     9    15 ]

For this matrix

[V,D] = eig(A)

eλt

ω±
ωt( )sin
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produces

V =

-0.4741 -0.4082 -0.4082
 0.8127  0.8165    0.8165
-0.3386 -0.4082 -0.4082

D =

-1.0000         0         0
         0    1.0000         0
         0         0    1.0000

There is a double eigenvalue at . The second and third columns of V are 
the same. For this matrix, a full set of linearly independent eigenvectors does 
not exist.

The optional Symbolic Math Toolbox extends the capabilities of MATLAB by 
connecting to Maple, a powerful computer algebra system. One of the functions 
provided by the toolbox computes the Jordan Canonical Form. This is 
appropriate for matrices like our example, which is 3-by-3 and has exactly 
known, integer elements.

[X,J] = jordan(A)

X =
   -1.7500    1.5000    2.7500
    3.0000   -3.0000   -3.0000
   -1.2500    1.5000    1.2500

J =
    -1     0     0
     0     1     1
     0     0     1

The Jordan Canonical Form is an important theoretical concept, but it is not a 
reliable computational tool for larger matrices, or for matrices whose elements 
are subject to roundoff errors and other uncertainties.

λ 1=
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Schur Decomposition in MATLAB Matrix Computations
The MATLAB advanced matrix computations do not require eigenvalue 
decompositions. They are based, instead, on the Schur decomposition

where U is an orthogonal matrix and S is a block upper triangular matrix with 
1-by-1 and 2-by-2 blocks on the diagonal.  The eigenvalues are revealed by the 
diagonal elements and blocks of S, while the columns of U provide a basis with 
much better numerical properties than a set of eigenvectors.   The Schur 
decomposition of our defective example is

[U,S] = schur(A)

U =
   -0.4741    0.6648    0.5774
    0.8127    0.0782    0.5774
   -0.3386   -0.7430    0.5774

S =
   -1.0000   20.7846   -44.6948
         0    1.0000    -0.6096
         0         0     1.0000

The double eigenvalue is contained in the lower 2-by-2 block of S.

Note  If A is complex, schur returns the complex Schur form, which is upper 
triangular with the eigenvalues of A on the diagonal. 

A U S UT=
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Singular Value Decomposition
A singular value and corresponding singular vectors of a rectangular matrix A 
are a scalar  and a pair of vectors u and v that satisfy

With the singular values on the diagonal of a diagonal matrix  and the 
corresponding singular vectors forming the columns of two orthogonal matrices 
U and V, we have

Since U and V are orthogonal, this becomes the singular value decomposition

The full singular value decomposition of an m-by-n matrix involves an m-by-m 
U, an m-by-n , and an n-by-n V. In other words, U and V are both square and 

 is the same size as A. If A has many more rows than columns, the resulting 
U can be quite large, but most of its columns are multiplied by zeros in .   In 
this situation, the economy sized decomposition saves both time and storage by 
producing an m-by-n U, an n-by-n  and the same V.

The eigenvalue decomposition is the appropriate tool for analyzing a matrix 
when it represents a mapping from a vector space into itself, as it does for an 
ordinary differential equation.  On the other hand, the singular value 
decomposition is the appropriate tool for analyzing a mapping from one vector 
space into another vector space, possibly with a different dimension.  Most 
systems of simultaneous linear equations fall into this second category.

If A is square, symmetric, and positive definite, then its eigenvalue and 
singular value decompositions are the same.  But, as A departs from symmetry 
and positive definiteness, the difference between the two decompositions 
increases.  In particular, the singular value decomposition of a real matrix is 
always real, but the eigenvalue decomposition of a real, nonsymmetric matrix 
might be complex.

σ

Av σu=

ATu σv=

Σ

A V U Σ=

AT U V Σ=

A U Σ VT=

Σ
Σ

Σ

Σ
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For the example matrix

A =
     9     4
     6     8
     2     7

the full singular value decomposition is

[U,S,V] = svd(A)

U =
    -0.6105 0.7174    0.3355
    -0.6646   -0.2336   -0.7098
    -0.4308   -0.6563    0.6194

S =
   14.9359         0
         0    5.1883
         0         0

V =
    -0.6925   0.7214
    -0.7214 -0.6925

You can verify that U*S*V' is equal to A to within roundoff error. For this small 
problem, the economy size decomposition is only slightly smaller.

[U,S,V] = svd(A,0)

U =
    -0.6105   0.7174
    -0.6646   -0.2336
    -0.4308   -0.6563

S =
   14.9359         0
         0    5.1883

V =
    -0.6925   0.7214
    -0.7214   -0.6925

Again, U*S*V' is equal to A to within roundoff error.
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Polynomials
This section provides:

• A summary of the MATLAB polynomial functions

• Instructions for representing polynomials in MATLAB

It also describes the MATLAB polynomial functions that:

• Calculate the roots of a polynomial

• Calculate the coefficients of the characteristic polynomial of a matrix

• Evaluate a polynomial at a specified value

• Convolve (multiply) and deconvolve (divide) polynomials 

• Compute the derivative of a polynomial

• Fit a polynomial to a set of data 

• Convert between partial fraction expansion and polynomial coefficients

Polynomial Function Summary
MATLAB provides functions for standard polynomial operations, such as 
polynomial roots, evaluation, and differentiation. In addition, there are 
functions for more advanced applications, such as curve fitting and partial 
fraction expansion.

The polynomial functions reside in the MATLAB polyfun directory.

Polynomial Function Summary 

Function Description

conv Multiply polynomials.

deconv Divide polynomials.

poly Polynomial with specified roots.

polyder Polynomial derivative.

polyfit Polynomial curve fitting.

polyval Polynomial evaluation.
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The Symbolic Math Toolbox contains additional specialized support for 
polynomial operations.

Representing Polynomials
MATLAB represents polynomials as row vectors containing coefficients 
ordered by descending powers. For example, consider the equation

This is the celebrated example Wallis used when he first represented Newton’s 
method to the French Academy. To enter this polynomial into MATLAB, use

p = [1 0 -2 -5];

Polynomial Roots
The roots function calculates the roots of a polynomial. 

r = roots(p)

r =
      2.0946               
     -1.0473 +      1.1359i
     -1.0473 -      1.1359i

By convention, MATLAB stores roots in column vectors. The function poly 
returns to the polynomial coefficients. 

p2 = poly(r)

p2 =
1 8.8818e-16 -2 -5

polyvalm Matrix polynomial evaluation.

residue Partial-fraction expansion (residues).

roots Find polynomial roots.

Polynomial Function Summary  (Continued)

Function Description

p x( ) x3 2x– 5–=
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poly and roots are inverse functions, up to ordering, scaling, and roundoff 
error.

Characteristic Polynomials
The poly function also computes the coefficients of the characteristic 
polynomial of a matrix. 

A = [1.2 3 -0.9; 5 1.75 6; 9 0 1];
poly(A)

ans =
    1.0000   -3.9500   -1.8500  -163.2750

The roots of this polynomial, computed with roots, are the characteristic roots, 
or eigenvalues, of the matrix A. (Use eig to compute the eigenvalues of a matrix 
directly.)

Polynomial Evaluation
The polyval function evaluates a polynomial at a specified value. To evaluate 
p at s = 5, use

polyval(p,5)

ans =
   110

It is also possible to evaluate a polynomial in a matrix sense. In this case 
 becomes , where X is a square 

matrix and I is the identity matrix. For example, create a square matrix X and 
evaluate the polynomial p at X.

X = [2 4 5; -1 0 3; 7 1 5];
Y = polyvalm(p,X)

Y =
   377   179   439
   111    81   136
   490   253   639

p s( ) x3 2x– 5–= p X( ) X3 2X– 5I–=
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Convolution and Deconvolution
Polynomial multiplication and division correspond to the operations 
convolution and deconvolution. The functions conv and deconv implement 
these operations.

Consider the polynomials  and . To 
compute their product,

a = [1 2 3]; b = [4 5 6];
c = conv(a,b)

c =
     4    13    28    27    18

Use deconvolution to divide  back out of the product.

[q,r] = deconv(c,a)

q =
     4     5     6

r =
     0     0     0     0     0

Polynomial Derivatives
The polyder function computes the derivative of any polynomial. To obtain the 
derivative of the polynomial p = [1 0 -2 -5],

q = polyder(p)

q =
     3     0    -2

polyder also computes the derivative of the product or quotient of two 
polynomials. For example, create two polynomials a and b.

a = [1 3 5];
b = [2 4 6];

a s( ) s2 2s 3+ += b s( ) 4s2 5s 6+ +=

a s( )
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Calculate the derivative of the product a*b by calling polyder with a single 
output argument.

c = polyder(a,b)

c =
     8    30    56    38

Calculate the derivative of the quotient a/b by calling polyder with two output 
arguments.

[q,d] = polyder(a,b)

q =
    -2    -8    -2

d =
     4    16    40    48    36

q/d is the result of the operation.

Polynomial Curve Fitting
polyfit finds the coefficients of a polynomial that fits a set of data in a 
least-squares sense.

p = polyfit(x,y,n)

x and y are vectors containing the x and y data to be fitted, and n is the order 
of the polynomial to return. For example, consider the x-y test data.

x = [1 2 3 4 5]; y = [5.5 43.1 128 290.7 498.4];

A third order polynomial that approximately fits the data is

p = polyfit(x,y,3)

p =
   -0.1917   31.5821  -60.3262   35.3400
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Compute the values of the polyfit estimate over a finer range, and plot the 
estimate over the real data values for comparison.

x2 = 1:.1:5;
y2 = polyval(p,x2);
plot(x,y,'o',x2,y2)
grid on

To use these functions in an application example, see the “Data Analysis and 
Statistics” chapter.

Partial Fraction Expansion
residue finds the partial fraction expansion of the ratio of two polynomials. 
This is particularly useful for applications that represent systems in transfer 
function form. For polynomials b and a, if there are no multiple roots,
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where r is a column vector of residues, p is a column vector of pole locations, 
and k is a row vector of direct terms. Consider the transfer function

b = [-4 8];
a = [1 6 8];
[r,p,k] = residue(b,a)

r =
   -12
     8

p =
    -4
    -2

k =
     []

Given three input arguments (r, p, and k), residue converts back to polynomial 
form.

[b2,a2] = residue(r,p,k)

b2 =
    -4     8

a2 =
     1     6     8

4s– 8+

s2 6s 8+ +
----------------------------
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Interpolation
Interpolation is a process for estimating values that lie between known data 
points. It has important applications in areas such as signal and image 
processing. 

This section:

• Provides a summary of the MATLAB interpolation functions

• Discusses one-dimensional interpolation

• Discusses two-dimensional interpolation

• Uses an example to compare nearest neighbor, bilinear, and bicubic 
interpolation methods

• Discusses interpolation of multidimensional data

• Discusses triangulation and interpolation of scattered data 

Interpolation Function Summary
MATLAB provides a number of interpolation techniques that let you balance 
the smoothness of the data fit with speed of execution and memory usage.

The interpolation functions reside in the MATLAB polyfun directory.

Interpolation Function Summary 

Function Description

griddata Data gridding and surface fitting.

griddata3 Data gridding and hypersurface fitting for 
three-dimensional data.

griddatan Data gridding and hypersurface fitting (dimension >= 3).

interp1 One-dimensional interpolation (table lookup).

interp2 Two-dimensional interpolation (table lookup).

interp3 Three-dimensional interpolation (table lookup).

interpft One-dimensional interpolation using FFT method.
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One-Dimensional Interpolation
There are two kinds of one-dimensional interpolation in MATLAB:

• Polynomial interpolation

• FFT-based interpolation

Polynomial Interpolation
The function interp1 performs one-dimensional interpolation, an important 
operation for data analysis and curve fitting. This function uses polynomial 
techniques, fitting the supplied data with polynomial functions between data 
points and evaluating the appropriate function at the desired interpolation 
points. Its most general form is

yi = interp1(x,y,xi,method)

y is a vector containing the values of a function, and x is a vector of the same 
length containing the points for which the values in y are given. xi is a vector 
containing the points at which to interpolate. method is an optional string 
specifying an interpolation method:

• Nearest neighbor interpolation (method = 'nearest'). This method sets the 
value of an interpolated point to the value of the nearest existing data point.

• Linear interpolation (method = 'linear'). This method fits a different linear 
function between each pair of existing data points, and returns the value of 

interpn N-dimensional interpolation (table lookup).

mkpp Make a piecewise polynomial

pchip Piecewise Cubic Hermite Interpolating Polynomial 
(PCHIP).

ppval Piecewise polynomial evaluation

spline Cubic spline data interpolation

unmkpp Piecewise polynomial details

Interpolation Function Summary  (Continued)

Function Description
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the relevant function at the points specified by xi. This is the default method 
for the interp1 function.

• Cubic spline interpolation (method = 'spline'). This method fits a different 
cubic function between each pair of existing data points, and uses the spline 
function to perform cubic spline interpolation at the data points.

• Cubic interpolation (method = 'pchip' or 'cubic'). These methods are 
identical. They use the pchip function to perform piecewise cubic Hermite 
interpolation within the vectors x and y. These methods preserve 
monotonicity and the shape of the data.

If any element of xi is outside the interval spanned by x, the specified 
interpolation method is used for extrapolation. Alternatively, 
yi = interp1(x,Y,xi,method,extrapval) replaces extrapolated values with 
extrapval. NaN is often used for extrapval.

All methods work with nonuniformly spaced data. 

Speed, Memory, and Smoothness Considerations
When choosing an interpolation method, keep in mind that some require more 
memory or longer computation time than others. However, you may need to 
trade off these resources to achieve the desired smoothness in the result.

• Nearest neighbor interpolation is the fastest method. However, it provides 
the worst results in terms of smoothness.

• Linear interpolation uses more memory than the nearest neighbor method, 
and requires slightly more execution time. Unlike nearest neighbor 
interpolation its results are continuous, but the slope changes at the vertex 
points.

• Cubic spline interpolation has the longest relative execution time, although 
it requires less memory than cubic interpolation. It produces the smoothest 
results of all the interpolation methods. You may obtain unexpected results, 
however, if your input data is non-uniform and some points are much closer 
together than others.

• Cubic interpolation requires more memory and execution time than either 
the nearest neighbor or linear methods. However, both the interpolated data 
and its derivative are continuous.

The relative performance of each method holds true even for interpolation of 
two-dimensional or multidimensional data. For a graphical comparison of 
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interpolation methods, see the section “Comparing Interpolation Methods” on 
page 2-13.

FFT-Based Interpolation
The function interpft performs one-dimensional interpolation using an 
FFT-based method. This method calculates the Fourier transform of a vector 
that contains the values of a periodic function. It then calculates the inverse 
Fourier transform using more points. Its form is

y = interpft(x,n)

x is a vector containing the values of a periodic function, sampled at equally 
spaced points. n is the number of equally spaced points to return.

Two-Dimensional Interpolation
The function interp2 performs two-dimensional interpolation, an important 
operation for image processing and data visualization. Its most general form is

ZI = interp2(X,Y,Z,XI,YI,method)

Z is a rectangular array containing the values of a two-dimensional function, 
and X and Y are arrays of the same size containing the points for which the 
values in Z are given. XI and YI are matrices containing the points at which to 
interpolate the data. method is an optional string specifying an interpolation 
method.

There are three different interpolation methods for two-dimensional data:

• Nearest neighbor interpolation (method = 'nearest'). This method fits a 
piecewise constant surface through the data values. The value of an 
interpolated point is the value of the nearest point.

• Bilinear interpolation (method = 'linear'). This method fits a bilinear 
surface through existing data points. The value of an interpolated point is a 
combination of the values of the four closest points. This method is piecewise 
bilinear, and is faster and less memory-intensive than bicubic interpolation.

• Bicubic interpolation (method = 'cubic'). This method fits a bicubic surface 
through existing data points. The value of an interpolated point is a 
combination of the values of the sixteen closest points. This method is 
piecewise bicubic, and produces a much smoother surface than bilinear 
interpolation. This can be a key advantage for applications like image 
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processing. Use bicubic interpolation when the interpolated data and its 
derivative must be continuous.

All of these methods require that X and Y be monotonic, that is, either always 
increasing or always decreasing from point to point. You should prepare these 
matrices using the meshgrid function, or else be sure that the “pattern” of the 
points emulates the output of meshgrid. In addition, each method 
automatically maps the input to an equally spaced domain before 
interpolating. If X and Y are already equally spaced, you can speed execution 
time by prepending an asterisk to the method string, for example, '*cubic'.

Comparing Interpolation Methods 
This example compares two-dimensional interpolation methods on a 7-by-7 
matrix of data.

1 Generate the peaks function at low resolution.

[x,y] = meshgrid(-3:1:3);
z = peaks(x,y);
surf(x,y,z)
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2 Generate a finer mesh for interpolation.

[xi,yi] = meshgrid(-3:0.25:3);

3 Interpolate using nearest neighbor interpolation.

zi1 = interp2(x,y,z,xi,yi,'nearest');

4 Interpolate using bilinear interpolation:

zi2 = interp2(x,y,z,xi,yi,'bilinear');

5 Interpolate using bicubic interpolation.

zi3 = interp2(x,y,z,xi,yi,'bicubic');

6 Compare the surface plots for the different interpolation methods.
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surf(xi,yi,zi1) 
% nearest

surf(xi,yi,zi2) 
% bilinear

surf(xi,yi,zi3) 
% bicubic
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7 Compare the contour plots for the different interpolation methods.

Notice that the bicubic method, in particular, produces smoother contours. 
This is not always the primary concern, however. For some applications, such 
as medical image processing, a method like nearest neighbor may be preferred 
because it doesn’t generate any “new” data values.

Interpolation and Multidimensional Arrays
Several interpolation functions operate specifically on multidimensional data. 

This section discusses:

• Interpolation of three-dimensional data

• Interpolation of higher dimensional data

• Multidimensional data gridding
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contour(xi,yi,zi1) 
% nearest

contour(xi,yi,zi2) 
% bilinear

contour(xi,yi,zi3) 
% bicubic
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Interpolation Functions for Multidimensional Data 

Function Description

interp3 Three-dimensional data interpolation.

interpn Multidimensional data interpolation.

ndgrid Multidimensional data gridding (elmat directory).
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Interpolation of Three-Dimensional Data
The function interp3 performs three-dimensional interpolation, finding 
interpolated values between points of a three-dimensional set of samples V. 
You must specify a set of known data points:

• X, Y, and Z matrices specify the points for which values of V are given.

• A matrix V contains values corresponding to the points in X, Y, and Z.

The most general form for interp3 is

VI = interp3(X,Y,Z,V,XI,YI,ZI,method)

XI, YI, and ZI are the points at which interp3 interpolates values of V. For 
out-of-range values, interp3 returns NaN.

There are three different interpolation methods for three-dimensional data:

• Nearest neighbor interpolation (method = 'nearest'). This method chooses 
the value of the nearest point.

• Trilinear interpolation (method = 'linear'). This method uses piecewise 
linear interpolation based on the values of the nearest eight points.

• Tricubic interpolation (method = 'cubic'). This method uses piecewise cubic 
interpolation based on the values of the nearest sixty-four points.

All of these methods require that X, Y, and Z be monotonic, that is, either always 
increasing or always decreasing in a particular direction. In addition, you 
should prepare these matrices using the meshgrid function, or else be sure that 
the “pattern” of the points emulates the output of meshgrid.

Each method automatically maps the input to an equally spaced domain before 
interpolating. If x is already equally spaced, you can speed execution time by 
prepending an asterisk to the method string, for example, '*cubic'.

Interpolation of Higher Dimensional Data
The function interpn performs multidimensional interpolation, finding 
interpolated values between points of a multidimensional set of samples V. The 
most general form for interpn is

VI = interpn(X1,X2,X3...,V,Y1,Y2,Y3,...,method)

1, 2, 3, ... are matrices that specify the points for which values of V are given. 
V is a matrix that contains the values corresponding to these points. 1, 2, 3, ... 
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are the points for which interpn returns interpolated values of V. For 
out-of-range values, interpn returns NaN.

Y1, Y2, Y3, ... must be either arrays of the same size, or vectors. If they are 
vectors of different sizes, interpn passes them to ndgrid and then uses the 
resulting arrays. 

There are three different interpolation methods for multidimensional data:

• Nearest neighbor interpolation (method = 'nearest'). This method chooses 
the value of the nearest point.

• Linear interpolation (method = 'linear'). This method uses piecewise 
linear interpolation based on the values of the nearest two points in each 
dimension.

• Cubic interpolation (method = 'cubic'). This method uses piecewise cubic 
interpolation based on the values of the nearest four points in each 
dimension.

All of these methods require that X1, X2,X3 be monotonic. In addition, you 
should prepare these matrices using the ndgrid function, or else be sure that 
the “pattern” of the points emulates the output of ndgrid.

Each method automatically maps the input to an equally spaced domain before 
interpolating. If X is already equally spaced, you can speed execution time by 
prepending an asterisk to the method string; for example, '*cubic'.

Multidimensional Data Gridding
The ndgrid function generates arrays of data for multidimensional function 
evaluation and interpolation. ndgrid transforms the domain specified by a 
series of input vectors into a series of output arrays. The ith dimension of these 
output arrays are copies of the elements of input vector xi.

The syntax for ndgrid is

[X1,X2,X3,...] = ndgrid(x1,x2,x3,...)

For example, assume that you want to evaluate a function of three variables 
over a given range. Consider the function

z x2= e
x1

2– x2
2– x3

2–( )
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for , , and . To evaluate and plot this 
function:

x1 = -2:0.2:2;
x2 = -2:0.25:2;
x3 = -2:0.16:2;
[X1,X2,X3] = ndgrid(x1,x2,x3);
z = X2.*exp(-X1.^2 -X2.^2 -X3.^2);
slice(X2,X1,X3,z,[-1.2 0.8 2],2,[-2 0.2]) 

Triangulation and Interpolation of Scattered Data
MATLAB provides routines that aid in the analysis of closest-point problems 
and geometric analysis.

Functions for Analysis of Closest-Point Problems and Geometric Analysis 

Function Description

convhull Convex hull.

delaunay Delaunay triangulation.
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This section applies the following techniques to the seamount data set supplied 
with MATLAB:

• Convex hulls

• Delaunay triangulation

• Voronoi diagrams

See also “Tessellation and Interpolation of Scattered Data in Higher 
Dimensions” on page 2-26.

Note  Examples in this section use the MATLAB seamount data set. 
Seamounts are underwater mountains. They are valuable sources of 
information about marine geology. The seamount data set represents the 
surface, in 1984, of the seamount designated LR148.8W located at 48.2°S, 
148.8°W on the Louisville Ridge in the South Pacific. For more information 
about the data and its use, see Parker [2].

The seamount data set provides longitude (x), latitude (y) and depth-in-feet (z) 
data for 294 points on the seamount LR148.8W.

delaunay3 3-D Delaunay tessellation.

dsearch Nearest point search of Delaunay triangulation.

inpolygon True for points inside polygonal region.

polyarea Area of polygon.

rectint Area of intersection for two or more rectangles.

tsearch Closest triangle search.

voronoi Voronoi diagram.

Functions for Analysis of Closest-Point Problems and Geometric Analysis  

Function Description
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Convex Hulls
The convhull function returns the indices of the points in a data set that 
comprise the convex hull for the set. Use the plot function to plot the output of 
convhull. 

This example loads the seamount data and plots the longitudinal (x) and 
latitudinal (y) data as a scatter plot. It then generates the convex hull and uses 
plot to plot the convex hull.

load seamount
plot(x,y,'.','markersize',10)
k = convhull(x,y);
hold on, plot(x(k),y(k),'-r'), hold off
grid on

Delaunay Triangulation
Given a set of coplanar data points, Delaunay triangulation is a set of lines 
connecting each point to its natural neighbors. The delaunay function returns 
a Delaunay triangulation as a set of triangles having the property that, for each 
triangle, the unique circle circumscribed about the triangle contains no data 
points. 
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You can use triplot to print the resulting triangles in two-dimensional space. 
You can also add data for a third dimension to the output of delaunay and plot 
the result as a surface with trisurf, or as a mesh with trimesh.

Plotting a Delaunay Triangulation. To try delaunay, load the seamount data set and 
view the longitude (x) and latitude (y) data as a scatter plot.

load seamount
plot(x,y,'.','markersize',12)
xlabel('Longitude'), ylabel('Latitude')
grid on

Apply Delaunay triangulation and use triplot to overplot the resulting 
triangles on the scatter plot.

tri = delaunay(x,y);
hold on, triplot(tri,x,y), hold off
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Mesh and Surface Plots. Add the depth data (z) from seamount, to the Delaunay 
triangulation, and use trimesh to produce a mesh in three-dimensional space. 
Similarly, you can use trisurf to produce a surface.

figure
hidden on
trimesh(tri,x,y,z)
grid on
xlabel('Longitude'); ylabel('Latitude'); zlabel('Depth in Feet')
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Contour Plots. This code uses meshgrid, griddata, and contour to produce a 
contour plot of the seamount data.

figure
[xi,yi] = meshgrid(210.8:.01:211.8,-48.5:.01:-47.9);
zi = griddata(x,y,z,xi,yi,'cubic');
[c,h] = contour(xi,yi,zi,'b-'); 
clabel(c,h)
xlabel('Longitude'), ylabel('Latitude')
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The arguments for meshgrid encompass the largest and smallest x and y 
values in the original seamount data. To obtain these values, use min(x), 
max(x), min(y), and max(y).

Closest-Point Searches. You can search through the Delaunay triangulation data 
with two functions:

• dsearch finds the indices of the (x,y) points in a Delaunay triangulation 
closest to the points you specify. This code searches for the point closest to 
(211.32, -48.35) in the triangulation of the seamount data. 
xi = 211.32; yi = -48.35;
p = dsearch(x,y,tri,xi,yi);
[x(p), y(p)]

ans =
    211.3400  -48.3700

• tsearch finds the indices into the delaunay output that specify the enclosing 
triangles of the points you specify. This example uses the index of the 
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enclosing triangle for the point (211.32, -48.35) to obtain the coordinates of 
the vertices of the triangle.

xi = 211.32; yi = -48.35;
t = tsearch(x,y,tri,xi,yi);
r = tri(t,:);
A = [x(r) y(r)]

A =
  211.3000  -48.3000
  211.3400  -48.3700
  211.2800  -48.3200

Voronoi Diagrams
Voronoi diagrams are a closest-point plotting technique related to Delaunay 
triangulation. 

For each point in a set of coplanar points, you can draw a polygon that encloses 
all the intermediate points that are closer to that point than to any other point 
in the set. Such a polygon is called a Voronoi polygon, and the set of all Voronoi 
polygons for a given point set is called a Voronoi diagram.

The voronoi function can plot the cells of the Voronoi diagram, or return the 
vertices of the edges of the diagram. This example loads the seamount data, 
then uses the voronoi function to produce the Voronoi diagram for the 
longitudinal (x) and latitudinal (y) dimensions. Note that voronoi plots only 
the bounded cells of the Voronoi diagram. 

load seamount
voronoi(x,y)
grid on
xlabel('Longitude'), ylabel('Latitude')
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Note  See the voronoi function for an example that uses the vertices of the 
edges to plot a Voronoi diagram.

Tessellation and Interpolation of Scattered Data in 
Higher Dimensions
Many applications in science, engineering, statistics, and mathematics require 
structures like convex hulls, Voronoi diagrams, and Delaunay tessellations. 
Using Qhull [1], MATLAB functions enable you to geometrically analyze data 
sets in any dimension. 
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This section demonstrates these geometric analysis techniques:

• Convex hulls

• Delaunay triangulations

• Voronoi diagrams

• Interpolation of scattered multidimensional data

Convex Hulls
The convex hull of a data set in n-dimensional space is defined as the smallest 
convex region that contains the data set.

Computing a Convex Hull. The convhulln function returns the indices of the 
points in a data set that comprise the facets of the convex hull for the set. For 
example, suppose X is an 8-by-3 matrix that consists of the 8 vertices of a cube. 
The convex hull of X then consists of 12 facets. 

d = [-1 1];
[x,y,z] = meshgrid(d,d,d);
X = [x(:),y(:),z(:)]; % 8 corner points of a cube
C = convhulln(X)

C =
3     1     5
1     2     5

Functions for Multidimensional Geometrical Analysis

Function Description

convhulln N-dimensional convex hull.

delaunayn N-dimensional Delaunay tessellation.

dsearchn N-dimensional nearest point search.

griddatan N-dimensional data gridding and hypersurface fitting.

tsearchn N-dimensional closest simplex search.

voronoin N-dimensional Voronoi diagrams.
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2     1     3
7     3     5
8     7     5
7     8     3
6     8     5
2     6     5
6     2     8
8     4     3
4     2     3
2     4     8

Because the data is three-dimensional, the facets that make up the convex hull 
are triangles. The 12 rows of C represent 12 triangles. The elements of C are 
indices of points in X. For example, the first row, 3 1 5, means that the first 
triangle has X(3,:), X(1,:), and X(5,:) as its vertices.

For three-dimensional convex hulls, you can use trisurf to plot the output. 
However, using patch to plot the output gives you more control over the color 
of the facets. Note that you cannot plot convhulln output for n > 3.

This code plots the convex hull by drawing the triangles as three-dimensional 
patches.

figure, hold on
d = [1 2 3 1]; % Index into C column.
for i = 1:size(C,1) % Draw each triangle.

j= C(i,d); % Get the ith C to make a patch.
    h(i)=patch(X(j,1),X(j,2),X(j,3),i,'FaceAlpha',0.9);
end  % 'FaceAlpha' is used to make it transparent.
hold off
view(3), axis equal, axis off
camorbit(90,-5); % To view it from another angle
title('Convex hull of a cube')
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Delaunay Tessellations
A Delaunay tessellation is a set of simplices with the property that, for each 
simplex, the unique sphere circumscribed about the simplex contains no data 
points. In two-dimensional space, a simplex is a triangle. In three-dimensional 
space, a simplex is a tetrahedron.

Computing a Delaunay Tessellation. The delaunayn function returns the indices of 
the points in a data set that comprise the simplices of an n-dimensional 
Delaunay tessellation of the data set.

This example uses the same X as in the convex hull example, i.e. the 8 corner 
points of a cube, with the addition of a center point. 

d = [-1 1];
[x,y,z] = meshgrid(d,d,d);
X = [x(:),y(:),z(:)]; % 8 corner points of a cube
X(9,:) = [0 0 0]; % Add center to the vertex list.
T = delaunayn(X) % Generate Delaunay tessellation.
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T = 
     9     1     5     6
     3     9     1     5
     2     9     1     6
     2     3     9     4
     2     3     9     1
     7     9     5     6
     7     3     9     5
     8     7     9     6
     8     2     9     6
     8     2     9     4
     8     3     9     4
     8     7     3     9

The 12 rows of T represent the 12 simplices, in this case irregular tetrahedrons, 
that partition the cube. Each row represents one tetrahedron, and the row 
elements are indices of points in X. 

For three-dimensional tessellations, you can use tetramesh to plot the output. 
However, using patch to plot the output gives you more control over the color 
of the facets. Note that you cannot plot delaunayn output for n > 3.

This code plots the tessellation T by drawing the tetrahedrons using 
three-dimensional patches.

figure, hold on
d = [1 1 1 2; 2 2 3 3; 3 4 4 4]; % Index into T
for i = 1:size(T,1) % Draw each tetrahedron.

y = T(i,d); % Get the ith T to make a patch.
x1 = reshape(X(y,1),3,4);
x2 = reshape(X(y,2),3,4);
x3 = reshape(X(y,3),3,4);
h(i)=patch(x1,x2,x3,(1:4)*i,'FaceAlpha',0.9);

end
hold off
view(3), axis equal
axis off
camorbit(65,120) % To view it from another angle
title('Delaunay tessellation of a cube with a center point')

You can use cameramenu to rotate the figure in any direction.
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Voronoi Diagrams
Given m data points in n-dimensional space, a Voronoi diagram is the partition 
of n-dimensional space into m polyhedral regions, one region for each data 
point. Such a region is called a Voronoi cell. A Voronoi cell satisfies the 
condition that it contains all points that are closer to its data point than any 
other data point in the set.

Computing a Voronoi Diagram. The voronoin function returns two outputs: 

• V is an m-by-n matrix of m points in n-space. Each row of V represents a 
Voronoi vertex.

• C is a cell array of vectors. Each vector in the cell array C represents a Voronoi 
cell. The vector contains indices of the points in V that are the vertices of the 
Voronoi cell. Each Voronoi cell may have a different number of points.

Because a Voronoi cell can be unbounded, the first row of V is a point at infinity. 
Then any unbounded Voronoi cell in C includes the point at infinity, i.e., the 
first point in V.
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This example uses the same X as in the Delaunay example, i.e., the 8 corner 
points of a cube and its center. Random noise is added to make the cube less 
regular. The resulting Voronoi diagram has 9 Voronoi cells.

d = [-1 1];
[x,y,z] = meshgrid(d,d,d);
X = [x(:),y(:),z(:)]; % 8 corner points of a cube
X(9,:) = [0 0 0]; % Add center to the vertex list.
X = X+0.01*rand(size(X)); % Make the cube less regular.
[V,C] = voronoin(X);

V =
Inf Inf Inf 

0.0055    1.5054    0.0004
    0.0037    0.0101   -1.4990
    0.0052    0.0087   -1.4990
    0.0030    1.5054    0.0030
    0.0072    0.0072    1.4971
   -1.7912    0.0000    0.0044
   -1.4886    0.0011    0.0036
   -1.4886    0.0002    0.0045
    0.0101    0.0044    1.4971
    1.5115    0.0074    0.0033
    1.5115    0.0081    0.0040
    0.0104   -1.4846   -0.0007
    0.0026   -1.4846    0.0071

C = 
[1x8 double] 
[1x6 double] 
[1x4 double] 
[1x6 double] 
[1x6 double] 
[1x6 double] 
[1x6 double] 
[1x6 double] 
[1x12 double]

In this example, V is a 13-by-3 matrix, the 13 rows are the coordinates of the 13 
Voronoi vertices. The first row of V is a point at infinity. C is a 9-by-1 cell array, 
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where each cell in the array contains an index vector into V corresponding to 
one of the 9 Voronoi cells. For example, the 9th cell of the Voronoi diagram is

C{9} = 2 3 4 5 6 7 8 9 10 11 12 13

If any index in a cell of the cell array is 1, then the corresponding Voronoi cell 
contains the first point in V, a point at infinity. This means the Voronoi cell is 
unbounded. 

To view a bounded Voronoi cell, i.e., one that does not contain a point at 
infinity, use the convhulln function to compute the vertices of the facets that 
make up the Voronoi cell. Then use patch and other plot functions to generate 
the figure. For example, this code plots the Voronoi cell defined by the 9th cell 
in C.

X = V(C{9},:); % View 9th Voronoi cell.
K = convhulln(X);
figure
hold on
d = [1 2 3 1]; % Index into K
for i = 1:size(K,1)

j = K(i,d);
h(i)=patch(X(j,1),X(j,2),X(j,3),i,'FaceAlpha',0.9);

end
hold off
view(3)
axis equal
title('One cell of a Voronoi diagram')
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Interpolating N-Dimensional Data
Use the griddatan function to interpolate multidimensional data, particularly 
scattered data. griddatan uses the delaunayn function to tessellate the data, 
and then interpolates based on the tessellation.

Suppose you want to visualize a function that you have evaluated at a set of n 
scattered points. In this example, X is an n-by-3 matrix of points, each row 
containing the (x,y,z) coordinates for one of the points. The vector v contains 
the n function values at these points. The function for this example is the 
squared distance from the origin, v = x.^2 + y.^2 + z.^2. 

Start by generating n = 5000 points at random in three-dimensional space, and 
computing the value of a function on those points. 

n = 5000; 
X = 2*rand(n,3)-1; 
v = sum(X.^2,2);
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The next step is to use interpolation to compute function values over a grid. Use 
meshgrid to create the grid, and griddatan to do the interpolation.

delta = 0.05;
d = -1:delta:1;
[x0,y0,z0] = meshgrid(d,d,d);
X0 = [x0(:), y0(:), z0(:)];
v0 = griddatan(X,v,X0);
v0 = reshape(v0, size(x0));

Then use isosurface and related functions to visualize the surface that 
consists of the (x,y,z) values for which the function takes a constant value. You 
could pick any value, but the example uses the value 0.6. Since the function is 
the squared distance from the origin, the surface at a constant value is a 
sphere.

p = patch(isosurface(x0,y0,z0,v0,0.6)); 
isonormals(x0,y0,z0,v0,p); 
set(p,'FaceColor','red','EdgeColor','none'); 
view(3); 
camlight; 
lighting phong 
axis equal 
title('Interpolated sphere from scattered data')

Note  A smaller delta produces a smoother sphere, but increases the 
compute time.
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3
Data Analysis and 
Statistics

Column-Oriented Data Sets (p. 3-3) Organizing arrays for data analysis.

Basic Data Analysis Functions (p. 3-7) Basic data analysis functions and an example that uses 
some of the functions. This section also discusses functions 
for the computation of correlation coefficients and 
covariance, and for finite difference calculations.

Data Preprocessing (p. 3-13) Working with missing values, and outliers or misplaced 
data points in a data set.
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functions that describe the relationship among observed 
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Case Study: Curve Fitting (p. 3-21) Uses a case study to look at some of the MATLAB basic 
data analysis capabilities. This section also provides 
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Difference Equations and Filtering 
(p. 3-39)

Discusses MATLAB functions for working with difference 
equations and filters.

Fourier Analysis and the Fast Fourier 
Transform (FFT) (p. 3-42)

Discusses Fourier analysis in MATLAB.
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Data Analysis and Statistics Functions
The data analysis and statistics functions are located in the MATLAB datafun 
directory. Use online help to get a complete list of functions.

Related Toolboxes
A number of related toolboxes provide advanced functionality for specialized 
data analysis applications.

Toolbox Data Analysis Application

Optimization Nonlinear curve fitting and regression.

Signal Processing Signal processing, filtering, and frequency 
analysis.

Spline Curve fitting and regression.

Statistics Advanced statistical analysis, nonlinear curve 
fitting, and regression.

System Identification Parametric / ARMA modeling.

Wavelet Wavelet analysis.
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Column-Oriented Data Sets
Univariate statistical data is typically stored in individual vectors. The vectors 
can be either 1-by-n or n-by-1. For multivariate data, a matrix is the natural 
representation but there are, in principle, two possibilities for orientation. By 
MATLAB convention, however, the different variables are put into columns, 
allowing observations to vary down through the rows. Therefore, a data set 
consisting of twenty four samples of three variables is stored in a matrix of size 
24-by-3.

Vehicle Traffic Sample Data Set
Consider a sample data set comprising vehicle traffic count observations at 
three locations over a 24-hour period.  

Vehicle Traffic Sample Data Set 

Time Location 1 Location 2 Location 3

01h00 11 11 9

02h00 7 13 11

03h00 14 17 20

04h00 11 13 9

05h00 43 51 69

06h00 38 46 76

07h00 61 132 186

08h00 75 135 180

09h00 38 88 115

10h00 28 36 55

11h00 12 12 14

12h00 18 27 30

13h00 18 19 29
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Loading and Plotting the Data
The raw data is stored in the file, count.dat.

    11    11     9
     7    13    11
    14    17    20
    11    13     9
    43    51    69
    38    46    76
    61   132   186
    75   135   180
    38    88   115
    28    36    55
    12    12    14
    18    27    30
    18    19    29
    17    15    18
    19    36    48

14h00 17 15 18

15h00 19 36 48

16h00 32 47 10

17h00 42 65 92

18h00 57 66 151

19h00 44 55 90

20h00 114 145 257

21h00 35 58 68

22h00 11 12 15

23h00 13 9 15

24h00 10 9 7

Vehicle Traffic Sample Data Set  (Continued)

Time Location 1 Location 2 Location 3



Column-Oriented Data Sets

3-5

    32    47    10
    42    65    92
    57    66   151
    44    55    90
   114   145   257
    35    58    68
    11    12    15
    13     9    15
    10     9     7

Use the load command to import the data.

load count.dat

This creates the matrix count in the workspace.

For this example, there are 24 observations of three variables. This is 
confirmed by

[n,p] = size(count)
n = 
    24
p = 
     3

Create a time vector, t, of integers from 1 to n.

t = 1:n;

Now plot the counts versus time and annotate the plot.

set(0,'defaultaxeslinestyleorder','-|--|-.')
set(0,'defaultaxescolororder',[0 0 0])
plot(t,count), legend('Location 1','Location 2','Location 3',2)
xlabel('Time'), ylabel('Vehicle Count'), grid on
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The plot shows the vehicle counts at three locations over a 24-hour period.
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Basic Data Analysis Functions
This section introduces functions for:

• Basic column-oriented data analysis 

• Computation of correlation coefficients and covariance

• Calculating finite differences

Function Summary
A collection of functions provides basic column-oriented data analysis 
capabilities. These functions are located in the MATLAB datafun directory. 

This section also gives you some hints about using row and column data, and 
provides some basic examples. This table lists the functions.

Basic Data Analysis Function Summary 

Function Description

cumprod Cumulative product of elements.

cumsum Cumulative sum of elements.

cumtrapz Cumulative trapezoidal numerical integration.

diff Difference function and approximate derivative.

max Largest component.

mean Average or mean value.

median Median value.

min Smallest component.

prod Product of elements.

sort Sort array elements in ascending or descending order.

sortrows Sort rows in ascending order.

std Standard deviation.
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To use the Data Statistics Tool to calculate the maximum, minimum, mean, 
median, range, and standard deviation on plotted data, and create plots of 
these statistics, see “Using the Data Statistics Tool” in the MATLAB graphics 
documentation.

Working with Row and Column Data
For vector input arguments to these functions, it does not matter whether the 
vectors are oriented in row or column direction. For array arguments, however, 
the functions operate column by column on the data in the array. This means, 
for example, that if you apply max to an array, the result is a row vector 
containing the maximum values over each column.

Note  You can add more functions to this list using M-files, but when doing so, 
you must exercise care to handle the row-vector case. If you are writing your 
own column-oriented M-files, check other M-files; for example, mean.m and 
diff.m.

Basic Examples
Continuing with the vehicle traffic count example, the statements

mx = max(count)
mu = mean(count)
sigma = std(count)

result in

mx =
          114          145          257

mu = 
      32.0000      46.5417      65.5833

sum Sum of elements.

trapz Trapezoidal numerical integration.

Basic Data Analysis Function Summary  (Continued)

Function Description



Basic Data Analysis Functions

3-9

sigma =
      25.3703      41.4057      68.0281

To locate the index at which the minimum or maximum occurs, a second output 
parameter can be specified. For example, 

[mx,indx] = min(count)

mx =
      7     9     7

indx =
      2    23    24

shows that the lowest vehicle count is recorded at 02h00 for the first 
observation point (column one) and at 23h00 and 24h00 for the other 
observation points.

You can subtract the mean from each column of the data using an outer product 
involving a vector of n ones. 

[n,p] = size(count)
e = ones(n,1)
x = count - e*mu

Rearranging the data may help you evaluate a vector function over an entire 
data set. For example, to find the smallest value in the entire data set, use

min(count(:))

which produces

ans =
      7

The syntax count(:) rearranges the 24-by-3 matrix into a 72-by-1 column 
vector.
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Covariance and Correlation Coefficients
The MATLAB statistical capabilities include two functions for the computation 
of correlation coefficients and covariance.

Covariance
cov returns the variance for a vector of data. The variance of the data in the 
first column of count is

cov(count(:,1))

ans = 
     643.6522

For an array of data, cov calculates the covariance matrix. The variance values 
for the array columns are arranged along the diagonal of the covariance matrix. 
The remaining entries reflect the covariance between the columns of the 
original array. For an m-by-n matrix, the covariance matrix has size n-by-n. 
For example, the covariance matrix for count, cov(count), is arranged as

Covariance and Correlation Coefficient Function Summary 

Function Description

cov Variance of vector – measure of spread or dispersion of 
sample variable. 

Covariance of matrix – measure of strength of linear 
relationships between variables.

corrcoef Correlation coefficient – normalized measure of  linear 
relationship strength between variables.

 σ11
2  σ12

2  σ13
2

 σ21
2  σ22

2  σ23
2

 σ31
2  σ32

2  σ33
2

 σij
2  σji

2=
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Correlation Coefficients
corrcoef produces a matrix of correlation coefficients for an array of data 
where each row is an observation and each column is a variable. The 
correlation coefficient is a normalized measure of the strength of the linear 
relationship between two variables. Uncorrelated data results in a correlation 
coefficient of 0; equivalent data sets have a correlation coefficient of 1.

For an m-by-n matrix, the correlation coefficient matrix has size n-by-n. The 
arrangement of the elements in the correlation coefficient matrix corresponds 
to the location of the elements in the covariance matrix described above.

For our traffic count example

corrcoef(count)

results in

ans = 
    1.0000    0.9331    0.9599
    0.9331    1.0000    0.9553
    0.9599    0.9553    1.0000

Clearly there is a strong linear correlation between the three traffic counts 
observed at the three locations, as the results are close to 1.

Finite Differences
MATLAB provides three functions for finite difference calculations.

Function Description

diff Difference between successive elements of a vector. 
Numerical partial derivatives of a vector.

gradient Numerical partial derivatives a matrix.

del2 Discrete Laplacian of a matrix.
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The diff function computes the difference between successive elements in a 
numeric vector. That is, diff(X) is [X(2)-X(1) X(3)-X(2)... 
X(n)-X(n-1)]. So, for a vector A,

A = [9 -2 3 0 1 5 4];
diff(A)

ans =
   -11     5    -3     1     4    -1

Besides computing the first difference, diff is useful for determining certain 
characteristics of vectors. For example, you can use diff to determine if a 
vector is monotonic (elements are always either increasing or decreasing), or if 
a vector has equally spaced elements. This table describes a few different ways 
to use diff with a vector x.

Test Description

diff(x)==0 Tests for repeated elements.

all(diff(x)>0) Tests for monotonicity.

all(diff(diff(x))==0) Tests for equally spaced vector elements.
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Data Preprocessing
This section tells you how to work with

• Missing values

• Outliers and misplaced data points

Missing Values
The special value, NaN, stands for Not-a-Number in MATLAB. IEEE 
floating-point arithmetic convention specifies NaN as the result of undefined 
expressions such as 0/0.

The correct handling of missing data is a difficult problem and often varies in 
different situations. For data analysis purposes, it is often convenient to use 
NaNs to represent missing values or data that are not available. 

MATLAB treats NaNs in a uniform and rigorous way. They propagate naturally 
through to the final result in any calculation. Any mathematical calculation 
involving NaNs produces NaNs in the results.

For example, consider a matrix containing the 3-by-3 magic square with its 
center element set to NaN.

a = magic(3); a(2,2) = NaN
 
a =
     8     1     6
     3   NaN     7
     4     9     2

Compute a sum for each column in the matrix. 

sum(a) 
 
ans = 
    15   NaN    15

Any mathematical calculation involving NaNs propagates NaNs through to the 
final result as appropriate.
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You should remove NaNs from the data before performing statistical 
computations. Here are some ways to use isnan to remove NaNs from data. 

Note  You must use the special function isnan to find NaNs because, by IEEE 
arithmetic convention, the logical comparison, NaN == NaN always produces 0. 
You cannot use x(x==NaN) = [] to remove NaNs from your data.

If you frequently need to remove NaNs, write a short M-file function.

function X = excise(X)
X(any(isnan(X)'),:) = [];

Now, typing

X = excise(X);

accomplishes the same thing.

Code Description

i = find(~isnan(x));
x = x(i)

Find indices of elements in vector that are 
not NaNs, then keep only the non-NaN 
elements. 

x = x(find(~isnan(x))) Remove NaNs from vector.

x = x(~isnan(x)); Remove NaNs from vector (faster).

x(isnan(x)) = []; Remove NaNs from vector.

X(any(isnan(X)'),:) = []; Remove any rows of matrix X containing 
NaNs.
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Removing Outliers
You can remove outliers or misplaced data points from a data set in much the 
same manner as NaNs. For the vehicle traffic count data, the mean and 
standard deviations of each column of the data are 

mu = mean(count)
sigma = std(count)

mu =
32.0000   46.5417   65.5833

sigma =
25.3703   41.4057   68.0281

The number of rows with outliers greater than three standard deviations is 
obtained with

[n,p] = size(count)
outliers = abs(count - mu(ones(n, 1),:)) > 3*sigma(ones(n, 1),:);
nout = sum(outliers)
nout =
       1    0    0

There is one outlier in the first column. Remove this entire observation with

count(any(outliers'),:) = [];
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Regression and Curve Fitting
It is often useful to find functions that describe the relationship between some 
variables you have observed. Identification of the coefficients of the function 
often leads to the formulation of an overdetermined system of simultaneous 
linear equations. You can find these coefficients efficiently by using the 
MATLAB backslash operator.

Suppose you measure a quantity y at several values of time t.

t = [0 .3 .8 1.1 1.6 2.3]';
y = [0.5 0.82 1.14 1.25 1.35 1.40]';
plot(t,y,'o'), grid on

The following sections look at three ways of modeling the data:

• Polynomial regression

• Linear-in-the-parameters regression

• Multiple regression

0 0.5 1 1.5 2 2.5
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4



Regression and Curve Fitting

3-17

Polynomial Regression
Based on the plot, it is possible that the data can be modeled by a polynomial 
function

The unknown coefficients a0, a1, and a2 can be computed by doing a least 
squares fit, which minimizes the sum of the squares of the deviations of the 
data from the model. There are six equations in three unknowns,

represented by the 6-by-3 matrix 

X = [ones(size(t))  t  t.^2]

X = 
    1.0000         0         0
    1.0000    0.3000    0.0900
    1.0000    0.8000    0.6400
    1.0000    1.1000    1.2100
    1.0000    1.6000    2.5600
    1.0000    2.3000    5.2900

The solution is found with the backslash operator.

a = X\y

a =
    0.5318
    0.9191
- 0.2387

y a0 a1t a2t2+ +=

y1

y2

y3

y4

y5

y6

1 t1 t1
2

1 t2 t2
2

1 t3 t3
2

1 t4 t4
2

1 t5 t5
2

1 t6 t6
2

a0

a1

a2

×=
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The second-order polynomial model of the data is therefore

Now evaluate the model at regularly spaced points and overlay the original 
data in a plot.

T = (0:0.1:2.5)';
Y = [ones(size(T))  T  T.^2]*a;
plot(T,Y,'-',t,y,'o'), grid on

Clearly this fit does not perfectly approximate the data. We could either 
increase the order of the polynomial fit, or explore some other functional form 
to get a better approximation. 

Linear-in-the-Parameters Regression
Instead of a polynomial function, we could try using a function that is 
linear-in-the-parameters. In this case, consider the exponential function

The unknown coefficients , , and , are computed by performing a least 
squares fit. Construct and solve the set of simultaneous equations by forming 

y 0.5318 0.919 1( )t 0.2387t2–+=

0 0.5 1 1.5 2 2.5
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

y a0 a1e t– a2te t–+ +=

a0 a1 a2



Regression and Curve Fitting

3-19

the regression matrix, X, and solving for the coefficients using the backslash 
operator. 

X = [ones(size(t))  exp(-t)  t.*exp(-t)];
a = X\y

a =
    1.3974
- 0.8988

    0.4097

The fitted model of the data is, therefore,

Now evaluate the model at regularly spaced points and overlay the original 
data in a plot.

T = (0:0.1:2.5)';
Y = [ones(size(T))  exp(-T)  T.*exp(-T)]*a;
plot(T,Y,'-',t,y,'o'), grid on

This is a much better fit than the second-order polynomial function.
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Multiple Regression
If y is a function of more than one independent variable, the matrix equations 
that express the relationships among the variables can be expanded to 
accommodate the additional data.

Suppose we measure a quantity y for several values of  parameters  and . 
The observations are entered as 

x1 = [.2 .5 .6 .8 1.0 1.1]';
x2 = [.1 .3 .4 .9 1.1 1.4]';
y  = [.17 .26 .28 .23 .27 .24]';

A multivariate model of the data is

Multiple regression solves for unknown coefficients , , and , by 
performing a least squares fit. Construct and solve the set of simultaneous 
equations by forming the regression matrix, X, and solving for the coefficients 
using the backslash operator. 

X = [ones(size(x1))  x1  x2];
a = X\y

a =
    0.1018
    0.4844

-0.2847

The least squares fit model of the data is

To validate the model, find the maximum of the absolute value of the deviation 
of the data from the model.

Y = X*a;
MaxErr = max(abs(Y - y))

MaxErr = 
     0.0038

This is sufficiently small to be confident the model reasonably fits the data.

x1 x2

y a0 a1x1 a2x2+ +=

a0 a1 a2

y 0.1018 0.4844 x1 0.2847 x2–+=
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Case Study: Curve Fitting
This section provides an overview of some of the MATLAB basic data analysis 
capabilities in the form of a case study. The examples that follow work with a 
collection of census data, using MATLAB functions to experiment with fitting 
curves to the data:

• Polynomial fit

• Analyzing residuals

• Exponential fit

• Error bounds

This section also tells you how to use the Basic Fitting interface to perform 
curve fitting tasks.

Loading the Data
The file census.mat contains U.S. population data for the years 1790 through 
1990. Load it into MATLAB:

load census

Your workspace now contains two new variables, cdate and pop: 

• cdate is a column vector containing the years from 1790 to 1990 in 
increments of 10.

• pop is a column vector with the U.S. population figures that correspond to the 
years in cdate.

Polynomial Fit
A first try in fitting the census data might be a simple polynomial fit. Two 
MATLAB functions help with this process.

Curve Fitting Function Summary 

Function Description

polyfit Polynomial curve fit. 

polyval Evaluation of polynomial fit.
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The MATLAB polyfit function generates a “best fit” polynomial (in the least 
squares sense) of a specified order for a given set of data. For a polynomial fit 
of the fourth-order

p = polyfit(cdate,pop,4)
Warning: Polynomial is badly conditioned. Remove repeated data 
points or try centering and scaling as described in HELP POLYFIT.

p =
   1.0e+05 ∗

    0.0000   -0.0000    0.0000   -0.0126 6.0020

The warning arises because the polyfit function uses the cdate values as the 
basis for a matrix with very large values (it creates a Vandermonde matrix in 
its calculations – see the polyfit M-file for details). The spread of the cdate 
values results in scaling problems. One way to deal with this is to normalize 
the cdate data.

Preprocessing: Normalizing the Data
Normalization is a process of scaling the numbers in a data set to improve the 
accuracy of the subsequent numeric computations. A way to normalize cdate 
is to center it at zero mean and scale it to unit standard deviation:

sdate = (cdate - mean(cdate))./std(cdate)

Now try the fourth-degree polynomial model using the normalized data:

p = polyfit(sdate,pop,4)

p =
    0.7047    0.9210   23.4706   73.8598   62.2285

Evaluate the fitted polynomial at the normalized year values, and plot the fit 
against the observed data points:

pop4 = polyval(p,sdate);
plot(cdate,pop4,'-',cdate,pop,'+'), grid on
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Another way to normalize data is to use some knowledge of the solution and 
units. For example, with this data set, choosing 1790 to be year zero would also 
have produced satisfactory results.

Analyzing Residuals
A measure of the “goodness” of fit is the residual, the difference between the 
observed and predicted data. Compare the residuals for the various fits, using 
normalized cdate values. It’s evident from studying the fit plots and residuals 
that it should be possible to do better than a simple polynomial fit with this 
data set.
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Comparison Plots of Fit and Residual 

Fit Residuals

p1 = polyfit(sdate,pop,1);
pop1 = polyval(p1,sdate);
plot(cdate,pop1,'b-',cdate,pop,'g+')

res1 = pop - pop1;
figure, plot(cdate,res1,'g+')

p = polyfit(sdate,pop,2);
pop2 = polyval(p,sdate);
plot(cdate,pop2,'b-',cdate,pop,'g+')

res2 = pop - pop2;
figure, plot(cdate,res2,'g+')
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Exponential Fit
By looking at the population data plots on the previous pages, the population 
data curve is somewhat exponential in appearance. To take advantage of this, 
let’s try to fit the logarithm of the population values, again working with 
normalized year values. 

logp1 = polyfit(sdate,log10(pop),1);
logpred1 = 10.^polyval(logp1,sdate);
semilogy(cdate,logpred1,'-',cdate,pop,'+');
grid on

p = polyfit(sdate,pop,4);
pop4 = polyval(p,sdate);
plot(cdate,pop4,'b-',cdate,pop,'g+')

res4 = pop - pop4;
figure, plot(cdate,res4,'g+')

Comparison Plots of Fit and Residual  (Continued)

Fit Residuals
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Now try the logarithm analysis with a second-order model.

logp2 = polyfit(sdate,log10(pop),2);
logpred2 = 10.^polyval(logp2,sdate);
semilogy(cdate,logpred2,'-',cdate,pop,'+'); grid on
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This is a more accurate model. The upper end of the plot appears to taper off, 
while the polynomial fits in the previous section continue, concave up, to 
infinity.

Compare the residuals for the second-order logarithmic model.

The residuals are more random than for the simple polynomial fit. As might be 
expected, the residuals tend to get larger in magnitude as the population 
increases. But overall, the logarithmic model provides a more accurate fit to the 
population data.

Error Bounds
Error bounds are useful for determining if your data is reasonably modeled by 
the fit. You can obtain the error bounds by passing an optional second output 
parameter from polyfit as an input parameter to polyval. 

This example uses the census demo data and normalizes the data by centering 
it at zero mean and scaling it to unit standard deviation. The example then 

Residuals in Log Population Scale Residuals in Population Scale

logres2 = log10(pop)- 
polyval(logp2,sdate);
plot(cdate,logres2,'+')

r =  pop - 10.^(polyval(logp2,sdate));
plot(cdate,r,'+')
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uses polyfit and polyval to produce error bounds for a second-order 
polynomial model. Year values are normalized. This code uses an interval of 
±2∆, corresponding to a 95% confidence interval.

load census
sdate = (cdate - mean(cdate))./std(cdate)

[p2,S2] = polyfit(sdate,pop,2);
[pop2,del2] = polyval(p2,sdate,S2);
plot(cdate,pop,'+',cdate,pop2,'g-',cdate,pop2+2*del2,'r:',...
   cdate,pop2-2∗del2,'r:'), grid on

The Basic Fitting Interface
MATLAB supports curve fitting through the Basic Fitting interface. Using this 
interface, you can quickly perform many curve fitting tasks within the same 
easy-to-use environment. The interface is designed so that you can:

• Fit data using a spline interpolant, a shape-preserving interpolant, or a 
polynomial up to degree 10.

• Plot multiple fits simultaneously for a given data set.

1750 1800 1850 1900 1950 2000
−50

0

50

100

150

200

250

300



Case Study: Curve Fitting

3-29

• Plot the fit residuals.

• Examine the numerical results of a fit.

• Evaluate (interpolate or extrapolate) a fit.

• Annotate the plot with the numerical fit results and the norm of residuals.

• Save the fit and evaluated results to the MATLAB workspace.

Depending on your specific curve fitting application, you can use the Basic 
Fitting interface, the command line functionality, or both.

You can use the Basic Fitting interface only with 2-D data. However, if you plot 
multiple data sets as a subplot, and at least one data set is 2-D, then the 
interface is enabled.

Overview of the Basic Fitting Interface
The full Basic Fitting interface is shown below. To reproduce this state, follow 
these three steps:

1 Plot some data.

2 Select Basic Fitting from the Tools menu.

3 Click the  button twice.
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Select data – This parameter list is populated with the names of all the data 
sets you display in the figure window associated with the Basic Fitting 
interface.

Use this list to select the current data set — the data set that you want to fit. 
You can fit only one data set at a time. However, you can perform multiple fits 
for the current data set. Use the Plot Editor to change the name of a data set.

Center and scale X data – If checked, the data is centered at zero mean and 
scaled to unit standard deviation. You may need to center and scale your data 
to improve the accuracy of the subsequent numerical computations. MATLAB 
displays a warning is displayed if a fit produces results that might be 
inaccurate.

Plot fits – This panel enables you to visually explore one or more fits to the 
current data set:

• Check to display fits on figure – Select the fits you want to display for the 
current data set. There are two types of fits to choose from: interpolants and 
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polynomials. The spline interpolant uses the spline function, while the 
shape-preserving interpolant uses the pchip function. Refer to the pchip 
online help for a comparison of these two functions. The polynomial fits use 
the polyfit function. You can choose as many fits for a given data set as you 
want. 

If your data set has N points, then you should use polynomials with, at most, 
N coefficients. If your fit uses polynomials with more than N coefficients, the 
interface automatically sets a sufficient number of coefficients to 0 during 
the calculation so that the system is not underdetermined.

• Show equations – If checked, the fit equation is displayed on the plot.

- Significant digits – Select the significant digits associated with the 
equation display.

• Plot residuals – If checked, the fit residuals are displayed. The fit residuals 
are defined as the difference between the ordinate data point and the 
resulting fit for each abscissa data point. You can display the residuals as a 
bar plot, as a scatter plot, or as a line plot in the same figure window as the 
data or in a separate figure window. If you use subplots to plot multiple data 
sets, then residuals can be plotted only in a separate figure window.

- Show norm of residuals – If checked, the norm of residuals are displayed. 
The norm of residuals is a measure of the goodness of fit, where a smaller 
value indicates a better fit than a larger value. It is calculated using the 
norm function, norm(V,2), where V is the vector of residuals.

Numerical results – This panel allows you to explore the numerical results of 
a single fit to the current data set without plotting the fit:

• Fit – Select the equation to fit to the current data set. The fit results are 
displayed in the list box below the menu. Note that selecting an equation in 
this menu does not affect the state of the Plot fits panel. Therefore, if you 
want to display the fit in the data plot, you may need to select the associated 
check box in Plot fits.

• Coefficients and norm of residuals – Display the numerical results for the 
equation selected in Fit. Note that when you first open the Numerical 
Results panel, the results of the last fit you selected in Plot fits are 
displayed.

• Save to workspace – Launch a dialog box that allows you to save the fit 
results to workspace variables.
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• Find Y = f(X) – Interpolate or extrapolate the current fit.

- Enter value(s) – Enter a MATLAB expression to evaluate for the current 
fit. The expression is evaluated after you press the Evaluate button, and 
the results are displayed in the associated table. The current fit is 
displayed in the Fit menu.

- Save to workspace – Launch a dialog box that allows you to save the 
evaluated results to workspace variables.

- Plot results – If checked, the evaluated results are displayed on the data 
plot.

Example: Using the Basic Fitting Interface
This example illustrates the features of the Basic Fitting interface by fitting a 
cubic polynomial to the census data. You may want to repeat this example 
using different equations and compare results. To launch the interface:

1 Plot some data.

plot(cdate,pop,'ro')
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2 Select Basic Fitting from the Tools menu in the figure.

Configure the Basic Fitting interface to:

• Fit a cubic polynomial to the data.

• Display the equation in the data plot.

• Plot the fit residuals as a bar plot, and display the residuals as a subplot of 
the data figure window.

• Display the norm of the residuals.



3 Data Analysis and Statistics

3-34

This configuration is shown below.

The Plot fits panel enables you to visually explore multiple fits to the current 
data set. For comparison, try fitting additional equations to the census data by 
selecting the appropriate check boxes. If an equation produces results that 
might be numerically inaccurate, MATLAB displays a warning. In this case, 
you should select the Center and scale X data check box to improve the 
numerical accuracy.

Fit a cubic polynomial to the data

Show the equation

Show the norm of the residuals

Plot the residuals as a bar plot in 
the data figure window

Current data set
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The resulting fit and the residuals are shown in the following plot.

The plot legend indicates the name of the data set and the equation. If the 
legend covers part of the plot, you can click and drag it to another location. The 
legend is automatically updated as you add or remove data sets or fits. 
Additionally, fits are displayed using a default set of line styles and colors. You 
can change any of the default plot settings using the Plot Editor. However, any 
changes you make are undone if you subsequently perform another fit. To 
retain changes, you should wait until after you have finished fitting your data.

Note  If you change the name of a data set in the legend, then the name is 
automatically changed in the Select data menu.

By selecting the  button, you can examine the fit coefficients and the norm 
of the residuals.

Click and drag legend if it 
covers part of the plot
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The Fit menu enables you to explore numerical fit results for the current data 
set without plotting the fit. For comparison, you can display the numerical 
results for other fits by selecting the desired equation. Note that if you want to 
display a fit in the data plot, you have to select the associated check box in Plot 
fits.

You can save the fit results to the MATLAB workspace by selecting the Save 
to workspace button.
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The fit structure is

fit1
fit1 = 
     type: 'polynomial degree 3'
    coeff: [3.8555e-006 -0.0153 17.7815 -4.8519e+003]

You may want to use this structure for subsequent display or analysis. For 
example, you can use the saved coefficients and the polyval function to 
evaluate the cubic polynomial at the command line.

By selecting the  button again, you can specify a vector of x-values at which 
to evaluate the current fit. Enter the vector in the field next to the Evaluate 
button, and then click Evaluate. For example, if you enter the vector 
2000:10:2050, the population for the years 2000 to 2050 is evaluated in 
increments of 10. The x-values and the corresponding values for f(x), evaluated 
from the fit, are displayed in the pane below Evaluate, as shown in the 
following figure.
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Select the Plot evaluated results check box to display the evaluated points 
along with the current data set in the data plot, as shown in the following 
figure.

You can save the evaluated data to the MATLAB workspace by selecting the 
Save to workspace button.
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Difference Equations and Filtering
MATLAB has functions for working with difference equations and filters. 
These functions operate primarily on vectors.

Vectors are used to hold sampled-data signals, or sequences, for signal 
processing and data analysis. For multi-input systems, each row of a matrix 
corresponds to a sample point with each input appearing as columns of the 
matrix.

The function

y = filter(b,a,x)

processes the data in vector x with the filter described by vectors a and b, 
creating filtered data y. 

The filter command can be thought of as an efficient implementation of the 
difference equation. The filter structure is the general tapped delay-line filter 
described by the difference equation below, where n is the index of the current 
sample, na is the order of the polynomial described by vector a and nb is the 
order of the polynomial described by vector b. The output y(n), is a linear 
combination of current and previous inputs, x(n) x(n-1) ..., and previous 
outputs, y(n-1) y(n-2) ...

Suppose, for example, we want to smooth our traffic count data with a moving 
average filter to see the average traffic flow over a 4-hour window. This process 
is represented by the difference equation 

The corresponding vectors are

a = 1;
b = [1/4 1/4 1/4 1/4];

a 1( )y n( ) b 1( )x n( ) b 2( )x n 1–( ) … b nb( )x n nb– 1+( )+ + +=

a 2( )y n 1–( )– …– a na( )y n na– 1+( )–

y n( ) 1
4
---x n( ) 1

4
---x n 1–( ) 1

4
---x n 2–( ) 1

4
---x n 3–( )+ + +=
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Note  Enter the format command, format rat, to display and enter data 
using the rational format. 

Executing the command

load count.dat

creates the matrix count in the workspace.

For this example, extract the first column of traffic counts and assign it to the 
vector x.

x = count(:,1);

The 4-hour moving-average of the data is efficiently calculated with

y = filter(b,a,x);

Compare the original data and the smoothed data with an overlaid plot of the 
two curves.

t = 1:length(x);
plot(t,x,'-.',t,y,'-'), grid on
legend('Original Data','Smoothed Data',2)
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The filtered data represented by the solid line is the 4-hour moving average of 
the observed traffic count data represented by the dashed line.

For practical filtering applications, the Signal Processing Toolbox includes 
numerous functions for designing and analyzing filters.
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Fourier Analysis and the Fast Fourier Transform (FFT)
Fourier analysis is extremely useful for data analysis, as it breaks down a 
signal into constituent sinusoids of different frequencies. For sampled vector 
data, Fourier analysis is performed using the discrete Fourier transform 
(DFT).

The fast Fourier transform (FFT) is an efficient algorithm for computing the 
DFT of a sequence; it is not a separate transform. It is particularly useful in 
areas such as signal and image processing, where its uses range from filtering, 
convolution, and frequency analysis to power spectrum estimation. 

This section:

• Summarizes the Fourier transform functions

• Introduces Fourier transform analysis with an example about sunspot 
activity

• Calculates magnitude and phase of transformed data

• Discusses the dependence of execution time on length of the transform

Function Summary
MATLAB provides a collection of functions for computing and working with 
Fourier transforms.

FFT Function Summary 

Function Description

fft Discrete Fourier transform.

fft2 Two-dimensional discrete Fourier transform.

fftn N-dimensional discrete Fourier transform.

ifft Inverse discrete Fourier transform.

ifft2 Two-dimensional inverse discrete Fourier transform.

ifftn N-dimensional inverse discrete Fourier transform.

abs Magnitude.
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Introduction
For length N input sequence x, the DFT is a length N vector, X. fft and ifft 
implement the relationships

Note  Since the first element of a MATLAB vector has an index 1, the 
summations in the equations above are from 1 to N. These produce identical 
results as traditional Fourier equations with summations from 0 to N-1.

If x(n) is real, we can rewrite the above equation in terms of a summation of 
sine and cosine functions with real coefficients

angle Phase angle.

unwrap Unwrap phase angle in radians.

fftshift Move zeroth lag to center of spectrum.

cplxpair Sort numbers into complex conjugate pairs.

nextpow2 Next higher power of two.

FFT Function Summary  (Continued)

Function Description

X k( ) x n( )e
j2π k 1–( ) n 1–

N
-------------⎝ ⎠

⎛ ⎞ 1 k N≤ ≤–

n 1=

N

∑=

x n( ) 1
N
---- X k( )e

j2π k 1–( ) n 1–
N

-------------⎝ ⎠
⎛ ⎞ 1 n N≤ ≤

k 1=

N

∑=

x n( ) 1
N
---- a k( ) 2π k 1–( ) n 1–( )

N
-------------------------------------------⎝ ⎠

⎛ ⎞cos b k( ) 2π k 1–( ) n 1–( )
N

-------------------------------------------⎝ ⎠
⎛ ⎞sin+

k 1=

N

∑=
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where

Finding an FFT
The FFT of a column vector x

x = [4 3 7 -9 1 0 0 0]' ;

is found with

y = fft(x)

which results in

y =
6.0000
11.4853 - 2.7574i
-2.0000 -12.0000i
-5.4853 +11.2426i
18.0000
-5.4853 -11.2426i
-2.0000 +12.0000i
11.4853 + 2.7574i

Notice that although the sequence x is real, y is complex. The first component 
of the transformed data is the constant contribution and the fifth element 
corresponds to the Nyquist frequency. The last three values of y correspond to 
negative frequencies and, for the real sequence x, they are complex conjugates 
of three components in the first half of y.

Example: Using FFT to Calculate Sunspot Periodicity
Suppose, we want to analyze the variations in sunspot activity over the last 300 
years. You are probably aware that sunspot activity is cyclical, reaching a 
maximum about every 11 years. Let’s confirm that. 

Astronomers have tabulated a quantity called the Wolfer number for almost 
300 years. This quantity measures both number and size of sunspots.

Load and plot the sunspot data.

load sunspot.dat
year = sunspot(:,1);

a k( ) X k( )( ),  b k( )real X k( )( ), 1 n N≤ ≤imag–= =
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wolfer = sunspot(:,2);
plot(year,wolfer)
title('Sunspot Data')

Now take the FFT of the sunspot data.

Y = fft(wolfer);

The result of this transform is the complex vector, Y.  The magnitude of Y 
squared is called the power and a plot of power versus frequency is a 
“periodogram.” Remove the first component of Y, which is simply the sum of the 
data, and plot the results.

N = length(Y);
Y(1) = [];
power = abs(Y(1:N/2)).^2;
nyquist = 1/2;
freq = (1:N/2)/(N/2)*nyquist;
plot(freq,power), grid on
xlabel('cycles/year')
title('Periodogram')
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The scale in cycles/year is somewhat inconvenient. Let’s plot in years/cycle and 
estimate what one cycle is. For convenience, plot the power versus period 
(where period = 1./freq) from 0 to 40 years/cycle.

period = 1./freq;
plot(period,power), axis([0 40 0 2e7]), grid on
ylabel('Power')
xlabel('Period(Years/Cycle)')
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In order to determine the cycle more precisely, 

[mp,index] = max(power);
period(index)

ans = 
      11.0769

Magnitude and Phase of Transformed Data 
Important information about a transformed sequence includes its magnitude 
and phase. The MATLAB functions abs and angle calculate this information.

To try this, create a time vector t, and use this vector to create a sequence x 
consisting of two sinusoids at different frequencies.

t = 0:1/100:10-1/100;
x = sin(2*pi*15*t) + sin(2*pi*40*t);

Now use the fft function to compute the DFT of the sequence. The code below 
calculates the magnitude and phase of the transformed sequence. It uses the 
abs function to obtain the magnitude of the data, the angle function to obtain 
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the phase information, and unwrap to remove phase jumps greater than pi to 
their 2*pi complement.

y = fft(x); 
m = abs(y);
p = unwrap(angle(y));

Now create a frequency vector for the x-axis and plot the magnitude and phase.

f = (0:length(y)-1)'*100/length(y);
subplot(2,1,1), plot(f,m), 
ylabel('Abs. Magnitude'), grid on
subplot(2,1,2), plot(f,p*180/pi)
ylabel('Phase [Degrees]'), grid on
xlabel('Frequency [Hertz]')

The magnitude plot is perfectly symmetrical about the Nyquist frequency of 50 
hertz. The useful information in the signal is found in the range 0 to 50 hertz.
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FFT Length Versus Speed
You can add a second argument to fft to specify a number of points n for the 
transform

y = fft(x,n)

With this syntax, fft pads x with zeros if it is shorter than n, or truncates it if 
it is longer than n. If you do not specify n, fft defaults to the length of the input 
sequence.

The execution time for fft depends on the length of the transform. It is fastest 
for powers of two. It is almost as fast for lengths that have only small prime 
factors. It is typically several times slower for lengths that are prime or which 
have large prime factors.

The inverse FFT function ifft also accepts a transform length argument.

For practical application of the FFT, the Signal Processing Toolbox includes 
numerous functions for spectral analysis.
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4

Function Functions

See the “Differential Equations” and “Sparse Matrices” chapters for information about the use of 
other function functions.

For information about function handles, see the function_handle (@), func2str, and str2func 
reference pages, and the “Function Handles” section of “Programming and Data Types” in the 
MATLAB documentation.

Function Summary (p. 4-2) A summary of some function functions

Representing Functions in MATLAB 
(p. 4-3)

Some guidelines for representing functions in MATLAB

Plotting Mathematical Functions 
(p. 4-5)

A discussion about using fplot to plot mathematical 
functions

Minimizing Functions and Finding 
Zeros (p. 4-8)

A discussion of high-level function functions that perform 
optimization-related tasks

Numerical Integration (Quadrature) 
(p. 4-27)

A discussion of the MATLAB quadrature functions

Parameterizing Functions Called by 
Function Functions (p. 4-30)

Explains how to pass additional arguments to 
user-defined functions that are called by a function 
function.
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Function Summary
Function functions are functions that call other functions as input arguments. 
An example of a function function is fplot, which plots the graphs of functions. 
You can call the function fplot with the syntax 

fplot(@fun, [-pi pi])

where the input argument @fun is a handle to the function you want to plot. 
The function fun is referred to as the called function.

The function functions are located in the MATLAB funfun directory.

This table provides a brief description of the functions discussed in this 
chapter. Related functions are grouped by category.

Function Summary 

Category Function Description

Plotting fplot Plot function

Optimization 
and zero finding

fminbnd Minimize function of one variable with 
bound constraints.

fminsearch Minimize function of several variables.

fzero Find zero of function of one variable.

Numerical 
integration

quad Numerically evaluate integral, adaptive 
Simpson quadrature.

quadl Numerically evaluate integral, adaptive 
Lobatto quadrature.

quadv Vecotorized quadrature

dblquad Numerically evaluate double integral.

triplequad Numerically evaluate triple integral.
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Representing Functions in MATLAB
MATLAB can represent mathematical functions by expressing them as 
MATLAB functions in M-files or as anonymous functions. For example, 
consider the function

This function can be used as input to any of the function functions. 

MATLAB Functions
You can find the function above in the M-file named humps.m.

function y = humps(x)
y = 1./((x - 0.3).^2 + 0.01) + 1./((x - 0.9).^2 + 0.04) - 6;

To evaluate the function humps at 2.0, use @ to obtain a function handle for 
humps, and then use the function handle in the same way you would use a 
function name to call the function:

fh = @humps;
fh(2.0)

ans =
   -4.8552

Anonymous Functions
A second way to represent a mathematical function at the command line is by 
creating an anonymous function from a string expression. For example, you 
can create an anonymous function of the humps function. The value returned, 
fh, is a function handle:

fh = @(x)1./((x-0.3).^2 + 0.01) + 1./((x-0.9).^2 + 0.04)-6;

You can then evaluate fh at 2.0 in the same way that you can with a function 
handle for a MATLAB function:

fh(2.0)
ans =

-4.8552

f x( ) 1

x 0.3–( )2 0.01+
------------------------------------------- 1

x 0.9–( )2 0.04+
------------------------------------------- 6–+=
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You can also create anonymous functions of more than one argument. The 
following function has two input arguments x and y.

fh = @(x,y)y*sin(x)+x*cos(y);
fh(pi,2*pi)
ans =
    3.1416



Plotting Mathematical Functions

4-5

Plotting Mathematical Functions
The fplot function plots a mathematical function between a given set of axes 
limits. You can control the x-axis limits only, or both the x- and y-axis limits. 
For example, to plot the humps function over the x-axis range [-5 5], use

fplot(@humps,[-5 5])
grid on

You can zoom in on the function by selecting y-axis limits of -10 and 25, using

fplot(@humps,[-5 5 -10 25])
grid on
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You can also pass the function handle for an anonymous function for fplot to 
graph, as in

fplot(@(x)2*sin(x+3),[-1 1]);

You can plot more than one function on the same graph with one call to fplot. 
If you use this with a function, then the function must take a column vector x 
and return a matrix where each column corresponds to each function, 
evaluated at each value of x.

If you pass an anonymous function consisting of several functions to fplot, the 
anonymous function also must return a matrix where each column corresponds 
to each function evaluated at each value of x, as in

fplot(@(x)[2*sin(x+3), humps(x)],[-5 5])

which plots the first and second functions on the same graph.
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Note that the anonymous function

fh = @(x)[2*sin(x+3), humps(x)];

evaluates to a matrix of two columns, one for each function, when x is a column 
vector.

fh([1;2;3])

returns

   -1.5136   16.0000
   -1.9178   -4.8552
   -0.5588   -5.6383
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Minimizing Functions and Finding Zeros
MATLAB provides a number of high-level function functions that perform 
optimization-related tasks. This section describes the following topics:

• “Minimizing Functions of One Variable” on page 4-8

• “Minimizing Functions of Several Variables” on page 4-9

• “Fitting a Curve to Data” on page 4-10

• “Setting Minimization Options” on page 4-12

• “Output Functions” on page 4-14

• “Finding Zeros of Functions” on page 4-21

The MATLAB optimization functions are:

For more optimization capabilities, see the Optimization Toolbox.

Minimizing Functions of One Variable
Given a mathematical function of a single variable coded in an M-file, you can 
use the fminbnd function to find a local minimizer of the function in a given 
interval. For example, to find a minimum of the humps function in the range 
(0.3, 1), use

x = fminbnd(@humps,0.3,1)

which returns

x =
    0.6370

fminbnd Minimize a function of one variable on a fixed interval

fminsearch Minimize a function of several variables

fzero Find zero of a function of one variable

lsqnonneg Linear least squares with nonnegativity constraints

optimget Get optimization options structure parameter values

optimset Create or edit optimization options parameter structure
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You can ask for a tabular display of output by passing a fourth argument 
created by the optimset command to fminbnd

x = fminbnd(@humps,0.3,1,optimset('Display','iter'))

which gives the output

Func-count     x          f(x)         Procedure
    3       0.567376      12.9098        initial
    4       0.732624      13.7746        golden
    5       0.465248      25.1714        golden
    6       0.644416      11.2693        parabolic
    7         0.6413      11.2583        parabolic
    8       0.637618      11.2529        parabolic
    9       0.636985      11.2528        parabolic
   10       0.637019      11.2528        parabolic
   11       0.637052      11.2528        parabolic
 
Optimization terminated:
 the current x satisfies the termination criteria using 
OPTIONS.TolX of 1.000000e-004 

x =

    0.6370

This shows the current value of x and the function value at f(x) each time a 
function evaluation occurs. For fminbnd, one function evaluation corresponds 
to one iteration of the algorithm. The last column shows what procedure is 
being used at each iteration, either a golden section search or a parabolic 
interpolation.

Minimizing Functions of Several Variables
The fminsearch function is similar to fminbnd except that it handles functions 
of many variables, and you specify a starting vector x0 rather than a starting 
interval. fminsearch attempts to return a vector x that is a local minimizer of 
the mathematical function near this starting vector.

To try fminsearch, create a function three_var of three variables, x, y, and z.

function b = three_var(v)
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x = v(1);
y = v(2);
z = v(3);
b = x.^2 + 2.5*sin(y) - z^2*x^2*y^2;

Now find a minimum for this function using x = -0.6, y = -1.2, and 
z = 0.135 as the starting values.

v = [-0.6 -1.2 0.135];
a = fminsearch(@three_var,v)

a =
    0.0000   -1.5708    0.1803

Fitting a Curve to Data
This section gives an example that shows how to fit an exponential function of 
the form  to some data. The example uses the function fminsearch to 
minimize the sum of squares of errors between the data and an exponential 
function  for varying parameters A and λ. This section covers the 
following topics.

• “Creating an M-file for the Example” on page 4-10

• “Running the Example” on page 4-11

• “Plotting the Results” on page 4-11

Creating an M-file for the Example
To run the example, first create an M-file that 

• Accepts vectors corresponding to the x- and y-coordinates of the data

• Returns the parameters of the exponential function that best fits the data

To do so, copy and paste the following code into an M-file and save it as 
fitcurvedemo in a directory on the MATLAB path.

function [estimates, model] = fitcurvedemo(xdata, ydata)
% Call fminsearch with a random starting point.
start_point = rand(1, 2);
model = @expfun;
estimates = fminsearch(model, start_point);
% expfun accepts curve parameters as inputs, and outputs sse,

Ae λ– t

Ae λ– t
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% the sum of squares error for A * exp(-lambda * xdata) - ydata, 
% and the FittedCurve. FMINSEARCH only needs sse, but we want to 
% plot the FittedCurve at the end.
    function [sse, FittedCurve] = expfun(params)
        A = params(1);
        lambda = params(2);
        FittedCurve = A .* exp(-lambda * xdata);
        ErrorVector = FittedCurve - ydata;
        sse = sum(ErrorVector .^ 2);
    end
end

The M-file calls the function fminsearch, which find parameters A and lambda 
that minimize the sum of squares of the differences between the data and the 
exponential function A*exp(-lambda*t). The nested function expfun computes 
the sum of squares.

Running the Example
To run the example, first create some random data to fit. The following 
commands create random data that is approximately exponential with 
parameters A = 40 and lambda = .5.

xdata = (0:.1:10)'; 
ydata = 40 * exp(-.5 * xdata) + randn(size(xdata));

To fit an exponential function to the data, enter 

[estimates, model] = fitcurvedemo(xdata,ydata)

This returns estimates for the parameters A and lambda,

estimates =

   40.1334    0.5025

and a function handle, model, to the function that computes the exponential 
function A*exp(-lambda*t).

Plotting the Results
To plot the fit and the data, enter the following commands.

plot(xdata, ydata, '*')
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hold on
[sse, FittedCurve] = model(estimates);
plot(xdata, FittedCurve, 'r')
 
xlabel('xdata')
ylabel('f(estimates,xdata)')
title(['Fitting to function ', func2str(model)]);
legend('data', ['fit using ', func2str(model)])
hold off

The resulting plot displays the data points and the exponential fit.

Setting Minimization Options
You can specify control options that set some minimization parameters using 
an options structure that you create using the function optimset. You then 
pass options as in input to the optimization function, for example, by calling 
fminbnd with the syntax
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x = fminbnd(fun,x1,x2,options)

or fminsearch with the syntax

x = fminsearch(fun,x0,options)

Use optimset to set the values of the options structure. For example, to set 
the 'Display' option to 'iter', in order to display output from the algorithm 
at each iteration, enter

options = optimset('Display','iter');

fminbnd and fminsearch use only the options parameters shown in the 
following table. 

The number of function evaluations, the number of iterations, and the 
algorithm are returned in the structure output when you provide fminbnd or 
fminsearch with a fourth output argument, as in

[x,fval,exitflag,output] = fminbnd(@humps,0.3,1); 

or

[x,fval,exitflag,output] = fminsearch(@three_var,v);

options.Display A flag that determines if intermediate steps in the 
minimization appear on the screen. If set to 'iter', 
intermediate steps are displayed; if set to 'off', no 
intermediate solutions are displayed, if set to final, 
displays just the final output.

options.TolX The termination tolerance for x. Its default value is 
1.e-4.

options.TolFun The termination tolerance for the function value. 
The default value is 1.e-4. This parameter is used 
by fminsearch, but not fminbnd.

options.MaxIter Maximum number of iterations allowed.

options.MaxFunEvals The maximum number of function evaluations 
allowed. The default value is 500 for fminbnd and 
200*length(x0) for fminsearch.
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Output Functions
An output function is a function that an optimization function calls at each 
iteration of its algorithm. Typically, you might use an output function to 
generate graphical output, record the history of the data the algorithm 
generates, or halt the algorithm based on the data at the current iteration. You 
can create an output function as an M-file function, a subfunction, or a nested 
function.

You can use the OutputFcn option with the following MATLAB optimization 
functions:

• fminbnd

• fminsearch

• fzero

This section covers the following topics:

• “Creating and Using an Output Function” on page 4-14

• “Structure of the Output Function” on page 4-16

• “Example of a Nested Output Function” on page 4-16

• “Fields in optimValues” on page 4-19

• “States of the Algorithm” on page 4-20

• “Stop Flag” on page 4-20

Creating and Using an Output Function
The following is a simple example of an output function that plots the points 
generated by an optimization function.

function stop = outfun(x, optimValues, state)
stop = [];
hold on;
plot(x(1),x(2),'.');
drawnow

You can use this output function to plot the points generated by fminsearch in 
solving the optimization problem

minimize
x

f x( ) e
x1 4x1

2 2x2
2 4x1x2 2x2 1+ + + +( )=
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To do so,

1 Create an M-file containing the preceding code and save it as outfun.m in a 
directory on the MATLAB path.

2 Enter the command

options = optimset('OutputFcn', @outfun);

to set the value of the Outputfcn field of the options structure to a function 
handle to outfun.

3 Enter the following commands:

hold on
objfun=@(x) exp(x(1))*(4*x(1)^2+2*x(2)^2+x(1)*x(2)+2*x(2));
[x fval] = fminsearch(objfun, [-1 1], options)
hold off

This returns the solution

x =

    0.1290   -0.5323

fval =

   -0.5689
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and displays the following plot of the points generated by fminsearch:

Structure of the Output Function
The function definition line of the output function has the following form:

stop = outfun(x, optimValues, state)

where

• stop is a flag that is true or false depending on whether the optimization 
routine should quit or continue. See “Stop Flag” on page 4-20.

• x is the point computed by the algorithm at the current iteration.

• optimValues is a structure containing data from the current iteration. 
“Fields in optimValues” on page 4-19 describes the structure in detail.

• state is the current state of the algorithm. “States of the Algorithm” on 
page 4-20 lists the possible values.

The optimization function passes the values of the input arguments to outfun 
at each iteration.

Example of a Nested Output Function
The example in “Creating and Using an Output Function” on page 4-14 does 
not require the output function to preserve data from one iteration to the next. 
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When this is the case, you can write the output function as an M-file and call 
the optimization function directly from the command line. However, if you 
want your output function to record data from one iteration to the next, you 
should write a single M-file that does the following:

• Contains the output function as a nested function — see Nested Functions in 
the online MATLAB documentation for more information.

• Calls the optimization function. 

In the following example, the M-file also contains the objective function as a 
subfunction, although you could also write the objective function as a separate 
M-file or as an anonymous function.

Since the nested function has access to variables in the M-file function that 
contains it, this method enables the output function to preserve variables from 
one iteration to the next.

The following example uses an output function to record the points generated 
by fminsearch in solving the optimization problem

and returns the sequence of points as a matrix called history. 

To run the example, do the following steps:

1 Open a new M-file in the MATLAB editor.

2 Copy and paste the following code into the M-file.

function [x fval history] = myproblem(x0)
    history = [];
    options = optimset('OutputFcn', @myoutput);
    [x fval] = fminsearch(@objfun, x0,options);
        
    function stop = myoutput(x,optimvalues,state);
        stop = [];
        if state == 'iter'
        history = [history; x];
        end
    end
    

minimize
x

f x( ) e
x1 4x1

2 2x2
2 4x1x2 2x2 1+ + + +( )=
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    function z = objfun(x)
z = exp(x(1))*(4*x(1)^2+2*x(2)^2+x(1)*x(2)+2*x(2));

    end
end

3 Save the file as myproblem.m in a directory on the MATLAB path.

4 At the MATLAB prompt, enter

[x fval history] = myproblem([-1 1])

The function fminsearch returns x, the optimal point, and fval, the value of 
the objective functions at x.

x =

    0.1290   -0.5323

fval =

   -0.5689

In addition, the output function myoutput returns the matrix history, which 
contains the points generated by the algorithm at each iteration, to the 
MATLAB workspace. The first four rows of history are

history(1:4,:)

ans =

   -1.0000    1.0000
   -1.0000    1.0500
   -1.0750    0.9000
   -1.0125    0.8500

The final row of points is the same as the optimal point, x.

history(end,:)

ans =

    0.1290   -0.5323
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objfun(history(end,:))

ans =

   -0.5689

Fields in optimValues
The following table lists the fields of the optimValues structure that are 
provided by all three optimization functions, fminbnd, fminsearch, and fzero. 
The function fzero also provides additional fields that are described in its 
reference page. 

 The “Command-Line Display Headings” column of the table lists the headings, 
corresponding to the optimValues fields that are displayed at the command 
line when you set the Display parameter of options to 'iter'.

optimValues Field 
(optimValues.field)

Description Command-Line 
Display 
Heading

funcount Cumulative number of 
function evaluations. 

Func-count

fval Function value at 
current point.

min f(x)

iteration Iteration number — 
starts at 0.

Iteration

procedure Procedure messages Procedure
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States of the Algorithm
The following table lists the possible values for state:

The following code illustrates how the output function might use the value of 
state to decide which tasks to perform at the current iteration. 

switch state
    case 'init'
          % Setup for plots or guis
    case 'iter'
          % Make updates to plot or guis as needed.
    case 'interrupt'
          % Check conditions to see whether optimization 

% should quit.
        case 'done'
          % Cleanup of plots, guis, or final plot
otherwise
end

Stop Flag
The output argument stop is a flag that is true or false. The flag tells the 
optimization function whether the optimization should quit or continue. The 
following examples show typical ways to use the stop flag. 

State Description

'init' The algorithm is in the initial state before the first 
iteration.

'interrupt' The algorithm is performing an iteration. In this state, the 
output function can interrupt the current iteration of the 
optimization. You might want the output function to do this 
to improve the efficiency of the computations. When state is 
set to 'interrupt', the values of x and optimValues are the 
same as at the last call to the output function, in which 
state is set to 'iter'.

'iter' The algorithm is at the end of an iteration.

'done' The algorithm is in the final state after the last iteration.
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Stopping an Optimization Based on Data in optimValues. The output function can stop 
an optimization at any iteration based on the current data in optimValues. For 
example, the following code sets stop to true if the objective function value is 
less than 5:

function stop = myoutput(x, optimValues, state)
stop = false;
% Check if objective function is less than 5.
if optimValues.fval < 5

stop = true;
end 

Stopping an Optimization Based on GUI Input. If you design a GUI to perform 
optimizations, you can make the output function stop an optimization when a 
user clicks a Stop button on the GUI. The following code shows how to do this, 
assuming that the Stop button callback stores the value true in the optimstop 
field of a handles structure called hObject stored in appdata.

function stop = myoutput(x, optimValues, state)
stop = false;
% Check if user has requested to stop the optimization.
stop = getappdata(hObject,'optimstop');

Finding Zeros of Functions
The fzero function attempts to find a zero of one equation with one variable. 
You can call this function with either a one-element starting point or a 
two-element vector that designates a starting interval. If you give fzero a 
starting point x0, fzero first searches for an interval around this point where 
the function changes sign. If the interval is found, fzero returns a value near 
where the function changes sign. If no such interval is found, fzero returns 
NaN. Alternatively, if you know two points where the function value differs in 
sign, you can specify this starting interval using a two-element vector; fzero is 
guaranteed to narrow down the interval and return a value near a sign change.

The following sections contain two examples that illustrate how to find a zero 
of a function using a starting interval and a starting point. The examples use 
the function humps, which is provided with MATLAB. The following figure 
shows the graph of humps.



4 Function Functions

4-22

Using a Starting Interval
The graph of humps indicates that the function is negative at x = -1 and 
positive at x = 1. You can confirm this by calculating humps at these two points.

humps(1)

ans =
    16

humps(-1)

ans =
   -5.1378

Consequently, you can use [-1 1] as a starting interval for fzero. 

The iterative algorithm for fzero finds smaller and smaller subintervals of 
[-1 1]. For each subinterval, the sign of humps differs at the two endpoints. As 
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the endpoints of the subintervals get closer and closer, they converge to a zero 
for humps.

To show the progress of fzero at each iteration, set the Display option to iter 
using the function optimset.

options = optimset('Display','iter');

Then call fzero as follows:

a = fzero(@humps,[-1 1],options)

This returns the following iterative output:

a = fzero(@humps,[-1 1],options)
 
 Func-count    x          f(x)             Procedure
    2              -1      -5.13779        initial
    3       -0.513876      -4.02235        interpolation
    4       -0.513876      -4.02235        bisection
    5       -0.473635      -3.83767        interpolation
    6       -0.115287      0.414441        bisection
    7       -0.115287      0.414441        interpolation
    8       -0.132562    -0.0226907        interpolation
    9       -0.131666    -0.0011492        interpolation
   10       -0.131618  1.88371e-007        interpolation
   11       -0.131618  -2.7935e-011        interpolation
   12       -0.131618  8.88178e-016        interpolation
   13       -0.131618  8.88178e-016        interpolation
 
Zero found in the interval [-1, 1]

a =

   -0.1316

Each value x represents the best endpoint so far. The Procedure column tells 
you whether each step of the algorithm uses bisection or interpolation. 

You can verify that the function value at a is close to zero by entering 

humps(a)

ans =
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  8.8818e-016

Using a Starting Point
Suppose you do not know two points at which the function values of humps 
differ in sign. In that case, you can choose a scalar x0 as the starting point for 
fzero. fzero first searches for an interval around this point on which the 
function changes sign. If fzero finds such an interval, it proceeds with the 
algorithm described in the previous section. If no such interval is found, fzero 
returns NaN.

For example, if you set the starting point to -0.2, the Display option to Iter, 
and call fzero by

a = fzero(@humps,-0.2,options)

fzero returns the following output:

Search for an interval around -0.2 containing a sign change:
 Func-count    a          f(a)             b          f(b)        Procedure
    1            -0.2      -1.35385          -0.2      -1.35385   initial interval
    3       -0.194343      -1.26077     -0.205657      -1.44411   search
    5          -0.192      -1.22137        -0.208       -1.4807   search
    7       -0.188686      -1.16477     -0.211314      -1.53167   search
    9          -0.184      -1.08293        -0.216      -1.60224   search
   11       -0.177373     -0.963455     -0.222627      -1.69911   search
   13          -0.168     -0.786636        -0.232      -1.83055   search
   15       -0.154745      -0.51962     -0.245255      -2.00602   search
   17          -0.136     -0.104165        -0.264      -2.23521   search
   18        -0.10949      0.572246        -0.264      -2.23521   search
 
Search for a zero in the interval [-0.10949, -0.264]:
 Func-count    x          f(x)             Procedure
   18        -0.10949      0.572246        initial
   19       -0.140984     -0.219277        interpolation
   20       -0.132259    -0.0154224        interpolation
   21       -0.131617  3.40729e-005        interpolation
   22       -0.131618 -6.79505e-008        interpolation
   23       -0.131618 -2.98428e-013        interpolation
   24       -0.131618  8.88178e-016        interpolation
   25       -0.131618  8.88178e-016        interpolation
 
Zero found in the interval [-0.10949, -0.264]

a =

   -0.1316
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The endpoints of the current subinterval at each iteration are listed under the 
headings a and b, while the corresponding values of humps at the endpoints are 
listed under f(a) and f(b), respectively.

Note  The endpoints a and b are not listed in any specific order: a can be 
greater than b or less than b.

For the first nine steps, the sign of humps is negative at both endpoints of the 
current subinterval, which are listed under in the output. At the tenth step, the 
sign of humps is positive at the endpoint, -0.10949, but negative at the 
endpoint, -0.264. From this point on, the algorithm continues to narrow down 
the interval [-0.10949 -0.264], as described in the previous section, until it 
reaches the value -0.1316. 

Tips
Optimization problems may take many iterations to converge. Most 
optimization problems benefit from good starting guesses. Providing good 
starting guesses improves the execution efficiency and may help locate the 
global minimum instead of a local minimum.

Sophisticated problems are best solved by an evolutionary approach, whereby 
a problem with a smaller number of independent variables is solved first. 
Solutions from lower order problems can generally be used as starting points 
for higher order problems by using an appropriate mapping.

The use of simpler cost functions and less stringent termination criteria in the 
early stages of an optimization problem can also reduce computation time. 
Such an approach often produces superior results by avoiding local minima.

Troubleshooting
Below is a list of typical problems and recommendations for dealing with them.
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Problem Recommendation

The solution found by fminbnd 
or fminsearch does not appear 
to be a global minimum.

There is no guarantee that you have a global minimum unless 
your problem is continuous and has only one minimum. 
Starting the optimization from a number of different starting 
points (or intervals in the case of fminbnd) may help to locate 
the global minimum or verify that there is only one minimum. 
Use different methods, where possible, to verify results.

Sometimes an optimization 
problem has values of x for 
which it is impossible to 
evaluate f.

Modify your function to include a penalty function to give a 
large positive value to f when infeasibility is encountered.

The minimization routine 
appears to enter an infinite loop 
or returns a solution that is not 
a minimum (or not a zero in the 
case of fzero).

Your objective function (fun) may be returning NaN or complex 
values. The optimization routines expect only real numbers to 
be returned. Any other values may cause unexpected results. 
To determine whether this is the case, set

options = optimset('FunValCheck', 'on')

and call the optimization function with options as an input 
argument . This displays a warning when the objective 
function returns NaN or complex values.
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Numerical Integration (Quadrature)
The area beneath a section of a function F(x) can be determined by numerically 
integrating F(x), a process referred to as quadrature. The MATLAB quadrature 
functions are:

To integrate the function defined by humps.m from 0 to 1, use

q = quad(@humps,0,1)

q =
    29.8583

Both quad and quadl operate recursively. If either method detects a possible 
singularity, it prints a warning.

You can include a fourth argument for quad or quadl that specifies a relative 
error tolerance for the integration. If a nonzero fifth argument is passed to quad 
or quadl, the function evaluations are traced.

Two examples illustrate use of these functions:

• Computing the length of a curve

• Double integration

Example: Computing the Length of a Curve
You can use quad or quadl to compute the length of a curve. Consider the curve 
parameterized by the equations

where .

A three-dimensional plot of this curve is

quad Use adaptive Simpson quadrature

quadl Use adaptive Lobatto quadrature

quadv Vectorized quadrature

dblquad Numerically evaluate double integral

triplequad Numerically evaluate triple integral

x t( ) 2t( )sin=  , y t( ) t( )cos=  , z t( ) t=

t 0 3π,[ ]∈
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t = 0:0.1:3*pi;
plot3(sin(2*t),cos(t),t)

The arc length formula says the length of the curve is the integral of the norm 
of the derivatives of the parameterized equations

The function hcurve computes the integrand

function f = hcurve(t)
f = sqrt(4*cos(2*t).^2 + sin(t).^2 + 1);

Integrate this function with a call to quad

len = quad(@hcurve,0,3*pi)

len =
   1.7222e+01

The length of this curve is about 17.2.

Example: Double Integration
Consider the numerical solution of 

For this example . The first step is to build the 
function to be evaluated. The function must be capable of returning a vector 
output when given a vector input. You must also consider which variable is in 
the inner integral, and which goes in the outer integral. In this example, the 
inner variable is x and the outer variable is y (the order in the integral is dxdy). 
In this case, the integrand function is

function out = integrnd(x,y)
out = y*sin(x) + x*cos(y); 

4 2t( )cos 2 t( )sin 2 1+ +   td

0

3π

∫

f x y,( )  xd yd

xmin

xmax

∫
ymin

ymax

∫

f x y,( ) y x( )sin x y( )cos+=
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To perform the integration, two functions are available in the funfun directory. 
The first, dblquad, is called directly from the command line. This M-file 
evaluates the outer loop using quad. At each iteration, quad calls the second 
helper function that evaluates the inner loop. 

To evaluate the double integral, use

result = dblquad(@integrnd,xmin,xmax,ymin,ymax);

The first argument is a string with the name of the integrand function. The 
second to fifth arguments are

Here is a numeric example that illustrates the use of dblquad.

xmin = pi;
xmax = 2*pi;
ymin = 0;
ymax = pi;
result = dblquad(@integrnd,xmin,xmax,ymin,ymax)

The result is -9.8698. 

By default, dblquad calls quad. To integrate the previous example using quadl 
(with the default values for the tolerance argument), use

result = dblquad(@integrnd,xmin,xmax,ymin,ymax,[],@quadl);

Alternatively, you can pass any user-defined quadrature function name to 
dblquad as long as the quadrature function has the same calling and return 
arguments as quad.

xmin Lower limit of inner integral

xmax Upper limit of the inner integral

ymin Lower limit of outer integral

ymax Upper limit of the outer integral
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Parameterizing Functions Called by Function Functions
At times, you might want use a function function that calls a function with 
several parameters. For example, if you want to use fzero to find zeros of the 
cubic polynomial x3 + bx + c for different values of the coefficients b and c, 
you would like the function that computes the polynomial to accept the 
additional parameters b and c. When you invoke fzero, you must also provide 
values for these additional parameters to the polynomial function. This section 
describes two ways to do this:

• “Providing Parameter Values Using Nested Functions” on page 4-30

• “Providing Parameter Values to Anonymous Functions” on page 4-31

Providing Parameter Values Using Nested Functions
One way to provide parameters to the polynomial is to write a single M-file that

• Accepts the additional parameters as inputs

• Invokes the function function

• Contains the function called by the function function as a nested function

The following example illustrates how to find a zero of the cubic polynomial 
x3 + bx + c, for different values of the coefficients b and c, using this method. 
To do so, write an M-file with the following code.

function y = findzero(b, c, x0)

options = optimset('Display', 'off'); % Turn off Display
y = fzero(@poly, x0, options);

function y = poly(x) % Compute the polynomial.
y = x^3 + b*x + c;
end

end

The main function, findzero, does two things:

• Invokes the function fzero to find a zero of the polynomial

• Computes the polynomial in a nested function, poly, which is called by fzero
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You can call findzero with any values of the coefficients b and c, which are 
seen by poly because it is a nested function. 

As an example, to find a zero of the polynomial with b = 2 and c = 3.5, using 
the starting point x0 = 0, call findzero as follows.

x = findzero(2, 3.5, 0)

This returns the zero

x =

   -1.0945

Providing Parameter Values to Anonymous 
Functions
Suppose you have already written a standalone M-file for the function poly 
containing the following code, which computes the polynomial for any 
coefficients b and c, 

function y = poly(x, b, c) % Compute the polynomial.
y = x^3 + b*x + c;

You then want to find a zero for the coefficient values b = 2 and c = 3.5. You 
cannot simply apply fzero to poly, which has three input arguments, because 
fzero only accepts functions with a single input argument. As an alternative 
to rewriting poly as a nested function, as described in “Providing Parameter 
Values Using Nested Functions” on page 4-30, you can pass poly to fzero as a 
function handle to an anonymous function that has the form 
@(x) poly(x, b, c). The function handle has just one input argument x, so 
fzero accepts it.

b = 2;
c = 3.5;
x = fzero(@(x) poly(x, b, c), 0)

This returns the zero

x =

   -1.0945
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“Anonymous Functions” on page 4-3 explains how to create anonymous 
functions.

If you later decide to find a zero for different values of b and c, you must 
redefine the anonymous function using the new values. For example,

b = 4;
c = -1;
fzero(@(x) poly(x, b, c), 0)

ans =

    0.2463

For more complicated objective functions, it is usually preferable to write the 
function as a nested function, as described in “Providing Parameter Values 
Using Nested Functions” on page 4-30.



 

5

Differential Equations

Note  In function tables, commonly used functions are listed first, followed by 
more advanced functions. The same is true of property tables.

Initial Value Problems for ODEs and 
DAEs (p. 5-2)

Describes the solution of ordinary differential equations 
(ODEs) and differential-algebraic equations (DAEs), where 
the solution of interest satisfies initial conditions at a given 
initial value of the independent variable.

Initial Value Problems for DDEs 
(p. 5-44)

Describes the solution of delay differential equations 
(DDEs) where the solution of interest is determined by a 
history function.

Boundary Value Problems for ODEs 
(p. 5-64)

Describes the solution of ODEs, where the solution of 
interest satisfies certain boundary conditions. The boundary 
conditions specify a relationship between the values of the 
solution at the initial and final values of the independent 
variable.

Partial Differential Equations 
(p. 5-96)

Describes the solution of initial-boundary value problems 
for systems of parabolic and elliptic partial differential 
equations (PDEs) in one spatial variable and time. 

Selected Bibliography (p. 5-115) Lists published materials that support concepts described in 
this chapter.
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Initial Value Problems for ODEs and DAEs
This section describes how to use MATLAB to solve initial value problems 
(IVPs) of ordinary differential equations (ODEs) and differential-algebraic 
equations (DAEs). This section covers the following topics:

• “ODE Function Summary” on page 5-2

• “Introduction to Initial Value ODE Problems” on page 5-5

• “Solvers for Explicit and Linearly Implicit ODEs” on page 5-7

• “Examples: Solving Explicit ODE Problems” on page 5-10

• “Solver for Fully Implicit ODEs” on page 5-15

• “Example: Solving a Fully Implicit ODE Problem” on page 5-16

• “Changing ODE Integration Properties” on page 5-17

• “Examples: Applying the ODE Initial Value Problem Solvers” on page 5-18

• “Questions and Answers, and Troubleshooting” on page 5-37

ODE Function Summary

Initial Value ODE Problem Solvers
The following table lists the initial value problem solvers, the kind of problem 
you can solve with each solver, and the method each solver uses.

Solver Solves These Kinds of Problems Method

ode45 Nonstiff differential equations Runge-Kutta

ode23 Nonstiff differential equations Runge-Kutta

ode113 Nonstiff differential equations Adams

ode15s Stiff differential equations and DAEs NDFs (BDFs)

ode23s Stiff differential equations Rosenbrock

ode23t Moderately stiff differential equations 
and DAEs

Trapezoidal rule
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ODE Solution Evaluation and Extension
You can use the following functions to evaluate and extend solutions to ODEs. 

ODE Solver Properties Handling
An options structure contains named integration properties whose values are 
passed to the solver, and which affect problem solution. Use these functions to 
create, alter, or access an options structure. 

ODE Solver Output Functions
If an output function is specified, the solver calls the specified function after 
every successful integration step. You can use odeset to specify one of these 
sample functions as the OutputFcn property, or you can modify them to create 
your own functions.

ode23tb Stiff differential equations TR-BDF2

ode15i Fully implicit differential equations BDFs

Function Description

deval Evaluate the numerical solution using output of ODE solvers. 

odextend Extend the solution of an initial value problem for an ODE

Function Description

odeset Create or alter options structure for input to ODE solvers.

odeget Extract properties from options structure created with odeset.

Function Description

odeplot Time-series plot

odephas2 Two-dimensional phase plane plot
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ODE Initial Value Problem Examples 
These examples illustrate the kinds of problems you can solve in MATLAB. 
Click the example name to see the code in an editor. Type the example name at 
the command line to run it.

Note  The Differential Equations Examples browser enables you to view the 
code for the ODE examples and DAE examples. You can also run the examples 
from the browser. Click on these links to invoke the browser, or type 
odeexamples('ode')or odeexamples('dae')at the command line.

odephas3 Three-dimensional phase plane plot

odeprint Print to command window

Example Description

amp1dae Stiff DAE — electrical circuit

ballode Simple event location — bouncing ball

batonode ODE with time- and state-dependent mass matrix — 
motion of a baton

brussode Stiff large problem — diffusion in a chemical reaction (the 
Brusselator)

burgersode ODE with strongly state-dependent mass matrix — 
Burger’s equation solved using a moving mesh technique

fem1ode Stiff problem with a time-dependent mass matrix — finite 
element method

fem2ode Stiff problem with a constant mass matrix — finite element 
method

hb1ode Stiff ODE problem solved on a very long interval — 
Robertson chemical reaction
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Introduction to Initial Value ODE Problems

What Is an Ordinary Differential Equation?
The ODE solvers are designed to handle ordinary differential equations. An 
ordinary differential equation contains one or more derivatives of a dependent 
variable  with respect to a single independent variable , usually referred to 
as time. The derivative of  with respect to  is denoted as , the second 
derivative as , and so on. Often  is a vector, having elements 

.

Types of Problems Handled by the ODE Solvers
The ODE solvers handle the following types of first-order ODEs:

• Explicit ODEs of the form 

• Linearly implicit ODEs of the form , where M(t,y) is a 
matrix

• Fully implicit ODEs of the form  (ode15i only)

Using Initial Conditions to Specify the Solution of Interest
Generally there are many functions  that satisfy a given ODE, and 
additional information is necessary to specify the solution of interest. In an 
initial value problem, the solution of interest satisfies a specific initial 

hb1dae Robertson problem — stiff, linearly implicit DAE from a 
conservation law

ihb1dae Robertson problem — stiff, fully implicit DAE

iburgersode Burgers' equation solved as implicit ODE system

orbitode Advanced event location — restricted three body problem

rigidode Nonstiff problem — Euler equations of a rigid body without 
external forces

vdpode Parameterizable van der Pol equation (stiff for large )

Example Description

µ

y t
y t y′

y′′ y t( )
y1 y2 … yn, , ,

y′ f t y,( )=
M t y,( ) y′⋅ f t y,( )=

f t y y′, ,( ) 0=

y t( )
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condition, that is,  is equal to  at a given initial time . An initial value 
problem for an ODE is then

(5-1)

If the function  is sufficiently smooth, this problem has one and only one 
solution. Generally there is no analytic expression for the solution, so it is 
necessary to approximate  by numerical means, such as using one of the 
ODE solvers.

Working with Higher Order ODEs
The ODE solvers accept only first-order differential equations. However, ODEs 
often involve a number of dependent variables, as well as derivatives of order 
higher than one. To use the ODE solvers, you must rewrite such equations as 
an equivalent system of first-order differential equations of the form

You can write any ordinary differential equation

as a system of first-order equations by making the substitutions

The result is an equivalent system of  first-order ODEs.

“Example: Solving an IVP ODE (van der Pol Equation, Nonstiff)” on page 5-10 
rewrites the second-order van der Pol equation 

as a system of first-order ODEs.

y y0 t0

y′ f t y,( )=
y t0( ) y0=

f t y,( )

y t( )

y′ f t y,( )=

y n( ) f t y y′ … y n 1–( ), , , ,( )=

y1 y= y2 y′ … yn, , y n 1–( )= =,

n

y′1 y2=

y2′ y3=

yn′ f t y1 y2 ... y, n, , ,( )=

…

y′′1 µ 1 y1
2–( ) y′1– y1 0=+
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Solvers for Explicit and Linearly Implicit ODEs
This section describes the ODE solver functions for explicit or linearly implicit 
ODEs, as described in “Types of Problems Handled by the ODE Solvers” on 
page 5-5. The solver functions implement numerical integration methods for 
solving initial value problems for ODEs. Beginning at the initial time with 
initial conditions, they step through the time interval, computing a solution at 
each time step. If the solution for a time step satisfies the solver’s error 
tolerance criteria, it is a successful step. Otherwise, it is a failed attempt; the 
solver shrinks the step size and tries again.

This section describes: 

• Solvers for nonstiff ODE problems

• Solvers for stiff ODE problems 

• ODE solver basic syntax 

• Additional ODE solver arguments

“Mass Matrix and DAE Properties,” in the reference page for odeset, explains 
how to set options to solve more general linearly implicit problems.

The function ode15i, which solves implicit ODEs, is described in “Solver for 
Fully Implicit ODEs” on page 5-15.

Solvers for Nonstiff Problems
There are three solvers designed for nonstiff problems: 

ode45 Based on an explicit Runge-Kutta (4,5) formula, the 
Dormand-Prince pair. It is a one-step solver – in computing , it 
needs only the solution at the immediately preceding time point, 

. In general, ode45 is the best function to apply as a “first 
try” for most problems.

y tn( )

y tn 1–( )
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Solvers for Stiff Problems
Not all difficult problems are stiff, but all stiff problems are difficult for solvers 
not specifically designed for them. Solvers for stiff problems can be used exactly 
like the other solvers. However, you can often significantly improve the 
efficiency of these solvers by providing them with additional information about 
the problem. (See “Changing ODE Integration Properties” on page 5-17.)

There are four solvers designed for stiff problems:

ode23 Based on an explicit Runge-Kutta (2,3) pair of Bogacki and 
Shampine. It may be more efficient than ode45 at crude tolerances 
and in the presence of mild stiffness. Like ode45, ode23 is a 
one-step solver.

ode113 Variable order Adams-Bashforth-Moulton PECE solver. It may be 
more efficient than ode45 at stringent tolerances and when the 
ODE function is particularly expensive to evaluate. ode113 is a 
multistep solver – it normally needs the solutions at several 
preceding time points to compute the current solution.

ode15s Variable-order solver based on the numerical differentiation 
formulas (NDFs). Optionally it uses the backward differentiation 
formulas, BDFs, (also known as Gear’s method). Like ode113, 
ode15s is a multistep solver. If you suspect that a problem is stiff or 
if ode45 failed or was very inefficient, try ode15s.

ode23s Based on a modified Rosenbrock formula of order 2. Because it is a 
one-step solver, it may be more efficient than ode15s at crude 
tolerances. It can solve some kinds of stiff problems for which 
ode15s is not effective.

ode23t An implementation of the trapezoidal rule using a “free” 
interpolant. Use this solver if the problem is only moderately stiff 
and you need a solution without numerical damping.

ode23tb An implementation of TR-BDF2, an implicit Runge-Kutta formula 
with a first stage that is a trapezoidal rule step and a second stage 
that is a backward differentiation formula of order 2. Like ode23s, 
this solver may be more efficient than ode15s at crude tolerances.
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ODE Solver Syntax
All of the ODE solver functions, except for ode15i, share a syntax that makes 
it easy to try any of the different numerical methods, if it is not apparent which 
is the most appropriate. To apply a different method to the same problem, 
simply change the ODE solver function name. The simplest syntax, common to 
all the solver functions, is 

[t,y] = solver(odefun,tspan,y0,options)

where solver is one of the ODE solver functions listed previously. 

The basic input arguments are

The output arguments are

See the reference page for the explicit and linearly implicit ODE solvers for 
more information about these arguments.

odefun Function that evaluates the system of ODEs. It has the form

dydt = odefun(t,y)

where t is a scalar, and dydt and y are column vectors.

tspan Vector specifying the interval of integration. The solver imposes 
the initial conditions at tspan(1), and integrates from tspan(1) to 
tspan(end).

y0 Vector of initial conditions for the problem

See also “Introduction to Initial Value ODE Problems” on page 5-5.

options Structure of optional parameters that change the default 
integration properties. 

“Changing ODE Integration Properties” on page 5-17 tells you how 
to create the structure and describes the properties you can 
specify. 

t Column vector of time points 

y Solution array. Each row in y corresponds to the solution at a time 
returned in the corresponding row of t.
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Examples: Solving Explicit ODE Problems
This section uses the van der Pol equation

to describe the process for solving initial value ODE problems using the ODE 
solvers. 

• “Example: Solving an IVP ODE (van der Pol Equation, Nonstiff)” on 
page 5-10 describes each step of the process. Because the van der Pol 
equation is a second-order equation, the example must first rewrite it as a 
system of first order equations.

• “Example: The van der Pol Equation, µ = 1000 (Stiff)” on page 5-13 
demonstrates the solution of a stiff problem. 

• “Evaluating the Solution at Specific Points” on page 5-15 tells you how to 
evaluate the solution at specific points.

Note  See “ODE Solver Syntax” on page 5-9 for more information.

Example: Solving an IVP ODE (van der Pol Equation, Nonstiff)
This example explains and illustrates the steps you need to solve an initial 
value ODE problem:

1 Rewrite the problem as a system of first-order ODEs. Rewrite the 
van der Pol equation (second-order)

where  is a scalar parameter, by making the substitution . The 
resulting system of first-order ODEs is

See “Working with Higher Order ODEs” on page 5-6 for more information.

y′′1 µ 1 y1
2–( ) y′1– y1 0=+

y′′1 µ 1 y1
2–( ) y′1– y1 0=+

µ 0> y′1 y2=

y′1 y2=

y′2 µ 1 y1
2–( )y2 y1–=
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2 Code the system of first-order ODEs. Once you represent the equation as 
a system of first-order ODEs, you can code it as a function that an ODE 
solver can use. The function must be of the form 

dydt = odefun(t,y)

Although t and y must be the function’s first two arguments, the function 
does not need to use them. The output dydt, a column vector, is the 
derivative of y. 

The code below represents the van der Pol system in the function, vdp1. The 
vdp1 function assumes that . The variables  and  are the entries 
y(1) and y(2) of a two-element vector.

function dydt = vdp1(t,y)
dydt = [y(2); (1-y(1)^2)∗y(2)-y(1)];

Note that, although vdp1 must accept the arguments t and y, it does not use 
t in its computations. 

3 Apply a solver to the problem. Decide which solver you want to use to solve 
the problem. Then call the solver and pass it the function you created to 
describe the first-order system of ODEs, the time interval on which you want 
to solve the problem, and an initial condition vector. See “Solvers for Explicit 
and Linearly Implicit ODEs” on page 5-7 and the ODE solver reference page 
for descriptions of the ODE solvers.

For the van der Pol system, you can use ode45 on time interval [0 20] with 
initial values y(1) = 2 and y(2) = 0.

[t,y] = ode45(@vdp1,[0 20],[2; 0]);

This example uses @ to pass vdp1 as a function handle to ode45. The 
resulting output is a column vector of time points t and a solution array y. 
Each row in y corresponds to a time returned in the corresponding row of t. 
The first column of y corresponds to , and the second column to .

µ 1= y1 y2

y1 y2



5 Differential Equations

5-12

Note  For information on function handles, see the function_handle (@), 
func2str, and str2func reference pages, and the Function Handles chapter of 
“Programming and Data Types” in the MATLAB documentation.

4 View the solver output. You can simply use the plot command to view the 
solver output.

plot(t,y(:,1),'-',t,y(:,2),'--')
title('Solution of van der Pol Equation, \mu = 1');
xlabel('time t');
ylabel('solution y');
legend('y_1','y_2')

As an alternative, you can use a solver output function to process the output. 
The solver calls the function specified in the integration property OutputFcn 
after each successful time step. Use odeset to set OutputFcn to the desired 
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function. See “Solver Output Properties,” in the reference page for odeset, for 
more information about OutputFcn.

Providing Additional Parameters to an ODE Function 
The solver passes any input parameters that follow the options argument to 
the ODE function and any function you specify in options. For example:

1 Generalize the van der Pol function by passing it a mu parameter, instead of 
specifying a value for mu explicitly in the code. 

function dydt = vdp1(t,y,mu)
dydt = [y(2); mu*(1-y(1)^2)*y(2)-y(1)];

2 Pass the parameter mu to the function vdp1 by specifying it after the options 
argument in the call to the solver. This example uses options = [] as a 
placeholder. 

[t,y] = ode45(@vdp1,tspan,y0,[],mu)

calls 

vdp1(t,y,mu)

See the vdpode code for a complete example based on these functions.

Example: The van der Pol Equation, µ = 1000 (Stiff)
This example presents a stiff problem. For a stiff problem, solutions can change 
on a time scale that is very short compared to the interval of integration, but 
the solution of interest changes on a much longer time scale. Methods not 
designed for stiff problems are ineffective on intervals where the solution 
changes slowly because they use time steps small enough to resolve the fastest 
possible change.

When  is increased to 1000, the solution to the van der Pol equation changes 
dramatically and exhibits oscillation on a much longer time scale. 
Approximating the solution of the initial value problem becomes a more 
difficult task. Because this particular problem is stiff, a solver intended for 
nonstiff problems, such as ode45, is too inefficient to be practical. A solver such 
as ode15s is intended for such stiff problems.

The vdp1000 function evaluates the van der Pol system from the previous 
example, but with  = 1000.

µ

µ
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function dydt = vdp1000(t,y)
dydt = [y(2); 1000∗(1-y(1)^2)∗y(2)-y(1)];

Note  This example hardcodes  in the ODE function. The vdpode example 
solves the same problem, but passes a user-specified  as an additional 
argument to the ODE function. 

Now use the ode15s function to solve the problem with the initial condition 
vector of [2; 0], but a time interval of [0 3000]. For scaling purposes, plot just 
the first component of y(t).

[t,y] = ode15s(@vdp1000,[0 3000],[2; 0]);
plot(t,y(:,1),'-');
title('Solution of van der Pol Equation, \mu = 1000');
xlabel('time t');
ylabel('solution y_1');
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Note  For detailed instructions for solving an initial value ODE problem, see 
“Example: Solving an IVP ODE (van der Pol Equation, Nonstiff)” on 
page 5-10.

Evaluating the Solution at Specific Points
The numerical methods implemented in the ODE solvers produce a continuous 
solution over the interval of integration . You can evaluate the 
approximate solution, , at any point in  using the function deval and 
the structure sol returned by the solver. For example, if you solve the problem 
described in “Example: Solving an IVP ODE (van der Pol Equation, Nonstiff)” 
on page 5-10 by calling ode45 with a single output argument sol,

sol = ode45(@vdp1,[0 20],[2; 0]);

ode45 returns the solution as a structure. You can then evaluate the 
approximate solution at points in the vector xint = 1:5 as follows:

xint = 1:5;
Sxint = deval(sol,xint)

Sxint =

    1.5081    0.3235   -1.8686   -1.7407   -0.8344
   -0.7803   -1.8320   -1.0220    0.6260    1.3095

The deval function is vectorized. For a vector xint, the ith column of Sxint 
approximates the solution .

Solver for Fully Implicit ODEs
The solver ode15i solves fully implicit differential equations of the form

using the variable order BDF method. The basic syntax for ode15i is

[t,y] = ode15i(odefun,tspan,y0,yp0)

a b,[ ]
S x( ) a b,[ ]

y xint(i)( )

f t y y′, ,( ) 0=
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The input arguments are

The output arguments are

See the ode15i reference page for more information about these arguments.

Example: Solving a Fully Implicit ODE Problem
The following example shows how to use the function ode15i to solve the 
implicit ODE problem defined by Weissinger’s equation

with the initial value . The exact solution of the ODE is

The example uses the function weissinger, which is provided with MATLAB, 
to compute the left-hand side of the equation. 

odefun A function that evaluates the left side of the differential equation 
of the form .

tspan A vector specifying the interval of integration, [t0,tf]. To obtain 
solutions at specific times (all increasing or all decreasing), use 
tspan = [t0,t1,...,tf].

y0, yp0 Vectors of initial conditions for  and , respectively. The 
specified values must be consistent; that is, they must satisfy 

. “Example: Solving a Fully Implicit ODE 
Problem” on page 5-16 shows how to use the function decic to 
compute consistent initial conditions.

options Optional integration argument created using the odeset function. 
See the odeset reference page for details.

t Column vector of time points 

y Solution array. Each row in y corresponds to the solution at a time 
returned in the corresponding row of t.

f t y y′, ,( ) 0=

y t0( ) y′ t0( )

f t0 y t0( ) y′ t0( ), ,( ) 0=

ty2 y′( )3 y3 y′( )2 t t2 1+( )y′ t2y–+– 0=

y 1( ) 3 2⁄=

y t( ) t2 0.5+=
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Before calling ode15i, the example uses a helper function decic to compute a 
consistent initial value for . In the following call, the given initial value 

 is held fixed and a guess of 0 is specified for . See the 
reference page for decic for more information.

t0 = 1;
y0 = sqrt(3/2);
yp0 = 0;
[y0,yp0] = decic(@weissinger,t0,y0,1,yp0,0);

You can now call ode15i to solve the ODE and then plot the numerical solution 
against the analytical solution with the following commands. 

[t,y] = ode15i(@weissinger,[1 10],y0,yp0);
ytrue = sqrt(t.^2 + 0.5);
plot(t,y,t,ytrue,'o');

Changing ODE Integration Properties
The default integration properties in the ODE solvers are selected to handle 
common problems. In some cases, you can improve ODE solver performance by 
overriding these defaults. You do this by supplying the solvers with an options 
structure that specifies one or more property values. 

y′ t0( )
y 1( ) 3 2⁄= y′ 1( )
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For example, to change the value of the relative error tolerance of the solver 
from the default value of 1e-3 to 1e-4,

1 Create options using the function odeset by entering

options = odeset('RelTol', 1e-4);

2 Pass the options structure to the solver as follows:

- For all solvers except ode15i, use the syntax
[t,y] = solver(odefun,tspan,y0,options)

- For ode15i, use the syntax
[t,y] = ode15i(odefun,tspan,y0,yp0,options)

For an example that uses the options structure, see “Example: Stiff Problem 
(van der Pol Equation)” on page 5-20. For a complete description of the 
available options, see the reference page for odeset.

Examples: Applying the ODE Initial Value Problem 
Solvers
This section contains several examples that illustrate the kinds of problems 
you can solve:

• Simple nonstiff problem (rigidode)

• Stiff problem (vdpode)

• Finite element discretization (fem1ode)

• Large, stiff, sparse problem (brussode)

• Simple event location (ballode)

• Advanced event location (orbitode)

• Differential-algebraic problem (hb1dae)

Example: Simple Nonstiff Problem
rigidode illustrates the solution of a standard test problem proposed by Krogh 
for solvers intended for nonstiff problems [8].

The ODEs are the Euler equations of a rigid body without external forces.
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For your convenience, the entire problem is defined and solved in a single 
M-file. The differential equations are coded as a subfunction f. Because the 
example calls the ode45 solver without output arguments, the solver uses the 
default output function odeplot to plot the solution components. 

To run this example, click on the example name, or type rigidode at the 
command line.

function rigidode 
%RIGIDODE  Euler equations of a rigid body without external forces
tspan = [0 12];
y0 = [0; 1; 1];

% Solve the problem using ode45
ode45(@f,tspan,y0);
% ------------------------------------------------------------
function dydt = f(t,y)
dydt = [ y(2)*y(3) 
        -y(1)*y(3) 
        -0.51*y(1)*y(2) ];

y′3 0.51 y– 1 y2=

y′2 y– 1 y3=

y′1 y2 y3=
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Example: Stiff Problem (van der Pol Equation) 
vdpode illustrates the solution of the van der Pol problem described in 
“Example: The van der Pol Equation, µ = 1000 (Stiff)” on page 5-13. The 
differential equations

involve a constant parameter . 

As  increases, the problem becomes more stiff, and the period of oscillation 
becomes larger. When  is 1000 the equation is in relaxation oscillation and 
the problem is very stiff. The limit cycle has portions where the solution 
components change slowly and the problem is quite stiff, alternating with 
regions of very sharp change where it is not stiff (quasi-discontinuities).

By default, the solvers in the ODE suite that are intended for stiff problems 
approximate Jacobian matrices numerically. However, this example provides 
a subfunction J(t,y,mu) to evaluate the Jacobian matrix  analytically at 
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(t,y) for  = mu. The use of an analytic Jacobian can improve the reliability 
and efficiency of integration.

To run this example, click on the example name, or type vdpode at the 
command line. From the command line, you can specify a value of  as an 
argument to vdpode. The default is  = 1000. 

function vdpode(MU)
%VDPODE  Parameterizable van der Pol equation (stiff for large MU)
if nargin < 1
  MU = 1000;     % default
end

tspan = [0; max(20,3*MU)];              % Several periods
y0 = [2; 0];
options = odeset('Jacobian',@J);

[t,y] = ode15s(@f,tspan,y0,options,MU);

plot(t,y(:,1));
title(['Solution of van der Pol Equation, \mu = ' num2str(MU)]);
xlabel('time t');
ylabel('solution y_1');

axis([tspan(1) tspan(end) -2.5 2.5]);  
---------------------------------------------------------------
function dydt = f(t,y,mu)
dydt = [            y(2) 
         mu*(1-y(1)^2)*y(2)-y(1) ]; 
---------------------------------------------------------------
function dfdy = J(t,y,mu)
dfdy = [         0                  1
         -2*mu*y(1)*y(2)-1    mu*(1-y(1)^2) ];

µ

µ
µ
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Example: Finite Element Discretization 
fem1ode illustrates the solution of ODEs that result from a finite element 
discretization of a partial differential equation. The value of N in the call 
fem1ode(N) controls the discretization, and the resulting system consists of N 
equations. By default, N is 19.

This example involves a mass matrix. The system of ODEs comes from a 
method of lines solution of the partial differential equation

with initial condition  and boundary conditions 
. An integer  is chosen,  is defined as , and 
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the solution of the partial differential equation is approximated at  for 
k = 0, 1, ..., N+1 by

Here  is a piecewise linear function that is 1 at  and 0 at all the other 
. A Galerkin discretization leads to the system of ODEs

and the tridiagonal matrices  and  are given by

and

The initial values  are taken from the initial condition for the partial 
differential equation. The problem is solved on the time interval .

In the fem1ode example, the properties 

options = odeset('Mass',@mass,'MStateDep','none','Jacobian',J) 

indicate that the problem is of the form . The subfunction 
mass(t,N) evaluates the time-dependent mass matrix  and J is the 
constant Jacobian.
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To run this example, click on the example name, or type fem1ode at the 
command line. From the command line, you can specify a value of  as an 
argument to fem1ode. The default is  = 19. 

function fem1ode(N)
%FEM1ODE Stiff problem with a time-dependent mass matrix 

if nargin < 1
  N = 19;
end
h = pi/(N+1);
y0 = sin(h*(1:N)');
tspan = [0; pi];

% The Jacobian is constant.
e = repmat(1/h,N,1);    %  e=[(1/h) ... (1/h)];
d = repmat(-2/h,N,1);   %  d=[(-2/h) ... (-2/h)]; 
J = spdiags([e d e], -1:1, N, N);

options = odeset('Mass',@mass,'MStateDependence','none', ...
                 'Jacobian',J);

[t,y] = ode15s(@f,tspan,y0,options,N);

surf((1:N)/(N+1),t,y);
set(gca,'ZLim',[0 1]);
view(142.5,30);
title(['Finite element problem with time-dependent mass ' ...
       'matrix, solved by ODE15S']);
xlabel('space ( x/\pi )');
ylabel('time');
zlabel('solution');
%---------------------------------------------------------------
function out = f(t,y,N)
h = pi/(N+1);
e = repmat(1/h,N,1);    %  e=[(1/h) ... (1/h)];
d = repmat(-2/h,N,1);   %  d=[(-2/h) ... (-2/h)]; 
J = spdiags([e d e], -1:1, N, N);
out = J*y;
%---------------------------------------------------------------

N
N
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function M = mass(t,N)
h = pi/(N+1);
e = repmat(exp(-t)*h/6,N,1);  % e(i)=exp(-t)*h/6
e4 = repmat(4*exp(-t)*h/6,N,1); 
M = spdiags([e e4 e], -1:1, N, N);

Example: Large, Stiff, Sparse Problem
brussode illustrates the solution of a (potentially) large stiff sparse problem. 
The problem is the classic “Brusselator” system [3] that models diffusion in a 
chemical reaction
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and is solved on the time interval [0,10] with  = 1/50 and

There are  equations in the system, but the Jacobian is banded with a 
constant width 5 if the equations are ordered as 

In the call brussode(N), where N corresponds to , the parameter N ≥ 2 
specifies the number of grid points. The resulting system consists of 2N 
equations. By default, N is 20. The problem becomes increasingly stiff and the 
Jacobian increasingly sparse as N increases. 

The subfunction f(t,y,N) returns the derivatives vector for the Brusselator 
problem. The subfunction jpattern(N) returns a sparse matrix of 1s and 0s 
showing the locations of nonzeros in the Jacobian . The example assigns 
this matrix to the property JPattern, and the solver uses the sparsity pattern 
to generate the Jacobian numerically as a sparse matrix. Providing a sparsity 
pattern can significantly reduce the number of function evaluations required 
to generate the Jacobian and can accelerate integration. 

For the Brusselator problem, if the sparsity pattern is not supplied, 2N 
evaluations of the function are needed to compute the 2N-by-2N Jacobian 
matrix. If the sparsity pattern is supplied, only four evaluations are needed, 
regardless of the value of N.

To run this example, click on the example name, or type brussode at the 
command line. From the command line, you can specify a value of  as an 
argument to brussode. The default is = 20. 

function brussode(N)
%BRUSSODE  Stiff problem modeling a chemical reaction 

if nargin<1  
  N = 20;
end

tspan = [0; 10];
y0 = [1+sin((2*pi/(N+1))*(1:N)); repmat(3,1,N)];

options = odeset('Vectorized','on','JPattern',jpattern(N));
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[t,y] = ode15s(@f,tspan,y0,options,N);

u = y(:,1:2:end);
x = (1:N)/(N+1);
surf(x,t,u);
view(-40,30);
xlabel('space');
ylabel('time');
zlabel('solution u');
title(['The Brusselator for N = ' num2str(N)]);
% --------------------------------------------------------------
function dydt = f(t,y,N)
c = 0.02 * (N+1)^2;
dydt = zeros(2*N,size(y,2));      % preallocate dy/dt
% Evaluate the two components of the function at one edge of 
% the grid (with edge conditions).
i = 1;
dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + ...
            c*(1-2*y(i,:)+y(i+2,:));
dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + ...
              c*(3-2*y(i+1,:)+y(i+3,:));
% Evaluate the two components of the function at all interior 
% grid points.
i = 3:2:2*N-3;
dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + ...
            c*(y(i-2,:)-2*y(i,:)+y(i+2,:));
dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + ...
              c*(y(i-1,:)-2*y(i+1,:)+y(i+3,:));
% Evaluate the two components of the function at the other edge 
% of the grid (with edge conditions).
i = 2*N-1;
dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + ...
            c*(y(i-2,:)-2*y(i,:)+1);
dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + ...
              c*(y(i-1,:)-2*y(i+1,:)+3);
% --------------------------------------------------------------
function S = jpattern(N)
B = ones(2*N,5);
B(2:2:2*N,2) = zeros(N,1);
B(1:2:2*N-1,4) = zeros(N,1);
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S = spdiags(B,-2:2,2*N,2*N);

Example: Simple Event Location
ballode models the motion of a bouncing ball. This example illustrates the 
event location capabilities of the ODE solvers.

The equations for the bouncing ball are

In this example, the event function is coded in a subfunction events 

[value,isterminal,direction] = events(t,y)

which returns

• A value of the event function

• The information whether or not the integration should stop when value = 0 
(isterminal = 1 or 0, respectively) 
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• The desired directionality of the zero crossings:

The length of value, isterminal, and direction is the same as the number of 
event functions. The ith element of each vector, corresponds to the ith event 
function. For an example of more advanced event location, see orbitode 
(“Example: Advanced Event Location” on page 5-31).

In ballode, setting the Events property to @events causes the solver to stop the 
integration (isterminal = 1) when the ball hits the ground (the height y(1) is 
0) during its fall (direction = -1). The example then restarts the integration 
with initial conditions corresponding to a ball that bounced.

To run this example, click on the example name, or type ballode at the 
command line.

function ballode
%BALLODE  Run a demo of a bouncing ball.

tstart = 0;
tfinal = 30;
y0 = [0; 20];
refine = 4;
options = odeset('Events',@events,'OutputFcn', @odeplot,...
                 'OutputSel',1,'Refine',refine);

set(gca,'xlim',[0 30],'ylim',[0 25]);
box on
hold on;

tout = tstart;
yout = y0.';
teout = [];
yeout = [];
ieout = [];
for i = 1:10

-1 Detect zero crossings in the negative direction only

0 Detect all zero crossings

1 Detect zero crossings in the positive direction only
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  % Solve until the first terminal event.
  [t,y,te,ye,ie] = ode23(@f,[tstart tfinal],y0,options);
  if ~ishold
    hold on
  end
  % Accumulate output.  
  nt = length(t);
  tout = [tout; t(2:nt)];
  yout = [yout; y(2:nt,:)];
  teout = [teout; te];    % Events at tstart are never reported.
  yeout = [yeout; ye];
  ieout = [ieout; ie];

  ud = get(gcf,'UserData');
  if ud.stop
    break;
  end
  
  % Set the new initial conditions, with .9 attenuation.
  y0(1) = 0;
  y0(2) = -.9*y(nt,2);

  % A good guess of a valid first time step is the length of 
  % the last valid time step, so use it for faster computation.
  options = odeset(options,'InitialStep',t(nt)-t(nt-refine),...
                           'MaxStep',t(nt)-t(1));
  tstart = t(nt);
end

plot(teout,yeout(:,1),'ro')
xlabel('time');
ylabel('height');
title('Ball trajectory and the events');
hold off
odeplot([],[],'done');
% --------------------------------------------------------------
function dydt = f(t,y)
dydt = [y(2); -9.8];
% --------------------------------------------------------------
function [value,isterminal,direction] = events(t,y)
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% Locate the time when height passes through zero in a 
% decreasing direction and stop integration.
value = y(1);     % Detect height = 0
isterminal = 1;   % Stop the integration
direction = -1;   % Negative direction only

Example: Advanced Event Location
orbitode illustrates the solution of a standard test problem for those solvers 
that are intended for nonstiff problems. It traces the path of a spaceship 
traveling around the moon and returning to the earth. (Shampine and 
Gordon [8], p.246). 
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The orbitode problem is a system of the following four equations shown:

where

The first two solution components are coordinates of the body of infinitesimal 
mass, so plotting one against the other gives the orbit of the body. The initial 
conditions have been chosen to make the orbit periodic. The value of  
corresponds to a spaceship traveling around the moon and the earth. 
Moderately stringent tolerances are necessary to reproduce the qualitative 
behavior of the orbit. Suitable values are 1e-5 for RelTol and 1e-4 for AbsTol.

The events subfunction includes event functions that locate the point of 
maximum distance from the starting point and the time the spaceship returns 
to the starting point. Note that the events are located accurately, even though 
the step sizes used by the integrator are not determined by the location of the 
events. In this example, the ability to specify the direction of the zero crossing 
is critical. Both the point of return to the initial point and the point of 
maximum distance have the same event function value, and the direction of the 
crossing is used to distinguish them.
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To run this example, click on the example name, or type orbitode at the 
command line. The example uses the output function odephase2 to produce the 
two-dimensional phase plane plot and let you to see the progress of the 
integration.

function orbitode
%ORBITODE  Restricted three-body problem

tspan = [0 7];
y0 = [1.2; 0; 0; -1.04935750983031990726];
options = odeset('RelTol',1e-5,'AbsTol',1e-4,...
                 'OutputFcn',@odephas2,'Events',@events);

[t,y,te,ye,ie] = ode45(@f,tspan,y0,options);

plot(y(:,1),y(:,2),ye(:,1),ye(:,2),'o');
title ('Restricted three body problem')
ylabel ('y(t)')
xlabel ('x(t)')
% --------------------------------------------------------------
function dydt = f(t,y)
mu = 1 / 82.45;
mustar = 1 - mu;
r13 = ((y(1) + mu)^2 + y(2)^2) ^ 1.5;
r23 = ((y(1) - mustar)^2 + y(2)^2) ^ 1.5;
dydt = [ y(3)
         y(4)
         2*y(4) + y(1) - mustar*((y(1)+mu)/r13) - ...
                         mu*((y(1)-mustar)/r23)
        -2*y(3) + y(2) - mustar*(y(2)/r13) - mu*(y(2)/r23) ];
% --------------------------------------------------------------
function [value,isterminal,direction] = events(t,y)
% Locate the time when the object returns closest to the 
% initial point y0 and starts to move away, and stop integration.
% Also locate the time when the object is farthest from the 
% initial point y0 and starts to move closer.
% 
% The current distance of the body is
% 
%   DSQ = (y(1)-y0(1))^2 + (y(2)-y0(2))^2 
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%       = <y(1:2)-y0,y(1:2)-y0>
% 
% A local minimum of DSQ occurs when d/dt DSQ crosses zero 
% heading in the positive direction.  We can compute d(DSQ)/dt as
% 
%  d(DSQ)/dt = 2*(y(1:2)-y0)'*dy(1:2)/dt = 2*(y(1:2)-y0)'*y(3:4)
% 
y0 = [1.2; 0];
dDSQdt = 2 * ((y(1:2)-y0)' * y(3:4));
value = [dDSQdt; dDSQdt];
isterminal = [1; 0];            % Stop at local minimum
direction = [1; -1];            % [local minimum, local maximum]
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Example: Differential-Algebraic Problem
hb1dae reformulates the hb1ode example as a differential-algebraic equation 
(DAE) problem. The Robertson problem coded in hb1ode is a classic test 
problem for codes that solve stiff ODEs.

Note  The Robertson problem appears as an example in the prolog to 
LSODI [4].

In hb1ode, the problem is solved with initial conditions ,  ,  
 to steady state. These differential equations satisfy a linear 

conservation law that is used to reformulate the problem as the DAE

Obviously these equations do not have a solution for  with components 
that do not sum to 1. The problem has the form of  with

 is obviously singular, but hb1dae does not inform the solver of this. The 
solver must recognize that the problem is a DAE, not an ODE. Similarly, 
although consistent initial conditions are obvious, the example uses an 
inconsistent value  to illustrate computation of consistent initial 
conditions. 
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To run this example, click on the example name, or type hb1dae at the 
command line. Note that hb1dae: 

• Imposes a much smaller absolute error tolerance on  than on the other 
components. This is because  is much smaller than the other components 
and its major change takes place in a relatively short time.

• Specifies additional points at which the solution is computed to more clearly 
show the behavior of . 

• Multiplies  by 104 to make  visible when plotting it with the rest of the 
solution. 

• Uses a logarithmic scale to plot the solution on the long time interval.

function hb1dae
%HB1DAE  Stiff differential-algebraic equation (DAE)

% A constant, singular mass matrix
M = [1 0 0
     0 1 0 
     0 0 0];

% Use an inconsistent initial condition to test initialization.
y0 = [1; 0; 1e-3];
tspan = [0 4*logspace(-6,6)];

% Use the LSODI example tolerances. The 'MassSingular' property
% is left at its default 'maybe' to test the automatic detection
% of a DAE.
options = odeset('Mass',M,'RelTol',1e-4,...
                 'AbsTol',[1e-6 1e-10 1e-6],'Vectorized','on');

[t,y] = ode15s(@f,tspan,y0,options);

y(:,2) = 1e4*y(:,2);

semilogx(t,y);
ylabel('1e4 * y(:,2)');
title(['Robertson DAE problem with a Conservation Law, '...
       'solved by ODE15S']);
xlabel('This is equivalent to the stiff ODEs coded in HB1ODE.');
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% --------------------------------------------------------------
function out = f(t,y)
out = [ -0.04*y(1,:) + 1e4*y(2,:).*y(3,:)

0.04*y(1,:) - 1e4*y(2,:).*y(3,:) - 3e7*y(2,:).^2
y(1,:) + y(2,:) + y(3,:) - 1 ];

Questions and Answers, and Troubleshooting
This section contains a number of tables that answer questions about the use 
and operation of the ODE solvers:

• General ODE solver questions

• Problem size, memory use, and computation speed

• Time steps for integration

• Error tolerance and other options

• Solving different kinds of problems

• Troubleshooting
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General ODE Solver Questions 

Question Answer

How do the ODE solvers 
differ from quad or quadl?

quad and quadl solve problems of the form . The ODE 
solvers handle more general problems , linearly 
implicit problems that involve a mass matrix , 
and fully implicit problems .

Can I solve ODE systems in 
which there are more 
equations than unknowns, 
or vice versa?

No.

y′ f t( )=
y′ f t y,( )=

M t y,( ) y′ f t y,( )=
f t y y′, ,( ) 0=

Problem Size, Memory Use, and Computation Speed 

Question Answer

How large a problem can I 
solve with the ODE suite?

The primary constraints are memory and time. At each time step, 
the solvers for nonstiff problems allocate vectors of length n, 
where n is the number of equations in the system. The solvers for 
stiff problems but also allocate an n-by-n Jacobian matrix. For 
these solvers it may be advantageous to use the sparse option.

If the problem is nonstiff, or if you are using the sparse option, it 
may be possible to solve a problem with thousands of unknowns. 
In this case, however, storage of the result can be problematic. 
Try asking the solver to evaluate the solution at specific points 
only, or call the solver with no output arguments and use an 
output function to monitor the solution.
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I'm solving a very large 
system, but only care about 
a couple of the components 
of y. Is there any way to 
avoid storing all of the 
elements?

Yes. The user-installable output function capability is designed 
specifically for this purpose. When you call the solver with no 
output arguments, the solver does not allocate storage to hold the 
entire solution history. Instead, the solver calls 
OutputFcn(t,y,flag,p1,p2,...) at each time step. To keep the 
history of specific elements, write an output function that stores 
or plots only the elements you care about.

What is the startup cost of 
the integration and how 
can I reduce it?

The biggest startup cost occurs as the solver attempts to find a 
step size appropriate to the scale of the problem. If you happen to 
know an appropriate step size, use the InitialStep property. For 
example, if you repeatedly call the integrator in an event location 
loop, the last step that was taken before the event is probably on 
scale for the next integration. See ballode for an example.

Problem Size, Memory Use, and Computation Speed  (Continued)

Question Answer

Time Steps for Integration

Question Answer

The first step size that the 
integrator takes is too 
large, and it misses 
important behavior.

You can specify the first step size with the InitialStep property. 
The integrator tries this value, then reduces it if necessary.

Can I integrate with fixed 
step sizes?

No.
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Error Tolerance and Other Options 

Question Answer

How do I choose RelTol and 
AbsTol?

RelTol, the relative accuracy tolerance, controls the number of 
correct digits in the answer. AbsTol, the absolute error tolerance, 
controls the difference between the answer and the solution. At 
each step, the error e in component i of the solution satisfies 

|e(i)| <= max(RelTol*abs(y(i)),AbsTol(i))

Roughly speaking, this means that you want RelTol correct 
digits in all solution components except those smaller than 
thresholds AbsTol(i). Even if you are not interested in a 
component y(i) when it is small, you may have to specify 
AbsTol(i) small enough to get some correct digits in y(i) so that 
you can accurately compute more interesting components.

I want answers that are 
correct to the precision of 
the computer. Why can’t I 
simply set RelTol to eps?

You can get close to machine precision, but not that close. The 
solvers do not allow RelTol near eps because they try to 
approximate a continuous function. At tolerances comparable to 
eps, the machine arithmetic causes all functions to look 
discontinuous.

How do I tell the solver that 
I don’t care about getting 
an accurate answer for one 
of the solution components?

You can increase the absolute error tolerance corresponding to 
this solution component. If the tolerance is bigger than the 
component, this specifies no correct digits for the component. The 
solver may have to get some correct digits in this component to 
compute other components accurately, but it generally handles 
this automatically.
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Solving Different Kinds of Problems 

Question Answer

Can the solvers handle 
partial differential 
equations (PDEs) that have 
been discretized by the 
method of lines?

Yes, because the discretization produces a system of ODEs. 
Depending on the discretization, you might have a form involving 
mass matrices – the ODE solvers provide for this. Often the 
system is stiff. This is to be expected when the PDE is parabolic 
and when there are phenomena that happen on very different 
time scales such as a chemical reaction in a fluid flow. In such 
cases, use one of the four solvers: ode15s, ode23s, ode23t, 
ode23tb. 

If there are many equations, set the JPattern property. This 
might make the difference between success and failure due to the 
computation being too expensive. When the system is not stiff, or 
not very stiff, ode23 or ode45 is more efficient than ode15s, 
ode23s, ode23t, or ode23tb. For an example that uses JPattern, 
see “Example: Large, Stiff, Sparse Problem” on page 5-25.

Parabolic-elliptic partial differential equations in 1-D can be 
solved directly with the MATLAB PDE solver, pdepe. For more 
information, see “Partial Differential Equations” on page 5-96.

Can I solve 
differential-algebraic 
equation (DAE) systems?

Yes. The solvers ode15s and ode23t can solve some DAEs of the 
form  where  is singular. The DAEs 
must be of index 1. ode15i can solve fully implicit DAEs of index 
1, . For examples, see amp1dae, hb1dae, or ihb1dae.

Can I integrate a set of 
sampled data?

Not directly. You have to represent the data as a function by 
interpolation or some other scheme for fitting data. The 
smoothness of this function is critical. A piecewise polynomial fit 
like a spline can look smooth to the eye, but rough to a solver; the 
solver takes small steps where the derivatives of the fit have 
jumps. Either use a smooth function to represent the data or use 
one of the lower order solvers (ode23, ode23s, ode23t, ode23tb) 
that is less sensitive to this.

M t y,( )y′ f t y,( )= M t y,( )

f t y y′, ,( ) 0=
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What do I do when I have 
the final and not the initial 
value?

All the solvers of the ODE suite allow you to solve backwards or 
forwards in time. The syntax for the solvers is

[t,y] = ode45(odefun,[t0 tf],y0);

and the syntax accepts t0 > tf.

Solving Different Kinds of Problems  (Continued)

Question Answer

Troubleshooting 

Question Answer

The solution doesn’t look 
like what I expected.

If you’re right about its appearance, you need to reduce the error 
tolerances from their default values. A smaller relative error 
tolerance is needed to compute accurately the solution of 
problems integrated over “long” intervals, as well as solutions of 
problems that are moderately unstable. 

You should check whether there are solution components that 
stay smaller than their absolute error tolerance for some time. If 
so, you are not asking for any correct digits in these components. 
This may be acceptable for these components, but failing to 
compute them accurately may degrade the accuracy of other 
components that depend on them.

My plots aren’t smooth 
enough.

Increase the value of Refine from its default of 4 in ode45 and 1 
in the other solvers. The bigger the value of Refine, the more 
output points. Execution speed is not affected much by the value 
of Refine.

I’m plotting the solution as 
it is computed and it looks 
fine, but the code gets stuck 
at some point.

First verify that the ODE function is smooth near the point 
where the code gets stuck. If it isn’t, the solver must take small 
steps to deal with this. It may help to break tspan into pieces on 
which the ODE function is smooth.

If the function is smooth and the code is taking extremely small 
steps, you are probably trying to solve a stiff problem with a 
solver not intended for this purpose. Switch to ode15s, ode23s, 
ode23t, or ode23tb.
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My integration proceeds 
very slowly, using too many 
time steps.

First, check that your tspan is not too long. Remember that the 
solver uses as many time points as necessary to produce a smooth 
solution. If the ODE function changes on a time scale that is very 
short compared to the tspan, the solver uses a lot of time steps. 
Long-time integration is a hard problem. Break tspan into 
smaller pieces.

If the ODE function does not change noticeably on the tspan 
interval, it could be that your problem is stiff. Try using ode15s, 
ode23s, ode23t, or ode23tb.

Finally, make sure that the ODE function is written in an 
efficient way. The solvers evaluate the derivatives in the ODE 
function many times. The cost of numerical integration depends 
critically on the expense of evaluating the ODE function. Rather 
than recompute complicated constant parameters at each 
evaluation, store them in globals or calculate them once outside 
the function and pass them in as additional parameters.

I know that the solution 
undergoes a radical change 
at time t where

t0 ≤ t ≤ tf

but the integrator steps 
past without “seeing” it.

If you know there is a sharp change at time t, it might help to 
break the tspan interval into two pieces, [t0 t] and [t tf], and 
call the integrator twice.

If the differential equation has periodic coefficients or solution, 
you might restrict the maximum step size to the length of the 
period so the integrator won’t step over periods.

Troubleshooting  (Continued)

Question Answer
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Initial Value Problems for DDEs
This section describes how to use to solve initial value problems (IVPs) for 
delay differential equations (DDEs). It provides:

• A summary of the DDE functions and examples

• An introduction to DDEs

• A description of the DDE solver and its syntax

• General instructions for representing a DDE

• A discussion and example about discontinuities and restarting 

• A discussion about changing default integration properties 

DDE Function Summary

DDE Initial Value Problem Solver

DDE Helper Functions

DDE Solver Properties Handling
An options structure contains named properties whose values are passed to 
dde23, and which affect problem solution. Use these functions to create, alter, 
or access an options structure.

Solver Description

dde23 Solve initial value problems for delay differential equations 
with constant delays.

Function Description

deval Evaluate the numerical solution using the output of dde23.
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DDE Initial Value Problem Examples
These examples illustrate the kind of problems you can solve using dde23. 
Click the example name to see the code in an editor. Type the example name at 
the command line to run it.

Note  The Differential Equations Examples browser enables you to view the 
code for the DDE examples, and also run them. Click on the link to invoke the 
browser, or type odeexamples('dde')at the command line.

Additional examples are provided by “Tutorial on Solving DDEs with DDE23,” 
available at www.mathworks.com/dde_tutorial. 

Introduction to Initial Value DDE Problems
The DDE solver can solve systems of ordinary differential equations

where  is the independent variable,  is the dependent variable, and  
represents . The delays (lags)  are positive constants.

Using a History to Specify the Solution of Interest
In an initial value problem, we seek the solution on an interval . with 

. The DDE shows that  depends on values of the solution at times 

Function Description

ddeset Create/alter the DDE options structure.

ddeget Extract properties from options structure created with ddeset.

Example Description

ddex1 Straightforward example

ddex2 Cardiovascular model with discontinuities

y′ t( ) f t y t( ) y t τ1–( ) … y t τk–( ), , , ,( )=

t y y′
dy dt⁄ τ1 … τk, ,

t0 tf,[ ]
t0 tf< y′ t( )
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prior to . In particular,  depends on . Because of 
this, a solution on  depends on its values for , i.e., its history . 

Propagation of Discontinuities
Generally, the solution  of an IVP for a system of DDEs has a jump in its 
first derivative at the initial point  because the first derivative of the history 
function does not satisfy the DDE there.

A discontinuity in any derivative propagates into the future at spacings of 
.

For reliable and efficient integration of DDEs, a solver must track 
discontinuities in low order derivatives and deal with them. For DDEs with 
constant lags, the solution gets smoother as the integration progresses, so after 
a while the solver can stop tracking a discontinuity. See “Discontinuities” on 
page 5-52 for more information.

DDE Solver
This section describes: 

• The DDE solver, dde23

• DDE solver basic syntax

• Additional DDE solver arguments

The DDE Solver
The function dde23 solves initial value problems for delay differential 
equations (DDEs) with constant delays. It integrates a system of first-order 
differential equations

on the interval , with  and given history  for .

dde23 produces a solution that is continuous on . You can use the 
function deval and the output of dde23 to evaluate the solution at specific 
points on the interval of integration.

t y′ t0( ) y t0 τ1–( ) … y t0 τk–( ), ,
t0 tf,[ ] t t0≤ S t( )

y t( )
t0

S′ t0
–( ) y′ t0

+( )≠ f t0 y t0( ) S t0 τ1–( ) … S t0 τk–( ), , , ,( )=

τ1 τ2 … τk, , ,

y′ t( ) f t y t( ) y t τ1–( ) … y t τk–( ), , , ,( )=

t0 tf,[ ] t0 tf< y t( ) S t( )= t t0≤

t0 tf,[ ]
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dde23 tracks discontinuities and integrates the differential equations with the 
explicit Runge-Kutta (2,3) pair and interpolant used by ode23. The 
Runge-Kutta formulas are implicit for step sizes longer than the delays. When 
the solution is smooth enough that steps this big are justified, the implicit 
formulas are evaluated by a predictor-corrector iteration.

DDE Solver Basic Syntax
The basic syntax of the DDE solver is 

sol = dde23(ddefun,lags,history,tspan)

The input arguments are

The output argument sol is a structure created by the solver. It has fields:  

ddefun A function that evaluates the right side of the differential 
equations. The function must have the form

dydt = ddefun(t,y,Z)

where the scalar t is the independent variable, the column 
vector y is the dependent variable, and Z(:,j) is  for 

 = lags(j).

lags A vector of constant positive delays .

history Function of  that evaluates the solution  for . The 
function must be of the form 

S = history(t)

where S is a column vector. Alternatively, if  is constant, 
you can specify history as this constant vector.

If the current call to dde23 continues a previous integration to 
t0, use the solution sol from that call as the history.

tspan The interval of integration as a two-element vector [t0,tf] 
with t0 < tf. 

sol.x Nodes of the mesh selected by dde23

sol.y Approximation to  at the mesh points of sol.x

y t τj–( )
τj

τ1 … τk, ,

t y t( ) t t0≤

y t( )

y t( )
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To evaluate the numerical solution at any point from [t0,tf], use deval with 
the output structure sol as its input.

Additional DDE Solver Arguments
For more advanced applications, you can also specify as input arguments solver 
options and additional parameters. 

Solving DDE Problems
This section uses an example to describe:

sol.yp Approximation to  at the mesh points of sol.x

sol.solver 'dde23'

options Structure of optional parameters that change the default 
integration properties. This is the fifth input argument.

sol = dde23(ddefun,lags,history,tspan,options)

“Creating and Maintaining a DDE Options Structure” on 
page 5-55 tells you how to create the structure and describes 
the properties you can specify. 

p1,p2... Parameters that the solver passes to ddefun and the history 
function, and all functions specified in options.

sol = dde23(ddefun,lags,history,tspan,
            options,p1,p2...)

The solver passes any input parameters that follow the options 
argument to the functions every time it calls them. Use 
options = [] as a placeholder if you set no options. In the 
ddefun argument list, parameters follow the other arguments. 

dydt = ddefun(t,y,Z,p1,p2,...)

Similarly, if history is a function, then

 S = history(t,p1,p2,...).

y′ t( )
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• Using dde23 to solve initial value problems (IVPs) for delay differential 
equations (DDEs) 

• Evaluating the solution at specific points

Example: A Straightforward Problem
This example illustrates the straightforward formulation, computation, and 
display of the solution of a system of DDEs with constant delays. The history 
is constant, which is often the case. The differential equations are

The example solves the equations on [0,5] with history 

 for .

Note  The demo ddex1 contains the complete code for this example. To see the 
code in an editor, click the example name, or type edit ddex1 at the command 
line. To run the example type ddex1 at the command line. See “DDE Solver 
Basic Syntax” on page 5-47 for more information.

1 Rewrite the problem as a first-order system. To use dde23, you must 
rewrite the equations as an equivalent system of first-order differential 
equations. Do this just as you would when solving IVPs and BVPs for ODEs 
(see “Examples: Solving Explicit ODE Problems” on page 5-10). However, 
this example needs no such preparation because it already has the form of a 
first-order system of equations.

2 Identify the lags. The delays (lags)  are supplied to dde23 as a 
vector. For the example we could use

y1′ t( ) y1 t 1–( )=

y2′ t( ) y1 t 1–( ) y2 t 0.2–( )+=

y3′ t( ) y2 t( )=

y1 t( ) 1=

y2 t( ) 1=

y3 t( ) 1=

t 0≤

τ1 … τk, ,
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lags = [1,0.2];

In coding the differential equations,  = lags(j). 

3 Code the system of first-order DDEs. Once you represent the equations as 
a first-order system, and specify lags, you can code the equations as a 
function that dde23 can use. 

This code represents the system in the function, ddex1de.

function dydt = ddex1de(t,y,Z)
ylag1 = Z(:,1);
ylag2 = Z(:,2);
dydt = [ylag1(1)
        ylag1(1) + ylag2(2)
        y(2)               ];

4 Code the history function. The history function for this example is

function S = ddex1hist(t)
S = ones(3,1);

5 Apply the DDE solver. The example now calls dde23 with the functions 
ddex1de and ddex1hist.

sol = dde23(@ddex1de,lags,@ddex1hist,[0,5]);

Here the example supplies the interval of integration [0,5] directly. Because 
the history is constant, we could also call dde23 by

sol = dde23(@ddex1de,lags,ones(3,1),[0,5]);

6 View the results. Complete the example by displaying the results. dde23 
returns the mesh it selects and the solution there as fields in the solution 
structure sol. Often, these provide a smooth graph.

plot(sol.x,sol.y);
title('An example of Wille'' and Baker');
xlabel('time t');
ylabel('solution y');
legend('y_1','y_2','y_3',2)

τj
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Evaluating the Solution at Specific Points
The method implemented in dde23 produces a continuous solution over the 
whole interval of integration . You can evaluate the approximate 
solution, , at any point in  using the helper function deval and the 
structure sol returned by dde23.  

Sint = deval(sol,tint)

The deval function is vectorized. For a vector tint, the ith column of Sint 
approximates the solution .

Using the output sol from the previous example, this code evaluates the 
numerical solution at 100 equally spaced points in the interval [0,5] and plots 
the result.

tint = linspace(0,5);
Sint = deval(sol,tint);
plot(tint,Sint);
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Discontinuities
dde23 can solve problems with discontinuities in the history or discontinuities 
in coefficients of the equations. It provides properties that enable you to supply 
locations of known discontinuities and a different initial value. 

Discontinuity Property Comments

At the initial value InitialY Generally the initial value  is the 
value  returned by the history 
function, which is to say that the 
solution is continuous at the initial 
point. However, if this is not the case, 
supply a different initial value using 
the InitialY property.

In the history, i.e., 
the solution at 

, or in the 
equation 
coefficients for 

Jumps Provide the known locations  of the 
discontinuities in a vector as the value 
of the Jumps property.

State-dependent Events dde23 uses the events function you 
supply to locate these discontinuities. 
When dde23 finds such a discontinuity, 
restart the integration to continue. 
Specify the solution structure for the 
current integration as the history for 
the new integration. dde23 extends 
each element of the solution structure 
after each restart so that the final 
structure provides the solution for the 
whole interval of integration. If the 
new problem involves a change in the 
solution, use the InitialY property to 
specify the initial value for the new 
integration.

t t0=
y t0( )

S t0( )

t t0<

t t0>

t
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Example: Cardiovascular Model
This example solves a cardiovascular model due to J. T. Ottesen [6]. The 
equations are integrated over the interval [0,1000]. The situation of interest is 
when the peripheral pressure  is reduced exponentially from its value of 1.05 
to 0.84 beginning at  = 600. 

This is a problem with one delay, a constant history, and three differential 
equations with fourteen physical parameters. It has a discontinuity in a low 
order derivative at t = 600.

Note  The demo ddex2 contains the complete code for this example. To see the 
code in an editor, click the example name, or type edit ddex2 at the command 
line. To run the example type ddex2 at the command line. See “DDE Solver 
Basic Syntax” on page 5-47 for more information.

In ddex2, the fourteen physical parameters are set as fields in a structure p 
that dde23 passes to ddex2de as an additional argument. The function ddex2de 
for evaluating the equations begins with

function dydt = ddex2de(t,y,Z,p)
if t <= 600
   p.R = 1.05;
else
   p.R = 0.21 * exp(600-t) + 0.84;
end
.
.
.

Solve Using the Jumps Property. The peripheral pressure  is a continuous 
function of , but it does not have a continuous derivative at t = 600. The 
example uses the Jumps property to inform dde23 about the location of this 
discontinuity. 

opts = ddeset('Jumps',600);

After defining the delay tau and the constant history, the call is 

sol = dde23(@ddex2de,tau,history,[0, 1000],opts,p);

R
t

R
t
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The demo ddex2 plots only the third component, the heart rate, which shows a 
sharp change at t = 600. 

Solve by Restarting. The example could have solved this problem by breaking it 
into two pieces

sol = dde23(@ddex2de,tau,history,[0, 600],[],p);
sol = dde23(@ddex2de,tau,sol,[600, 1000],[],p);

The solution structure sol on the interval [0,600] serves as history for 
restarting the integration at t = 600. In the second call, dde23 extends sol so 
that on return the solution is available on the whole interval [0,1000]. That 
is, after this second return, 

Sint = deval(sol,[300,900]);

evaluates the solution obtained in the first integration at t = 300, and the 
solution obtained in the second integration at t = 900.

When discontinuities occur in low order derivatives at points known in 
advance, it is better to use the Jumps property. When you use event functions 
to locate such discontinuities, you must restart the integration at 
discontinuities.
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Changing DDE Integration Properties
The default integration properties in the DDE solver dde23 are selected to 
handle common problems. In some cases, you can improve solver performance 
by changing these defaults. To do this, create an options structure containing 
one or more property values and supply it to dde23.

sol = dde23(ddefun,lags,history,tspan,options)

This section:

• Explains how to create, modify, and query an options structure

• Describes the properties that you can use in an options structure

In this and subsequent property tables, the most commonly used property 
categories are listed first, followed by more advanced categories. 

Creating and Maintaining a DDE Options Structure
The ddeset function creates an options structure that you can supply to 
dde23. You can use ddeget to query the options structure for the value of a 
specific property.

Creating an Options Structure. The ddeset function accepts property 
name/property value pairs using the syntax

options = ddeset('name1',value1,'name2',value2,...)

This creates a structure options in which the named properties have the 
specified values. Unspecified properties retain their default values. For all 

DDE Property Categories 

Properties Category Property Name

Error control RelTol, AbsTol, NormControl

Solver output OutputFcn, OutputSel, Stats

Step-size InitialStep, MaxStep

Event location Events

Discontinuities InitialY, Jumps
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properties, it is sufficient to type only the leading characters that uniquely 
identify the property name. ddeset ignores case for property names.

With no arguments, ddeset displays all property names and their possible 
values, indicating defaults with braces {}.

Modifying an Existing Options Structure. To modify an existing options argument, 
use

options = ddeset(oldopts,'name1',value1,...)

This overwrites any values in oldopts that are specified using name/value 
pairs. dde23 returns the modified structure as the output argument. In the 
same way, the command

options = ddeset(oldopts,newopts)

combines the structures oldopts and newopts. In options, any values set in 
newopts overwrite those in oldopts.

Querying an Options Structure. The ddeget function extracts a property value 
from an options structure created with ddeset.

o = ddeget(options,'name')

This returns the value of the specified property, or an empty matrix [] if you 
specify no property value in the options structure.

As with ddeset, it is sufficient to type only the leading characters that uniquely 
identify the property name. ddeget ignores case for property names. 

Error Control Properties
At each step, the dde23 solver estimates the local error e in the ith component 
of the solution. This error must be less than or equal to the acceptable error, 
which is a function of the specified relative tolerance, RelTol, and the specified 
absolute tolerance, AbsTol.

|e(i)| ≤ max(RelTol*abs(y(i)),AbsTol(i))

For routine problems, the dde23 solver delivers accuracy roughly equivalent to 
the accuracy you request. It delivers less accuracy for problems integrated over 
“long” intervals and problems that are moderately unstable. Difficult problems 
may require tighter tolerances than the default values. For relative accuracy, 
adjust RelTol. For the absolute error tolerance, the scaling of the solution 
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components is important: if |y| is somewhat smaller than AbsTol, the solver is 
not constrained to obtain any correct digits in y. You might have to solve a 
problem more than once to discover the scale of solution components.

Roughly speaking, this means that you want RelTol correct digits in all 
solution components except those smaller than thresholds AbsTol(i). Even if 
you are not interested in a component y(i) when it is small, you may have to 
specify AbsTol(i) small enough to get some correct digits in y(i) so that you 
can accurately compute more interesting components

The following table describes the error control properties. Use ddeset to set the 
properties. 

DDE Error Control Properties 

Property Value Description

RelTol Positive 
scalar {1e-3}

A relative error tolerance that applies to all components of the 
solution vector y. It is a measure of the error relative to the size 
of each solution component. Roughly, it controls the number of 
correct digits in all solution components except those smaller 
than thresholds AbsTol(i). 

The default, 1e-3, corresponds to 0.1% accuracy.

AbsTol Positive 
scalar or 
vector 
{1e-6}

Absolute error tolerances that apply to the individual 
components of the solution vector. AbsTol(i) is a threshold 
below which the value of the ith solution component is 
unimportant. The absolute error tolerances determine the 
accuracy when the solution approaches zero. Even if you are not 
interested in a component y(i) when it is small, you may have 
to specify AbsTol(i) small enough to get some correct digits in 
y(i) so that you can accurately compute more interesting 
components.

If AbsTol is a vector, the length of AbsTol must be the same as 
the length of the solution vector y. If AbsTol is a scalar, the value 
applies to all components of y.
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Solver Output Properties
The solver output properties let you control the output that the solvers 
generate. Use ddeset to set these properties.

NormControl on | {off} Control error relative to norm of solution. Set this property on to 
request that the solvers control the error in each integration 
step with norm(e) <= max(RelTol*norm(y),AbsTol). By 
default the solvers use a more stringent component-wise error 
control. 

DDE Error Control Properties  (Continued)

Property Value Description

DDE Solver Output Properties 

Property Value Description

OutputFcn Function 
{ddeplot}

Installable output function. The solver calls this function after 
every successful integration step. 

For example, 

options = ddeset('OutputFcn',@myfun)

sets the OutputFcn property to an output function, myfun, that can 
be passed to dde23.

The output function must be of the form

status = myfun(t,y,flag,p1,p2,...)

The solver calls the specified output function with the following 
flags. Note that the syntax of the call differs with the flag. The 
function must respond appropriately:

init The solver calls myfun(tspan,y0,'init') before 
beginning the integration to allow the output function 
to initialize. tspan and y0 are the input arguments to 
dde23.
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{none} The solver calls status = myfun(t,y) after each 
integration step on which output is requested. 
t contains points where output was generated during 
the step, and y is the numerical solution at the points 
in t. If t is a vector, the ith column of y corresponds to 
the ith element of t.

myfun must return a status output value of 0 or 1. If 
status = 1, the solver halts integration. You can use 
this mechanism, for instance, to implement a Stop 
button. 

done The solver calls myfun([],[],'done') when 
integration is complete to allow the output function to 
perform any cleanup chores. 

You can use these general purpose output functions or you can edit 
them to create your own. Type help functionname at the 
command line for more information.

• ddeplot – time series plotting (default when you call the solver 
with no output argument and you have not specified an output 
function)

• ddephas2 – two-dimensional phase plane plotting

• ddephas3 – three-dimensional phase plane plotting

• ddeprint – print solution as the solver computes it

DDE Solver Output Properties  (Continued)

Property Value Description
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Step-Size Properties
The step-size properties let you specify the size of the first step the solver tries, 
potentially helping it to better recognize the scale of the problem. In addition, 
you can specify bounds on the sizes of subsequent time steps.

OutputSel Vector of 
indices

Vector of indices specifying which components of the solution 
vector dde23 passes to the output function. For example, if you 
want to use the ddeplot output function, but you want to plot only 
the first and third components of the solution, you can do this 
using

options = ddeset('OutputFcn',@ddeplot,'OutputSel',[1 
3]);

By default, the solver passes all components of the solution to the 
output function.

Stats on | {off} Specifies whether the solver should display statistics about its 
computations. By default, Stats is off. If it is on, after solving the 
problem the solver displays:

• The number of successful steps

• The number of failed attempts

• The number of times the DDE function was called to evaluate 

DDE Solver Output Properties  (Continued)

Property Value Description

f t y t( ) y t τ1–( ) … y t τk–( ), , , ,( )
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The following table describes the step-size properties. Use ddeset to set these 
properties.

DDE Step Size Properties 

Property Value Description

InitialStep Positive scalar Suggested initial step size. InitialStep sets an upper 
bound on the magnitude of the first step size the solver 
tries. If you do not set InitialStep, the solver bases the 
initial step size on the slope of the solution at the initial 
time tspan(1), and the shortest delay. If the slope of all 
solution components is zero, the procedure might try a 
step size that is much too large. If you know this is 
happening or you want to be sure that the solver resolves 
important behavior at the start of the integration, help 
the code start by providing a suitable InitialStep.

MaxStep Positive scalar 
{0.1∗abs(t0-tf)}

Upper bound on solver step size. If the differential 
equation has periodic coefficients or solutions, it may be a 
good idea to set MaxStep to some fraction (such as 1/4) of 
the period. This guarantees that the solver does not 
enlarge the time step too much and step over a period of 
interest. Do not reduce MaxStep:

• When the solution does not appear to be accurate 
enough. Instead, reduce the relative error tolerance 
RelTol, and use the solution you just computed to 
determine appropriate values for the absolute error 
tolerance vector AbsTol. (See “Error Control Properties” 
on page 5-56 for a description of the error tolerance 
properties.)

• To make sure that the solver doesn’t step over some 
behavior that occurs only once during the simulation 
interval. If you know the time at which the change 
occurs, break the simulation interval into two pieces and 
call dde23 twice. If you do not know the time at which 
the change occurs, try reducing the error tolerances 
RelTol and AbsTol. Use MaxStep as a last resort.
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Event Location Property 
In some DDE problems, the times of specific events are important. While 
solving a problem, the dde23 solver can detect such events by locating 
transitions to, from, or through zeros of user-defined functions. 

The following table describes the Events property. Use ddeset to set this 
property.

DDE Events Property 

String Value Description

Events Function Function that includes one or more event functions. The function is 
of the form

  [value,isterminal,direction] = events(t,y,Z)

value, isterminal, and direction are vectors for which the ith 
element corresponds to the ith event function: 

• value(i) is the value of the ith event function.

• isterminal(i) = 1 if you want the integration to terminate at a 
zero of this event function, and 0 otherwise. 

• direction(i) = 0 if you want dde23 to locate all zeros (the 
default), +1 if only zeros where the event function is increasing, 
and -1 if only zeros where the event function is decreasing. 

If you specify an events function and events are detected, the solver 
returns three additional fields in the solution structure sol:

• sol.xe is a row vector of times at which events occur.

• sol.ye is a matrix whose columns are the solution values 
corresponding to times in sol.xe.

• sol.ie is a vector containing indices that specify which event 
occurred at the corresponding time in sol.xe.

For examples that use an event function while solving ordinary 
differential equation problems, see “Example: Simple Event 
Location” on page 5-28 (ballode) and “Example: Advanced Event 
Location” on page 5-31 (orbitode).
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Discontinuity Properties
dde23 can solve problems with discontinuities in the history or discontinuities 
in coefficients of the equations. These properties enable you to provide dde23 
with a different initial value, and locations of known discontinuities. See 
“Discontinuities” on page 5-52 for more information.

DDE Discontinuity Properties

String Value Description

Jumps Vector Location of discontinuities. Points  where the history 
or solution may have a jump discontinuity in a low-order 
derivative.

InitialY Vector Initial value of solution. By default the initial value of 
the solution is the value returned by history at the 
initial point. Supply a different initial value as the value 
of the InitialY property.

t
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Boundary Value Problems for ODEs
This section describes how to use MATLAB to solve boundary value problems 
(BVPs) of ordinary differential equations (ODEs). It provides:

• A summary of the BVP functions and examples

• An introduction to BVPs

• A description of the BVP solver and its syntax

• General instructions for solving a BVP

• A discussion and examples about using continuation to solve a difficult 
problem 

• Instructions for solving singular BVPs

• A discussion about changing default integration properties 
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BVP Function Summary

ODE Boundary Value Problem Solver

BVP Helper Functions

BVP Solver Properties Handling
An options structure contains named properties whose values are passed to 
bvp4c, and which affect problem solution. Use these functions to create, alter, 
or access an options structure.

ODE Boundary Value Problem Examples
These examples illustrate the kind of problems you can solve using the BVP 
solver. Click the example name to see the code in an editor. Type the example 
name at the command line to run it.

Solver Description

bvp4c Solve two-point boundary value problems for ordinary 
differential equations.

Function Description

bvpinit Form the initial guess for bvp4c.

deval Evaluate the numerical solution using the output of bvp4c.

Function Description

bvpset Create/alter the BVP options structure.

bvpget Extract properties from options structure created with bvpset.
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Note  The Differential Equations Examples browser enables you to view the 
code for the BVP examples, and also run them. Click on the link to invoke the 
browser, or type odeexamples('bvp')at the command line.

Additional examples are provided by “Tutorial on Solving BVPs with BVP4C,” 
available at www.mathworks.com/bvp_tutorial. 

Introduction to Boundary Value ODE Problems
The BVP solver is designed to handle systems of ordinary differential 
equations

where  is the independent variable,  is the dependent variable, and  
represents .

See “What Is an Ordinary Differential Equation?” on page 5-5 for general 
information about ODEs.

Using Boundary Conditions to Specify the Solution of Interest
In a boundary value problem, the solution of interest satisfies certain boundary 
conditions. These conditions specify a relationship between the values of the 
solution at more than one . bvp4c is designed to solve two-point BVPs, i.e., 
problems where the solution sought on an interval  must satisfy the 
boundary conditions

Example Description

emdenbvp Emden's equation, a singular BVP

fsbvp Falkner-Skan BVP on an infinite interval

mat4bvp Fourth eigenfunction of Mathieu’s equation

shockbvp Solution with a shock layer near x = 0

twobvp BVP with exactly two solutions

y′ f x y,( )=

x y y′
dy dx⁄

x
a b,[ ]
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Unlike initial value problems, a boundary value problem may not have a 
solution, may have a finite number of solutions, or may have infinitely many 
solutions. As an integral part of the process of solving a BVP, you need to 
provide a guess for the required solution. The quality of this guess can be 
critical for the solver performance and even for a successful computation.

There may be other difficulties when solving BVPs, such as problems imposed 
on infinite intervals or problems that involve singular coefficients. Often BVPs 
involve unknown parameters that have to be determined as part of solving 
the problem 

In this case, the boundary conditions must suffice to determine the value of . 

Boundary Value Problem Solver
This section describes: 

• The BVP solver, bvp4c

• BVP solver basic syntax 

• Additional BVP solver arguments

The BVP Solver
The function bvp4c solves two-point boundary value problems for ordinary 
differential equations (ODEs). It integrates a system of first-order ordinary 
differential equations

on the interval , subject to general two-point boundary conditions

It can also accommodate unknown parameters for problems of the form 

g y a( ) y b( ),( ) 0=

p

y′ f x y p, ,( )=

g y a( ) y b( ) p, ,( ) 0=

p

y′ f x y,( )=

a b,[ ]

bc y a( ) y b( ),( ) 0=

y′ f x y p, ,( )=
bc y a( ) y b( ) p, ,( ) 0=
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In this case, the number of boundary conditions must be sufficient to determine 
the solution and the unknown parameters. For more information, see “Finding 
Unknown Parameters” on page 5-75.

bvp4c produces a solution that is continuous on  and has a continuous 
first derivative there. You can use the function deval and the output of bvp4c 
to evaluate the solution at specific points on the interval of integration.

bvp4c is a finite difference code that implements the 3-stage Lobatto IIIa 
formula. This is a collocation formula and the collocation polynomial provides 
a C1-continuous solution that is fourth-order accurate uniformly in the interval 
of integration. Mesh selection and error control are based on the residual of the 
continuous solution. 

The collocation technique uses a mesh of points to divide the interval of 
integration into subintervals. The solver determines a numerical solution by 
solving a global system of algebraic equations resulting from the boundary 
conditions, and the collocation conditions imposed on all the subintervals. The 
solver then estimates the error of the numerical solution on each subinterval. 
If the solution does not satisfy the tolerance criteria, the solver adapts the 
mesh and repeats the process. The user must provide the points of the initial 
mesh as well as an initial approximation of the solution at the mesh points.

BVP Solver Basic Syntax
The basic syntax of the BVP solver is 

sol = bvp4c(odefun,bcfun,solinit)

a b,[ ]
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The input arguments are:

The output argument sol is a structure created by the solver. In the basic case 
the structure has fields x, y, and yp. 

odefun Function that evaluates the differential equations. It has the basic 
form

dydx = odefun(x,y) 

where x is a scalar, and dydx and y are column vectors. odefun can 
also accept a vector of unknown parameters and a variable number 
of known parameters.

bcfun Function that evaluates the residual in the boundary conditions. It 
has the basic form 

res = bcfun(ya,yb)

where ya and yb are column vectors representing y(a) and y(b), 
and res is a column vector of the residual in satisfying the boundary 
conditions. bcfun can also accept a vector of unknown parameters 
and a variable number of known parameters.

solinit Structure with fields x and y:

x Ordered nodes of the initial mesh. Boundary conditions are 
imposed at a = solinit.x(1) and b = solinit.x(end).

y Initial guess for the solution with solinit.y(:,i) a guess 
for the solution at the node solinit.x(i).

The structure can have any name, but the fields must be named x 
and y. It can also contain a vector that provides an initial guess for 
unknown parameters. You can form solinit with the helper 
function bvpinit. See the bvpinit reference page for details.

sol.x Nodes of the mesh selected by bvp4c

sol.y Approximation to  at the mesh points of sol.x

sol.yp Approximation to  at the mesh points of sol.x

y x( )

y′ x( )
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The function deval uses the output structure sol to evaluate the numerical 
solution at any point from [a,b].

Additional BVP Solver Arguments
For more advanced applications, you can also specify as input arguments solver 
options and additional known parameters. 

sol.parameters Value of unknown parameters, if present, found by the 
solver.

sol.solver 'bvp4c'

options Structure of optional parameters that change the default 
integration properties. This is the fourth input argument.

sol = bvp4c(odefun,bcfun,solinit,options)

“Creating and Maintaining a BVP Options Structure” on 
page 5-89 tells you how to create the structure and describes 
the properties you can specify. 
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Solving BVP Problems
This section describes:

• The process for solving boundary value problems (BVPs) using bvp4c

• Finding unknown parameters

• Evaluating the solution at specific points

Example: Mathieu’s Equation
This example determines the fourth eigenvalue of Mathieu's Equation. It 
illustrates how to write second-order differential equations as a system of two 
first-order ODEs and how to use bvp4c to determine an unknown parameter .

The task is to compute the fourth ( ) eigenvalue  of Mathieu's equation 

Because the unknown parameter  is present, this second-order differential 
equation is subject to three boundary conditions 

p1,p2... Known parameters that the solver passes to odefun and bcfun.

sol = bvp4c(odefun,bcfun,solinit,options,p1,p2...)

The solver passes any input parameters that follow the options 
argument to odefun and bcfun every time it calls them. Use 
options = [] as a placeholder if you set no options. In the 
odefun argument list, known parameters follow x, y, and a 
vector of unknown parameters (parameters), if present. 

dydx = odefun(x,y,p1,p2,...)
dydx = odefun(x,y,parameters,p1,p2,...)

In the bcfun argument list, known parameters follow ya, yb, 
and a vector of unknown parameters, if present.

res = bcfun(ya,yb,p1,p2,...)
res = bcfun(ya,yb,parameters,p1,p2,...)

See “Example: Using Continuation to Solve a Difficult BVP” on 
page 5-76 for an example.

λ

q 5= λ

y′′ λ 2– q 2xcos( ) y+ 0=

λ
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Note  The demo mat4bvp contains the complete code for this example. The 
demo uses subfunctions to place all functions required by bvp4c in a single 
M-file. To run this example type mat4bvp at the command line. See “BVP 
Solver Basic Syntax” on page 5-68 for more information.

1 Rewrite the problem as a first-order system. To use bvp4c, you must 
rewrite the equations as an equivalent system of first-order differential 
equations. Using a substitution  and , the differential 
equation is written as a system of two first-order equations

Note that the differential equations depend on the unknown parameter . 
The boundary conditions become 

2 Code the system of first-order ODEs. Once you represent the equation as 
a first-order system, you can code it as a function that bvp4c can use. 
Because there is an unknown parameter, the function must be of the form

dydx = odefun(x,y,parameters)

y 0( ) 1=
y′ 0( ) 0=
y′ π( ) 0=

y1 y= y2 y′=

y1′ y2=

y2′ λ 2– q 2xcos( ) y1–=

λ

y1 0( ) 1– 0=

y2 0( ) 0=

y2 π( ) 0=
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The following code represents the system in the function, mat4ode.

function dydx = mat4ode(x,y,lambda)
q = 5;
dydx = [   y(2)
         -(lambda - 2*q*cos(2*x))*y(1) ];

See “Finding Unknown Parameters” on page 5-75 for more information 
about using unknown parameters with bvp4c. 

3 Code the boundary conditions function. You must also code the boundary 
conditions in a function. Because there is an unknown parameter, the 
function must be of the form

res = bcfun(ya,yb,parameters)

The code below represents the boundary conditions in the function, mat4bc.

function res = mat4bc(ya,yb,lambda)
res = [  ya(2) 
         yb(2) 
        ya(1)-1 ];

4 Create an initial guess. To form the guess structure solinit with bvpinit, 
you need to provide initial guesses for both the solution and the unknown 
parameter. 

The function mat4init provides an initial guess for the solution. mat4init 
uses  because this function satisfies the boundary conditions and 
has the correct qualitative behavior (the correct number of sign changes). 

function yinit = mat4init(x)
yinit = [  cos(4*x)
          -4*sin(4*x) ];

In the call to bvpinit, the third argument, lambda, provides an initial guess 
for the unknown parameter .

lambda = 15;
solinit = bvpinit(linspace(0,pi,10),@mat4init,lambda);

This example uses @ to pass mat4init as a function handle to bvpinit. 

y 4xcos=

λ
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Note  See the function_handle (@), func2str, and str2func reference pages, 
and the “Function Handles” chapter of “Programming and Data Types” in the 
MATLAB documentation for information about function handles.

5 Apply the BVP solver. The mat4bvp example calls bvp4c with the functions 
mat4ode and mat4bc and the structure solinit created with bvpinit.

sol = bvp4c(@mat4ode,@mat4bc,solinit);

6 View the results. Complete the example by displaying the results:

a Print the value of the unknown parameter  found by bvp4c. 
fprintf('The fourth eigenvalue is approximately %7.3f.\n',...

 sol.parameters)

b Use deval to evaluate the numerical solution at 100 equally spaced 
points in the interval , and plot its first component. This component 
approximates .
xint = linspace(0,pi);
Sxint = deval(sol,xint);
plot(xint,Sxint(1,:))
axis([0 pi -1 1.1])
title('Eigenfunction of Mathieu''s equation.') 
xlabel('x')
ylabel('solution y')

See “Evaluating the Solution at Specific Points” on page 5-76 for 
information about using deval.

The following plot shows the eigenfunction associated with the final 
eigenvalue  = 17.097.

λ

0 π,[ ]
y x( )

λ
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Finding Unknown Parameters
The bvp4c solver can find unknown parameters  for problems of the form 

You must provide bvp4c an initial guess for any unknown parameters in the 
vector solinit.parameters. When you call bvpinit to create the structure 
solinit, specify the initial guess as a vector in the additional argument 
parameters.

solinit = bvpinit(x,v,parameters)

The bvp4c function arguments odefun and bcfun must each have a third 
argument. 

dydx = odefun(x,y,parameters)
res = bcfun(ya,yb,parameters)

The bvp4c solver calculates intermediate values of unknown parameters at 
each iteration, and passes the latest values to odefun and bcfun in the 
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parameters arguments. The solver returns the final values of these unknown 
parameters in sol.parameters. See “Example: Mathieu’s Equation” on 
page 5-71.

Evaluating the Solution at Specific Points
The collocation method implemented in bvp4c produces a C1-continuous 
solution over the whole interval of integration . You can evaluate the 
approximate solution, , at any point in  using the helper function 
deval and the structure sol returned by bvp4c.  

Sxint = deval(sol,xint)

The deval function is vectorized. For a vector xint, the ith column of Sxint 
approximates the solution .

Using Continuation to Make a Good Initial Guess
To solve a boundary value problem, you need to provide an initial guess for the 
solution. The quality of your initial guess can be critical to the solver 
performance, and to being able to solve the problem at all. However, coming up 
with a sufficiently good guess can be the most challenging part of solving a 
boundary value problem. Certainly, you should apply the knowledge of the 
problem's physical origin. Often a problem can be solved as a sequence of 
relatively simpler problems, i.e., a continuation. This section provides 
examples that illustrate how to use continuation to:

• Solve a difficult BVP.

• Verify a solution’s consistent behavior.

Example: Using Continuation to Solve a Difficult BVP
This example solves the differential equation

for , on the interval [-1 1], with boundary conditions  and 
. For , the solution has a transition layer at . Because 

of this rapid change in the solution for small values of , the problem becomes 
difficult to solve numerically. 

a b,[ ]
S x( ) a b,[ ]

y xint(i)( )

εy″ xy′+ επ2 πx( )cos πx πx( )sin–=

ε 10 4–= y 1–( ) 2–=
y 1( ) 0= 0 ε 1< < x 0=

ε
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The example solves the problem as a sequence of relatively simpler problems, 
i.e., a continuation. The solution of one problem is used as the initial guess for 
solving the next problem.

Note  The demo shockbvp contains the complete code for this example. The 
demo uses subfunctions to place all required functions in a single M-file. To 
run this example type shockbvp at the command line. See “BVP Solver Basic 
Syntax” on page 5-68 and “Solving BVP Problems” on page 5-71 for more 
information.

Note  This problem appears in [1] to illustrate the mesh selection capability 
of a well established BVP code COLSYS.

1 Code the ODE and boundary condition functions. Code the differential 
equation and the boundary conditions as functions that bvp4c can use. 
Because there is an additional known parameter , the functions must be of 
the form

dydx = odefun(x,y,p1)
res = bcfun(ya,yb,p1)

The code below represents the differential equation and the boundary 
conditions in the functions shockODE and shockBC. Note that shockODE is 
vectorized to improve solver performance. The additional parameter  is 
represented by e. 

function dydx = shockODE(x,y,e)
pix = pi*x;
dydx = [ y(2,:)
         -x/e.*y(2,:) - pi^2*cos(pix) - pix/e.*sin(pix) ];

function res = shockBC(ya,yb,e)
res = [ ya(1)+2 
        yb(1)   ];

ε

ε
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The example passes e as an additional input argument to bvp4c. 

  sol = bvp4c(@shockODE,@shockBC,sol,options,e);

bvp4c then passes this argument to the functions shockODE and shockBC 
when it evaluates them. See “Additional BVP Solver Arguments” on 
page 5-70 for more information.

2 Provide analytical partial derivatives. For this problem, the solver 
benefits from using analytical partial derivatives. The code below represents 
the derivatives in functions shockJac and shockBCJac.

function jac = shockJac(x,y,e)
jac = [ 0   1
        0 -x/e ];

function [dBCdya,dBCdyb] = shockBCJac(ya,yb,e)
dBCdya = [ 1 0
           0 0 ];
dBCdyb = [ 0 0
           1 0 ];

shockJac and shockBCJac must accept the additional argument e, because 
bvp4c passes the additional argument to all the functions the user supplies. 

Tell bvp4c to use these functions to evaluate the partial derivatives by 
setting the options FJacobian and BCJacobian. Also set 'Vectorized' to 
'on' to indicate that the differential equation function shockODE is 
vectorized.

options = bvpset('FJacobian',@shockJac,...
                 'BCJacobian',@shockBCJac,...
                 'Vectorized','on');

3 Create an initial guess. You must provide bvp4c with a guess structure 
that contains an initial mesh and a guess for values of the solution at the 
mesh points. A constant guess of  and , and a mesh of five 
equally spaced points on [-1 1] suffice to solve the problem for . Use 
bvpinit to form the guess structure.

sol = bvpinit([-1 -0.5 0 0.5 1],[1 0]);

y x( ) 1≡ y′ x( ) 0≡
ε 10 2–=
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4 Use continuation to solve the problem. To obtain the solution for the 
parameter , the example uses continuation by solving a sequence 
of problems for . The solver bvp4c does not perform 
continuation automatically, but the code's user interface has been designed 
to make continuation easy. The code uses the output sol that bvp4c 
produces for one value of e as the guess in the next iteration.

e = 0.1; 
for i=2:4 
    e = e/10; 
    sol = bvp4c(@shockODE,@shockBC,sol,options,e); 
end

5 View the results. Complete the example by displaying the final solution

plot(sol.x,sol.y(1,:))
axis([-1 1 -2.2 2.2])
title(['There is a shock at x = 0 when \epsilon = '... 

sprintf('%.e',e) '.']) 
xlabel('x')
ylabel('solution y')

ε 10 4–=
ε 10 2– 10 3– 10 4–, ,=
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Example: Using Continuation to Verify a Solution’s Consistent Behavior
Falkner-Skan BVPs arise from similarity solutions of viscous, incompressible, 
laminar flow over a flat plate. An example is

 

for  on the interval  with boundary conditions , 
, and . 

The BVP cannot be solved on an infinite interval, and it would be impractical 
to solve it for even a very large finite interval. So, the example tries to solve a 
sequence of problems posed on increasingly larger intervals to verify the 
solution’s consistent behavior as the boundary approaches . 

The example imposes the infinite boundary condition at a finite point called 
infinity. The example then uses continuation in this end point to get 
convergence for increasingly larger values of infinity. It uses bvpinit to 
extrapolate the solution sol for one value of infinity as an initial guess for the 
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new value of infinity. The plot of each successive solution is superimposed 
over those of previous solutions so they can easily be compared for consistency. 

Note  The demo fsbvp contains the complete code for this example. The demo 
uses subfunctions to place all required functions in a single M-file. To run this 
example type fsbvp at the command line. See “BVP Solver Basic Syntax” on 
page 5-68 and “Solving BVP Problems” on page 5-71 for more information.

1 Code the ODE and boundary condition functions. Code the differential 
equation and the boundary conditions as functions that bvp4c can use.

function dfdeta = fsode(eta,f)
beta = 0.5;
dfdeta = [ f(2)
           f(3)
          -f(1)*f(3) - beta*(1 - f(2)^2) ];

function res = fsbc(f0,finf)
res = [f0(1)
       f0(2)
       finf(2) - 1];

2 Create an initial guess. You must provide bvp4c with a guess structure 
that contains an initial mesh and a guess for values of the solution at the 
mesh points. A crude mesh of five points and a constant guess that satisfies 
the boundary conditions are good enough to get convergence when infinity 
= 3.

infinity = 3;
maxinfinity = 6;

solinit = bvpinit(linspace(0,infinity,5),[0 0 1]);

3 Solve on the initial interval. The example obtains the solution for 
infinity = 3. It then prints the computed value of  for comparison 
with the value reported by Cebeci and Keller [2].

sol = bvp4c(@fsode,@fsbc,solinit);
eta = sol.x;
f = sol.y;

f′′ 0( )
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fprintf('\n');
fprintf('Cebeci & Keller report that f''''(0) = 0.92768.\n')
fprintf('Value computed using infinity = %g is '...
        '%7.5f.\n',Bnew,f(3,1))

The example prints

Cebeci & Keller report that f''(0) = 0.92768.
Value computed using infinity = 3 is 0.92915.

4 Setup the figure and plot the initial solution.

figure
plot(eta,f(2,:),eta(end),f(2,end),'o');
axis([0 maxinfinity 0 1.4]);
title('Falkner-Skan equation, positive wall shear, \beta = 0.5.')
xlabel('\eta')
ylabel('df/d\eta')
hold on
drawnow 
shg 
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5 Use continuation to solve the problem and plot subsequent solutions. 
The example then solves the problem for infinity = 4, 5, 6. It uses bvpinit 
to extrapolate the solution sol for one value of infinity as an initial guess 
for the next value of infinity. For each iteration, the example prints the 
computed value of  and superimposes a plot of the solution in the 
existing figure.

for Bnew = infinity+1:maxinfinity
  
  solinit = bvpinit(sol,[0 Bnew]); % Extend solution to Bnew.
  sol = bvp4c(@fsode,@fsbc,solinit);
  eta = sol.x;
  f = sol.y;
  
  fprintf('Value computed using infinity = %g is '...
          '%7.5f.\n',Bnew,f(3,1))
  plot(eta,f(2,:),eta(end),f(2,end),'o');
  drawnow
  
end
hold off

 The example prints

Value computed using infinity = 4 is 0.92774.
Value computed using infinity = 5 is 0.92770.
Value computed using infinity = 6 is 0.92770.

Note that the values approach 0.92768 as reported by Cebeci and Keller. The 
superimposed plots confirm the consistency of the solution’s behavior.

f′′ 0( )
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Solving Singular BVPs
The function bvp4c solves a class of singular BVPs of the form 

(5-2)

It can also accommodate unknown parameters for problems of the form 

Singular problems must be posed on an interval   with  . Use bvpset 
to pass the constant matrix   to bvp4c as the value of the 'SingularTerm' 
integration property. Boundary conditions at   must be consistent with 
the necessary condition for a smooth solution,  . An initial guess 
should also satisfy this necessary condition. 
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When you solve a singular BVP using 

sol = bvp4c(@odefun,@bcfun,solinit,options)

bvp4c requires that your function odefun(x,y) return only the value of the 
 term in Equation 5-2.

Example: Solving a BVP that Has a Singular Term
Emden's equation arises in modeling a spherical body of gas. The PDE of the 
model is reduced by symmetry to the ODE

on an interval . The coefficient   is singular at  , but symmetry 
implies the boundary condition . With this boundary condition, the 
term 

 

is well-defined as   approaches 0. For the boundary condition , 
this BVP has the analytical solution 

Note  The demo emdenbvp contains the complete code for this example. The 
demo uses subfunctions to place all required functions in a single M-file. To 
run this example type emdenbvp at the command line. See “BVP Solver Basic 
Syntax” on page 5-68 and “Solving BVP Problems” on page 5-71 for more 
information.
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1 Rewrite the problem as a first-order system and identify the singular 
term. Using a substitution  and  , write the differential 
equation as a system of two first-order equations

The boundary conditions become

Writing the ODE system in a vector-matrix form

the terms of Equation 5-2 are identified as

and 

 

2 Code the ODE and boundary condition functions. Code the differential 
equation and the boundary conditions as functions that bvp4c can use.

function dydx = emdenode(x,y)
dydx = [  y(2) 
         -y(1)^5 ];
function res = emdenbc(ya,yb)
res = [ ya(2)
        yb(1) - sqrt(3)/2 ];

y1 y= y2 y′=

y1′ y2=

y2′ 2
x
---y2– y1

5–=

y2 0( ) 0=

y1 1( ) 3 2⁄=

y1′

y2′
1
x
--- 0 0

0 2–
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+=

S 0 0
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3 Setup integration properties. Use the matrix as the value of the 
'SingularTerm' integration property.

S = [0,0;0,-2];
options = bvpset('SingularTerm',S);

4 Create an initial guess. This example starts with a mesh of five points and 
a constant guess for the solution.

Use bvpinit to form the guess structure

guess = [sqrt(3)/2;0];
solinit = bvpinit(linspace(0,1,5),guess);

5 Solve the problem. Use the standard bvp4c syntax to solve the problem.

sol = bvp4c(@emdenode,@emdenbc,solinit,options);

6 View the results. This problem has an analytical solution

The example evaluates the analytical solution at 100 equally-spaced points 
and plots it along with the numerical solution computed using bvp4c.

x = linspace(0,1);
truy = 1 ./ sqrt(1 + (x.^2)/3);
plot(x,truy,sol.x,sol.y(1,:),'ro');
title('Emden problem -- BVP with singular term.')
legend('Analytical','Computed');
xlabel('x');
ylabel('solution y');
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Changing BVP Integration Properties
The default integration properties in the BVP solver bvp4c are selected to 
handle common problems. In some cases, you can improve solver performance 
by changing these defaults. To do this, supply bvp4c with one or more property 
values in an options structure.

sol = bvp4c(odefun,bcfun,solinit,options)

This section:

• Explains how to create, modify, and query an options structure

• Describes the properties that you can use in an options structure

In this and subsequent property tables, the most commonly used property 
categories are listed first, followed by more advanced categories. 

BVP Property Categories 

Properties Category Property Names

Error control RelTol, AbsTol

Vectorization Vectorized
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Note  For other ways to improve solver efficiency, check “Using Continuation 
to Make a Good Initial Guess” on page 8-76 and the tutorial, “Solving 
Boundary Value Problems for Ordinary Differential Equations in MATLAB 
with bvp4c,” available at ftp://ftp.mathworks.com/pub/doc/papers/bvp/.

Creating and Maintaining a BVP Options Structure
The bvpset function creates an options structure that you can supply to 
bvp4c. You can use bvpget to query the options structure for the value of a 
specific property.

Creating an Options Structure. The bvpset function accepts property 
name/property value pairs using the syntax

options = bvpset('name1',value1,'name2',value2,...)

This creates a structure options in which the named properties have the 
specified values. Unspecified properties retain their default values. For all 
properties, it is sufficient to type only the leading characters that uniquely 
identify the property name. bvpset ignores case for property names.

With no arguments, bvpset displays all property names and their possible 
values, indicating defaults with braces {}.

Modifying an Existing Options Structure. To modify an existing options argument, 
use

options = bvpset(oldopts,'name1',value1,...)

Analytical partial derivatives FJacobian, BCJacobian

Singular BVPs SingularTerm

Mesh size NMax

Output displayed Stats

BVP Property Categories  (Continued)

Properties Category Property Names
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This overwrites any values in oldopts that are specified using name/value 
pairs. The modified structure is returned as the output argument. In the same 
way, the command

options = bvpset(oldopts,newopts)

combines the structures oldopts and newopts. In options, any values set in 
newopts overwrite those in oldopts.

Querying an Options Structure. The bvpget function extracts a property value 
from an options structure created with bvpset.

o = bvpget(options,'name')

This returns the value of the specified property, or an empty matrix [] if the 
property value is unspecified in the options structure.

As with bvpset, it is sufficient to type only the leading characters that uniquely 
identify the property name; case is ignored for property names. 

Error Tolerance Properties
Because bvp4c uses a collocation formula, the numerical solution is based on a 
mesh of points at which the collocation equations are satisfied. Mesh selection 
and error control are based on the residual of this solution, such that the 
computed solution  is the exact solution of a perturbed problem 

. On each subinterval of the mesh, a norm of the 
residual in the ith component of the solution, res(i), is estimated and is 
required to be less than or equal to a tolerance. This tolerance is a function of 
the relative and absolute tolerances, RelTol and AbsTol, defined by the user.

S x( )
S′ x( ) f x S x( ),( ) res x( )+=

(res(i)/max(abs(f(i)),AbsTol(i)/RelTol)) RelTol≤
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The following table describes the error tolerance properties. Use bvpset to set 
these properties. 

Vectorization
The following table describes the BVP vectorization property. Vectorization of 
the ODE function used by bvp4c differs from the vectorization used by the ODE 
solvers:

• For bvp4c, the ODE function must be vectorized with respect to the first 
argument as well as the second one, so that F([x1 x2 ...],[y1 y2 ...]) 
returns [F(x1,y1) F(x2,y2) ...].

• bvp4c benefits from vectorization even when analytical Jacobians are 
provided. For stiff ODE solvers, vectorization is ignored when analytical 
Jacobians are used. 

BVP Error Tolerance Properties 

Property Value Description

RelTol Positive scalar 
{1e-3}

A relative error tolerance that applies to all components of the 
residual vector. It is a measure of the residual relative to the 
size of . The default, 1e-3, corresponds to 0.1% 
accuracy.

AbsTol Positive scalar 
or vector {1e-6}

Absolute error tolerances that apply to the corresponding 
components of the residual vector. AbsTol(i) is a threshold 
below which the values of the corresponding components are 
unimportant. If a scalar value is specified, it applies to all 
components. 

f x y,( )
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Use bvpset to set this property.

Analytical Partial Derivatives
By default, the bvp4c solver approximates all partial derivatives with finite 
differences. bvp4c can be more efficient if you provide analytical partial 
derivatives  of the differential equations, and analytical partial 
derivatives,  and , of the boundary conditions. If the problem 
involves unknown parameters, you must also provide partial derivatives, 

 and , with respect to the parameters.

Vectorization Properties

Property Value Description

Vectorized on | {off} Set on to inform bvp4c that you have coded the ODE function F 
so that F([x1 x2 ...],[y1 y2 ...]) returns 
[F(x1,y1) F(x2,y2) ...]. This allows the solver to reduce 
the number of function evaluations, and may significantly 
reduce solution time.

With the MATLAB array notation, it is typically an easy 
matter to vectorize an ODE function. In the shockbvp example 
shown previously, the shockODE function has been vectorized 
using colon notation into the subscripts and by using the array 
multiplication (.*) operator.

function dydx = shockODE(x,y,e)
pix = pi*x;
dydx = [ y(2,:)
         -x/e.*y(2,:)-pi^2*cos(pix)-pix/e.*sin(pix) 
];

∂f ∂y⁄
∂bc ∂ya⁄ ∂bc ∂yb⁄

∂f ∂p⁄ ∂bc ∂p⁄
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The following table describes the analytical partial derivatives properties. Use 
bvpset to set these properties.

Singular BVPs
bvp4c can solve singular problems of the form

posed on the interval  where . For such problems, specify the 
constant matrix  as the value of SingularTerm. For equations of this form, 
odefun evaluates only the  term, where  represents unknown 
parameters, if any.

BVP Analytical Partial Derivative Properties 

Property Value Description

FJacobian Function The function computes the analytical partial derivatives of 
. When solving , set this property to @fjac if 

dfdy = fjac(x,y) evaluates the Jacobian . If the problem 
involves unknown parameters , [dfdy,dfdp] = fjac(x,y,p) 
must also return the partial derivative . For problems 
with constant partial derivatives, set this property to the value 
of dfdy or to a cell array {dfdy,dfdp}.

BCJacobian Function The function computes the analytical partial derivatives of 
. For boundary conditions , set this 

property to @bcjac if [dbcdya,dbcdyb] = bcjac(ya,yb) 
evaluates the partial derivatives , and . If the 
problem involves unknown parameters , 
[dbcdya,dbcdyb,dbcdp] = bcjac(ya,yb,p) must also return 
the partial derivative . For problems with constant 
partial derivatives, set this property to a cell array 
{dbcdya,dbcdyb} or {dbcdya,dbcdyb,dbcdp}.

f x y,( ) y′ f x y,( )=
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p
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Mesh Size Property
bvp4c solves a system of algebraic equations to determine the numerical 
solution to a BVP at each of the mesh points. The size of the algebraic system 
depends on the number of differential equations (n) and the number of mesh 
points in the current mesh (N). When the allowed number of mesh points is 
exhausted, the computation stops, bvp4c displays a warning message and 
returns the solution it found so far. This solution does not satisfy the error 
tolerance, but it may provide an excellent initial guess for computations 
restarted with relaxed error tolerances or an increased value of NMax. 

The following table describes the mesh size property. Use bvpset to set this 
property.

Singular BVP Property 

Property Value Description

SingularTerm Constant matrix Singular term of singular BVPs. Set to the constant 
matrix  for equations of the form 

posed on the interval  where . 

S

y′ S y
x
--- f x y p, ,( )+=

0 b,[ ] b 0>

BVP Mesh Size Property 

Property Value Description

NMax positive integer 
{floor(1000/n)}

Maximum number of mesh points allowed when solving the 
BVP, where n is the number of differential equations in the 
problem. The default value of NMax limits the size of the 
algebraic system to about 1000 equations. For systems of a 
few differential equations, the default value of NMax should 
be sufficient to obtain an accurate solution. 



Boundary Value Problems for ODEs

5-95

Solution Statistic Property
The Stats property lets you view solution statistics.

The following table describes the solution statistics property. Use bvpset to set 
this property.

BVP Solution Statistic Property 

Property Value Description

Stats on | {off} Specifies whether statistics about the computations are 
displayed. If the stats property is on, after solving the 
problem, bvp4c displays:

• The number of points in the mesh

• The maximum residual of the solution

• The number of times it called the differential equation 
function odefun to evaluate 

• The number of times it called the boundary condition 
function bcfun to evaluate 

f x y,( )

bc y a( ) y b( ),( )
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Partial Differential Equations
This section describes how to use MATLAB to solve initial-boundary value 
problems for partial differential equations (PDEs). It provides:

• A summary of the MATLAB PDE functions and examples

• An introduction to PDEs

• A description of the PDE solver and its syntax

• General instructions for representing a PDE in MATLAB, including an 
example

• A discussion about changing default integration properties 

• An example of solving a real-life problem 

PDE Function Summary

MATLAB PDE Solver
This is the MATLAB PDE solver.

PDE Helper Function

PDE Examples 
These examples illustrate some problems you can solve using the MATLAB 
PDE solver. Click the example name to see the code in an editor. Type the 
example name at the command line to run it.

PDE Initial-Boundary Value Problem Solver

pdepe Solve initial-boundary value problems for systems of parabolic 
and elliptic PDEs in one space variable and time.

PDE Helper Function

pdeval Evaluate the numerical solution of a PDE using the output of 
pdepe.
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Note  The Differential Equations Examples browser enables you to view the 
code for the PDE examples, and also run them. Click on the link to invoke the 
browser, or type odeexamples('pde')at the command line.

Introduction to PDE Problems
pdepe solves systems of PDEs in one spatial variable  and time , of the form 

(5-3)

The PDEs hold for  and . The interval  must be finite. 
 can be 0, 1, or 2, corresponding to slab, cylindrical, or spherical symmetry, 

respectively. If , then  must also hold. 

In Equation 5-3,  is a flux term and  is a source 
term. The coupling of the partial derivatives with respect to time is restricted 
to multiplication by a diagonal matrix . The diagonal elements 
of this matrix are either identically zero or positive. An element that is 
identically zero corresponds to an elliptic equation and otherwise to a parabolic 
equation. There must be at least one parabolic equation. An element of  that 
corresponds to a parabolic equation can vanish at isolated values of  if they 

Example Description

pdex1 Simple PDE that illustrates the straightforward formulation, 
computation, and plotting of the solution

pdex2 Problem that involves discontinuities

pdex3 Problem that requires computing values of the partial 
derivative

pdex4 System of two PDEs whose solution has boundary layers at 
both ends of the interval and changes rapidly for small 

pdex5 System of PDEs with step functions as initial conditions
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are mesh points. Discontinuities in  and/or  due to material interfaces are 
permitted provided that a mesh point is placed at each interface.

At the initial time , for all  the solution components satisfy initial 
conditions of the form

(5-4)

At the boundary  or , for all  the solution components satisfy a 
boundary condition of the form 

(5-5)

 is a diagonal matrix with elements that are either identically zero or 
never zero. Note that the boundary conditions are expressed in terms of the 
flux  rather than . Also, of the two coefficients, only  can depend on .

MATLAB Partial Differential Equation Solver
This section describes: 

• The PDE solver, pdepe

• PDE solver basic syntax 

• Additional PDE solver arguments

The PDE Solver
The MATLAB PDE solver, pdepe, solves initial-boundary value problems for 
systems of parabolic and elliptic PDEs in the one space variable  and time . 
There must be at least one parabolic equation in the system.

The pdepe solver converts the PDEs to ODEs using a second-order accurate 
spatial discretization based on a set of nodes specified by the user. The 
discretization method is described in [9]. The time integration is done with 
ode15s. The pdepe solver exploits the capabilities of ode15s for solving the 
differential-algebraic equations that arise when Equation 5-3 contains elliptic 
equations, and for handling Jacobians with a specified sparsity pattern. ode15s 
changes both the time step and the formula dynamically. 

After discretization, elliptic equations give rise to algebraic equations. If the 
elements of the initial conditions vector that correspond to elliptic equations 

c s
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are not “consistent” with the discretization, pdepe tries to adjust them before 
beginning the time integration. For this reason, the solution returned for the 
initial time may have a discretization error comparable to that at any other 
time. If the mesh is sufficiently fine, pdepe can find consistent initial conditions 
close to the given ones. If pdepe displays a message that it has difficulty finding 
consistent initial conditions, try refining the mesh. No adjustment is necessary 
for elements of the initial conditions vector that correspond to parabolic 
equations. 

PDE Solver Basic Syntax
The basic syntax of the solver is

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan)

Note  Correspondences given are to terms used in “Introduction to PDE 
Problems” on page 5-97.

The input arguments are:

m Specifies the symmetry of the problem. m can be 0 = slab, 
1 = cylindrical, or 2 = spherical. It corresponds to m in Equation 5-3.

pdefun Function that defines the components of the PDE. It computes the 
terms , , and  in Equation 5-3, and has the form

[c,f,s] = pdefun(x,t,u,dudx)

where x and t are scalars, and u and dudx are vectors that 
approximate the solution  and its partial derivative with respect 
to . c, f, and s are column vectors. c stores the diagonal elements 
of the matrix .

icfun Function that evaluates the initial conditions. It has the form

u = icfun(x)

When called with an argument x, icfun evaluates and returns the 
initial values of the solution components at x in the column vector u.

c f s

u
x

c
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bcfun Function that evaluates the terms  and  of the boundary 
conditions. It has the form 

[pl,ql,pr,qr] = bcfun(xl,ul,xr,ur,t)

where ul is the approximate solution at the left boundary  
and ur is the approximate solution at the right boundary .   
pl and ql are column vectors corresponding to  and the diagonal of 

 evaluated at xl. Similarly, pr and qr correspond to xr. When 
 and , boundedness of the solution near  requires 

that the flux  vanish at . pdepe imposes this boundary 
condition automatically and it ignores values returned in pl and ql.

xmesh Vector [x0, x1, ..., xn] specifying the points at which a numerical 
solution is requested for every value in tspan. x0 and xn correspond 
to  and , respectively. 

Second-order approximation to the solution is made on the mesh 
specified in xmesh. Generally, it is best to use closely spaced mesh 
points where the solution changes rapidly. pdepe does not select the 
mesh in  automatically. You must provide an appropriate fixed 
mesh in xmesh. The cost depends strongly on the length of xmesh. 
When , it is not necessary to use a fine mesh near  to 
account for the coordinate singularity.

The elements of xmesh must satisfy x0 < x1 < ... < xn. The length of 
xmesh must be ≥ 3.

tspan Vector [t0, t1, ..., tf] specifying the points at which a solution is 
requested for every value in xmesh. t0 and tf correspond to  and 

, respectively. 

pdepe performs the time integration with an ODE solver that selects 
both the time step and formula dynamically. The solutions at the 
points specified in tspan are obtained using the natural continuous 
extension of the integration formulas. The elements of tspan merely 
specify where you want answers and the cost depends weakly on the 
length of tspan.

The elements of tspan must satisfy t0 < t1 < ... < tf. The length of 
tspan must be ≥ 3.
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The output argument sol is a three-dimensional array, such that: 

• sol(:,:,k) approximates component k of the solution . 

• sol(i,:,k) approximates component k of the solution at time tspan(i) and 
mesh points xmesh(:).

• sol(i,j,k) approximates component k of the solution at time tspan(i) and 
the mesh point xmesh(j).

u
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Additional PDE Solver Arguments
For more advanced applications, you can also specify as input arguments solver 
options and additional parameters that are passed to the PDE functions. 

Solving PDE Problems
This section describes:

• The process for solving PDE problems using the MATLAB solver, pdepe

• Evaluating the solution at specific points

options Structure of optional parameters that change the default 
integration properties. This is the seventh input argument.

sol = pdepe(m,pdefun,icfun,bcfun,...
            xmesh,tspan,options)

See “Changing PDE Integration Properties” on page 5-108 for 
more information.

p1,p2... Parameters that the solver passes to pdefun, icfun, and bcfun. 

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,...
            options,p1,p2...)

The solver passes any input parameters that follow the options 
argument to pdefun, icfun, and bcfun every time it calls them. 
Use options = [] as a placeholder if you set no options. In the 
pdefun argument list, parameters follow x, t, u, and dudx. 

f = pdefun(x,t,u,dudx,p1,p2,...)

In the icfun argument list, parameters follow x.

res = icfun(x,p1,p2,...)

In the bcfun argument list, parameters follow xl, ul, xr, ur, and 
t.

res = bcfun(xl,ul,xr,ur,t,p1,p2,...)

See the pdex3 demo for an example.
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Example: A Single PDE
This example illustrates the straightforward formulation, solution, and 
plotting of the solution of a single PDE

This equation holds on an interval  for times . At , the 
solution satisfies the initial condition

At  and , the solution satisfies the boundary conditions

Note  The demo pdex1 contains the complete code for this example. The demo 
uses subfunctions to place all functions it requires in a single M-file. To run 
the demo type pdex1 at the command line. See “PDE Solver Basic Syntax” on 
page 5-99 for more information.

1 Rewrite the PDE. Write the PDE in the form 

This is the form shown in Equation 5-3 and expected by pdepe. See 
“Introduction to PDE Problems” on page 5-97 for more information. For this 
example, the resulting equation is

π2 ∂u
∂t
------ ∂2u

∂x2
---------=

0 x 1≤ ≤ t 0≥ t 0=

u x 0,( ) πxsin=

x 0= x 1=

u 0 t,( ) 0=

π e t– ∂u
∂x
------ 1 t,( )+ 0=

c x t u
∂u
∂x
-------, , ,⎝ ⎠

⎛ ⎞ ∂u
∂t
------- x m– ∂

∂x
------ xm f x t u

∂u
∂x
-------, , ,⎝ ⎠

⎛ ⎞
⎝ ⎠
⎛ ⎞ s x t u

∂u
∂x
-------, , ,⎝ ⎠

⎛ ⎞+=

π2 ∂u
∂t
------ x0 ∂

∂x
------ x0 ∂u

∂x
-------⎝ ⎠

⎛ ⎞ 0+=
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with parameter  and the terms 

2 Code the PDE. Once you rewrite the PDE in the form shown above 
(Equation 5-3) and identify the terms, you can code the PDE in a function 
that pdepe can use. The function must be of the form

[c,f,s] = pdefun(x,t,u,dudx)

where c, f, and s correspond to the , , and  terms. The code below 
computes c, f, and s for the example problem.

function [c,f,s] = pdex1pde(x,t,u,DuDx)
c = pi^2;
f = DuDx;
s = 0;

3 Code the initial conditions function. You must code the initial conditions 
in a function of the form

u = icfun(x)

The code below represents the initial conditions in the function pdex1ic.

function u0 = pdex1ic(x)
u0 = sin(pi*x);

4 Code the boundary conditions function. You must also code the boundary 
conditions in a function of the form

[pl,ql,pr,qr] = bcfun(xl,ul,xr,ur,t)

m 0=

c x t u
∂u
∂x
-------, , ,⎝ ⎠

⎛ ⎞ π2=

f x t u
∂u
∂x
-------, , ,⎝ ⎠

⎛ ⎞ ∂u
∂x
-------=

s x t u
∂u
∂x
-------, , ,⎝ ⎠

⎛ ⎞ 0=

c f s
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The boundary conditions, written in the same form as Equation 5-5, are

and

The code below evaluates the components  and  of the 
boundary conditions in the function pdex1bc.

function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t)
pl = ul;
ql = 0;
pr = pi * exp(-t);
qr = 1;

In the function pdex1bc, pl and ql correspond to the left boundary 
conditions ( ), and pr and qr correspond to the right boundary 
condition ( ).

5 Select mesh points for the solution. Before you use the MATLAB PDE 
solver, you need to specify the mesh points  at which you want pdepe 
to evaluate the solution. Specify the points as vectors t and x. 

The vectors t and x play different roles in the solver (see “MATLAB Partial 
Differential Equation Solver” on page 5-98). In particular, the cost and the 
accuracy of the solution depend strongly on the length of the vector x. 
However, the computation is much less sensitive to the values in the vector 
t.

This example requests the solution on the mesh produced by 20 equally 
spaced points from the spatial interval [0,1] and five values of t from the 
time interval [0,2].

x = linspace(0,1,20);
t = linspace(0,2,5);

6 Apply the PDE solver. The example calls pdepe with m = 0, the functions 
pdex1pde, pdex1ic, and pdex1bc, and the mesh defined by x and t at which 

u 0 t,( ) 0 ∂u
∂x
------ 0 t,( )⋅+ 0= at x 0=

πe t– 1 ∂u
∂x
------ 1 t,( )⋅+ 0= at x 1=

p x t u, ,( ) q x t,( )

x 0=
x 1=

t x,( )
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pdepe is to evaluate the solution. The pdepe function returns the numerical 
solution in a three-dimensional array sol, where sol(i,j,k) approximates 
the kth component of the solution, , evaluated at t(i) and x(j).

m = 0;
sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t);

This example uses @ to pass pdex1pde, pdex1ic, and pdex1bc as function 
handles to pdepe. 

Note  See the function_handle (@), func2str, and str2func reference pages, 
and the “Function Handles” chapter of “Programming and Data Types” in the 
MATLAB documentation for information about function handles.

7 View the results. Complete the example by displaying the results:

a Extract and display the first solution component. In this example, the 
solution  has only one component, but for illustrative purposes, the 
example “extracts” it from the three-dimensional array. The surface plot 
shows the behavior of the solution.
u = sol(:,:,1);

surf(x,t,u)    
title('Numerical solution computed with 20 mesh points')
xlabel('Distance x')
ylabel('Time t')

uk

u
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b Display a solution profile at , the final value of . In this example, 
= t = 2. See “Evaluating the Solution at Specific Points” on 

page 5-108 for more information.
figure
plot(x,u(end,:))
title('Solution at t = 2')
xlabel('Distance x')
ylabel('u(x,2)')
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Evaluating the Solution at Specific Points
After obtaining and plotting the solution above, you might be interested in a 
solution profile for a particular value of t, or the time changes of the solution 
at a particular point x. The kth column u(:,k) (of the solution extracted in 
step 7) contains the time history of the solution at x(k). The jth row u(j,:) 
contains the solution profile at t(j).

Using the vectors x and u(j,:), and the helper function pdeval, you can 
evaluate the solution u and its derivative  at any set of points xout

[uout,DuoutDx] = pdeval(m,x,u(j,:),xout)

The example pdex3 uses pdeval to evaluate the derivative of the solution at 
xout = 0. See pdeval for details. 

Changing PDE Integration Properties
The default integration properties in the MATLAB PDE solver are selected to 
handle common problems. In some cases, you can improve solver performance 
by overriding these defaults. You do this by supplying pdepe with one or more 
property values in an options structure.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.02

0

0.02
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Solution at t = 2

Distance x

u(
x,

2)

∂u ∂x⁄



Partial Differential Equations

5-109

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options)

Use odeset to create the options structure. Only those options of the 
underlying ODE solver shown in the following table are available for pdepe. 
The defaults obtained by leaving off the input argument options are generally 
satisfactory. “Changing ODE Integration Properties” on page 5-17 tells you 
how to create the structure and describes the properties. 

Example: Electrodynamics Problem
This example illustrates the solution of a system of partial differential 
equations. The problem is taken from electrodynamics. It has boundary layers 
at both ends of the interval, and the solution changes rapidly for small . 

The PDEs are

where . The equations hold on an interval 
 for times . 

The solution  satisfies the initial conditions

PDE Property Categories 

Properties Category Property Name

Error control RelTol, AbsTol, NormControl

Step-size InitialStep, MaxStep

t

∂u1
∂t

--------- 0.024
∂2u1

∂x2
------------ F u1 u2–( )–=

∂u2
∂t

--------- 0.170
∂2u2

∂x2
------------ F u1 u2–( )+=

F y( ) 5.73y( )exp 11.46y–( )exp–=
0 x 1≤ ≤ t 0≥

u

u1 x 0,( ) 1≡

u2 x 0,( ) 0≡
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and boundary conditions

Note  The demo pdex4 contains the complete code for this example. The demo 
uses subfunctions to place all required functions in a single M-file. To run this 
example type pdex4 at the command line. See “PDE Solver Basic Syntax” on 
page 5-99 and “Solving PDE Problems” on page 5-102 for more information.

1 Rewrite the PDE. In the form expected by pdepe, the equations are

The boundary conditions on the partial derivatives of  have to be written 
in terms of the flux. In the form expected by pdepe, the left boundary 
condition is

and the right boundary condition is 

∂u1
∂x

--------- 0 t,( ) 0≡

u2 0 t,( ) 0≡

u1 1 t,( ) 1≡

∂u2
∂x

--------- 1 t,( ) 0≡

1

1

∂
∂t
-----

u1

u2

∂
∂x
------

0.024 ∂u1 ∂x⁄( )

0.170 ∂u2 ∂x⁄( )

F u1 u2–( )–

F u1 u2–( )
+=.∗

u

0
u2

1

0
+

0.024 ∂u1 ∂x⁄( )

0.170 ∂u2 ∂x⁄( )

0

0
=.∗

u1 1–

0

0

1
+

0.024 ∂u1 ∂x⁄( )

0.170 ∂u2 ∂x⁄( )

0

0
=.∗
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2 Code the PDE. After you rewrite the PDE in the form shown above, you can 
code it as a function that pdepe can use. The function must be of the form

[c,f,s] = pdefun(x,t,u,dudx)

where c, f, and s correspond to the , , and  terms in Equation 5-3.

function [c,f,s] = pdex4pde(x,t,u,DuDx)
c = [1; 1]; 
f = [0.024; 0.17] .* DuDx; 
y = u(1) - u(2);
F = exp(5.73*y)-exp(-11.47*y);
s = [-F; F];  

3 Code the initial conditions function. The initial conditions function must 
be of the form

u = icfun(x)

The code below represents the initial conditions in the function pdex4ic.

function u0 = pdex4ic(x);
u0 = [1; 0]; 

4 Code the boundary conditions function. The boundary conditions 
functions must be of the form

[pl,ql,pr,qr] = bcfun(xl,ul,xr,ur,t)

The code below evaluates the components  and  
(Equation 5-5) of the boundary conditions in the function pdex4bc.

function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t)
pl = [0; ul(2)]; 
ql = [1; 0];     
pr = [ur(1)-1; 0]; 
qr = [0; 1];     

5 Select mesh points for the solution. The solution changes rapidly for small 
. The program selects the step size in time to resolve this sharp change, but 

to see this behavior in the plots, output times must be selected accordingly. 
There are boundary layers in the solution at both ends of [0,1], so mesh 
points must be placed there to resolve these sharp changes. Often some 

c f s

p x t u, ,( ) q x t,( )

t
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experimentation is needed to select the mesh that reveals the behavior of the 
solution.

x = [0 0.005 0.01 0.05 0.1 0.2 0.5 0.7 0.9 0.95 0.99 0.995 1];
t = [0 0.005 0.01 0.05 0.1 0.5 1 1.5 2];

6 Apply the PDE solver. The example calls pdepe with m = 0, the functions 
pdex4pde, pdex4ic, and pdex4bc, and the mesh defined by x and t at which 
pdepe is to evaluate the solution. The pdepe function returns the numerical 
solution in a three-dimensional array sol, where sol(i,j,k) approximates 
the kth component of the solution, , evaluated at t(i) and x(j).

m = 0;
sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t);

7 View the results. The surface plots show the behavior of the solution 
components.

u1 = sol(:,:,1);
u2 = sol(:,:,2);

figure
surf(x,t,u1)
title('u1(x,t)')
xlabel('Distance x')
ylabel('Time t')

uk
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figure
surf(x,t,u2)
title('u2(x,t)')
xlabel('Distance x')
ylabel('Time t')
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Function Summary
The sparse matrix functions are located in the MATLAB sparfun directory.

Function Summary 

Category Function Description

Elementary sparse 
matrices

speye Sparse identity matrix.

sprand Sparse uniformly distributed random matrix.

sprandn Sparse normally distributed random matrix.

sprandsym Sparse random symmetric matrix.

spdiags Sparse matrix formed from diagonals.

Full to sparse 
conversion

sparse Create sparse matrix.

full Convert sparse matrix to full matrix.

find Find indices of nonzero elements.

spconvert Import from sparse matrix external format.

Working with 
sparse matrices

nnz Number of nonzero matrix elements.

nonzeros Nonzero matrix elements.

nzmax Amount of storage allocated for nonzero matrix elements.

spones Replace nonzero sparse matrix elements with ones.

spalloc Allocate space for sparse matrix.

issparse True for sparse matrix.

spfun Apply function to nonzero matrix elements.

spy Visualize sparsity pattern.
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Graph theory gplot Plot graph, as in “graph theory.”

etree Elimination tree.

etreeplot Plot elimination tree.

treelayout Lay out tree or forest.

treeplot Plot picture of tree.

Reordering 
algorithms

colamd Column approximate minimum degree permutation.

symamd Symmetric approximate minimum degree permutation.

symrcm Symmetric reverse Cuthill-McKee permutation.

colperm Column permutation.

randperm Random permutation.

dmperm Dulmage-Mendelsohn permutation.

Linear algebra eigs A few eigenvalues.

svds A few singular values.

luinc Incomplete LU factorization.

cholinc Incomplete Cholesky factorization.

normest Estimate the matrix 2-norm.

condest 1-norm condition number estimate.

sprank Structural rank.

Linear equations 
(iterative methods)

bicg BiConjugate Gradients Method.

bicgstab BiConjugate Gradients Stabilized Method.

cgs Conjugate Gradients Squared Method.

Function Summary  (Continued)

Category Function Description
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gmres Generalized Minimum Residual Method.

lsqr LSQR implementation of Conjugate Gradients on the 
Normal Equations.

minres Minimum Residual Method.

pcg Preconditioned Conjugate Gradients Method.

qmr Quasi-Minimal Residual Method.

symmlq Symmetric LQ method

Miscellaneous spaugment Form least squares augmented system.

spparms Set parameters for sparse matrix routines.

symbfact Symbolic factorization analysis.

Function Summary  (Continued)

Category Function Description
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Introduction
Sparse matrices are a special class of matrices that contain a significant 
number of zero-valued elements. This property allows MATLAB to:

• Store only the nonzero elements of the matrix, together with their indices.

• Reduce computation time by eliminating operations on zero elements.

This section provides information about:

• Sparse matrix storage

• General storage information

• Creating sparse matrices

• Importing sparse matrices

Sparse Matrix Storage
For full matrices, MATLAB stores internally every matrix element. 
Zero-valued elements require the same amount of storage space as any other 
matrix element. For sparse matrices, however, MATLAB stores only the 
nonzero elements and their indices. For large matrices with a high percentage 
of zero-valued elements, this scheme significantly reduces the amount of 
memory required for data storage.

MATLAB uses three arrays internally to store sparse matrices with real 
elements. Consider an m-by-n sparse matrix with nnz nonzero entries stored in 
arrays of length nzmax:

• The first array contains all the nonzero elements of the array in 
floating-point format. The length of this array is equal to nzmax.

• The second array contains the corresponding integer row indices for the 
nonzero elements stored in the first nnz entries. This array also has length 
equal to nzmax.

• The third array contains n integer pointers to the start of each column in the 
other arrays and an additional pointer that marks the end of those arrays. 
The length of the third array is n+1.
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This matrix requires storage for nzmax floating-point numbers and nzmax+n+1 
integers. At 8 bytes per floating-point number and 4 bytes per integer, the total 
number of bytes required to store a sparse matrix is

8*nzmax + 4*(nzmax+n+1)

Sparse matrices with complex elements are also possible. In this case, 
MATLAB uses a fourth array with nnz elements to store the imaginary parts 
of the nonzero elements. An element is considered nonzero if either its real or 
imaginary part is nonzero.

General Storage Information
The whos command provides high-level information about matrix storage, 
including size and storage class. For example, this whos listing shows 
information about sparse and full versions of the same matrix.

whos
  Name           Size         Bytes  Class

  M_full      1100x1100     9680000  double array
  M_sparse    1100x1100        4404  sparse array

Grand total is 1210000 elements using 9684404 bytes

Notice that the number of bytes used is much less in the sparse case, because 
zero-valued elements are not stored. In this case, the density of the sparse 
matrix is 4404/9680000, or approximately .00045%.

Creating Sparse Matrices
MATLAB never creates sparse matrices automatically. Instead, you must 
determine if a matrix contains a large enough percentage of zeros to benefit 
from sparse techniques. 

The density of a matrix is the number of non-zero elements divided by the total 
number of matrix elements. Matrices with very low density are often good 
candidates for use of the sparse format.
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Converting Full to Sparse 
You can convert a full matrix to sparse storage using the sparse function with 
a single argument. 

S = sparse(A)

For example

A = [ 0   0   0   5
      0   2   0   0
      1   3   0   0
      0   0   4   0];

S = sparse(A)

produces

 S =
     
   (3,1)        1
   (2,2)        2
   (3,2)        3
   (4,3)        4
   (1,4)        5

The printed output lists the nonzero elements of S, together with their row and 
column indices. The elements are sorted by columns, reflecting the internal 
data structure.

You can convert a sparse matrix to full storage using the full function, 
provided the matrix order is not too large. For example A = full(S) reverses 
the example conversion.

Converting a full matrix to sparse storage is not the most frequent way of 
generating sparse matrices.  If the order of a matrix is  small enough that full 
storage is possible, then conversion to sparse storage rarely offers significant 
savings.

Creating Sparse Matrices Directly
You can create a sparse matrix from a list of nonzero elements using the sparse 
function with five arguments.

S = sparse(i,j,s,m,n)
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i and j are vectors of row and column indices, respectively, for the nonzero 
elements of the matrix. s is a vector of nonzero values whose indices are 
specified by the corresponding (i,j) pairs. m is the row dimension for the 
resulting matrix, and n is the column dimension.

The matrix S of the previous example can be generated directly with

S = sparse([3 2 3 4 1],[1 2 2 3 4],[1 2 3 4 5],4,4)

S =

   (3,1)        1
   (2,2)        2
   (3,2)        3
   (4,3)        4
   (1,4)        5

The sparse command has a number of alternate forms. The example above 
uses a form that sets the maximum number of nonzero elements in the matrix 
to length(s). If desired, you can append a sixth argument that specifies a 
larger maximum, allowing you to add nonzero elements later without 
reallocating the sparse matrix. 

Example: Generating a Second Difference Operator
The matrix representation of the second difference operator is a good example 
of a sparse matrix. It is a tridiagonal matrix with -2s on the diagonal and 1s on 
the super- and subdiagonal. There are many ways to generate it – here’s one 
possibility.

D = sparse(1:n,1:n,-2∗ones(1,n),n,n);
E = sparse(2:n,1:n-1,ones(1,n-1),n,n);
S = E+D+E'

For n = 5, MATLAB responds with

S =

   (1,1)       -2
   (2,1)        1
   (1,2)        1
   (2,2)       -2
   (3,2)        1
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   (2,3)        1
   (3,3)       -2
   (4,3)        1
   (3,4)        1
   (4,4)       -2
   (5,4)        1
   (4,5)        1
   (5,5)       -2

Now F = full(S) displays the corresponding full matrix.

F = full(S)

F =

    -2     1     0     0     0
     1    -2     1     0     0
     0     1    -2     1     0
     0     0     1    -2     1
     0     0     0     1    -2

Creating Sparse Matrices from Their Diagonal Elements
Creating sparse matrices based on their diagonal elements is a common 
operation, so the function spdiags handles this task. Its syntax is

S = spdiags(B,d,m,n)

To create an output matrix S of size m-by-n with elements on p diagonals:

• B is a matrix of size min(m,n)-by-p. The columns of B are the values to 
populate the diagonals of S.

• d is a vector of length p whose integer elements specify which diagonals of S 
to populate.

That is, the elements in column j of B fill the diagonal specified by element j 
of d. 
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Note  If a column of B is longer than the diagonal it’s replacing, 
super-diagonals are taken from the lower part of the column of B, and 
sub-diagonals are taken from the upper part of the column of B.

As an example, consider the matrix B and the vector d.

B = [ 41 11 0
52 22 0
63 33 13
74 44 24 ];

d = [-3
 0
 2];

Use these matrices to create a 7-by-4 sparse matrix A.

A = spdiags(B,d,7,4)

A =

   (1,1)       11
   (4,1)       41
   (2,2)       22
   (5,2)       52
   (1,3)       13
   (3,3)       33
   (6,3)       63
   (2,4)       24
   (4,4)       44
   (7,4)       74

In its full form, A looks like this.

full(A)

ans =

    11     0    13     0
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     0    22     0    24
     0     0    33     0
    41     0     0    44
     0    52     0     0
     0     0    63     0
     0     0     0    74

spdiags can also extract diagonal elements from a sparse matrix, or replace 
matrix diagonal elements with new values. Type help spdiags for details.

Importing Sparse Matrices from Outside MATLAB
You can import sparse matrices from computations outside MATLAB. Use the 
spconvert function in conjunction with the load command to import text files 
containing lists of indices and nonzero elements. For example, consider a 
three-column text file T.dat whose first column is a list of row indices, second 
column is a list of column indices, and third column is a list of nonzero values. 
These statements load T.dat into MATLAB and convert it into a sparse 
matrix S:

load T.dat
S = spconvert(T)

The save and load commands can also process sparse matrices stored as binary 
data in MAT-files.
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Viewing Sparse Matrices
MATLAB provides a number of functions that let you get quantitative or 
graphical information about sparse matrices. 

This section provides information about:

• Obtaining information about nonzero elements

• Viewing graphs of sparse matrices

• Finding indices and values of nonzero elements

Information About Nonzero Elements
There are several commands that provide high-level information about the 
nonzero elements of a sparse matrix:

• nnz returns the number of nonzero elements in a sparse matrix.

• nonzeros returns a column vector containing all the nonzero elements of a 
sparse matrix.

• nzmax returns the amount of storage space allocated for the nonzero entries 
of a sparse matrix.

To try some of these, load the supplied sparse matrix west0479, one of the 
Harwell-Boeing collection.

load west0479
whos
  Name           Size         Bytes  Class

  west0479     479x479        24576  sparse array 

This matrix models an eight-stage chemical distillation column.

Try these commands.

nnz(west0479)

ans =
1887

format short e
west0479
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west0479 =
    
  (25,1)      1.0000e+00
  (31,1)     -3.7648e-02
  (87,1)     -3.4424e-01
  (26,2)      1.0000e+00
  (31,2)     -2.4523e-02
  (88,2)     -3.7371e-01
  (27,3)      1.0000e+00
  (31,3)     -3.6613e-02
  (89,3)     -8.3694e-01
  (28,4)      1.3000e+02
    .
    .
    .
   
nonzeros(west0479);
    ans =
    
   1.0000e+00
  -3.7648e-02
  -3.4424e-01
   1.0000e+00
  -2.4523e-02
  -3.7371e-01
   1.0000e+00
  -3.6613e-02
  -8.3694e-01
   1.3000e+02
    .
    .
    .

Note  Use Ctrl+C to stop the nonzeros listing at any time.

Note that initially nnz has the same value as nzmax by default. That is, the 
number of nonzero elements is equivalent to the number of storage locations 
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allocated for nonzeros. However, MATLAB does not dynamically release 
memory if you zero out additional array elements. Changing the value of some 
matrix elements to zero changes the value of nnz, but not that of nzmax.

However, you can add as many nonzero elements to the matrix as desired. You 
are not constrained by the original value of nzmax.

Viewing Sparse Matrices Graphically
It is often useful to use a graphical format to view the distribution of the 
nonzero elements within a sparse matrix. The MATLAB spy function produces 
a template view of the sparsity structure, where each point on the graph 
represents the location of a nonzero array element.

For example,

spy(west0479)
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The find Function and Sparse Matrices
For any matrix, full or sparse, the find function returns the indices and values 
of nonzero elements. Its syntax is

[i,j,s] = find(S)

find returns the row indices of nonzero values in vector i, the column indices 
in vector j, and the nonzero values themselves in the vector s. The example 
below uses find to locate the indices and values of the nonzeros in a sparse 
matrix. The sparse function uses the find output, together with the size of the 
matrix, to recreate the matrix.

[i,j,s] = find(S)
[m,n] = size(S)
S = sparse(i,j,s,m,n)
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Example: Adjacency Matrices and Graphs
This section includes:

• An introduction to adjacency matrices

• Instructions for graphing adjacency matrices with gplot

• A Bucky ball example, including information about using spy plots to 
illustrate fill-in and distance

• An airflow model example

Introduction to Adjacency Matrices
The formal mathematical definition of a graph is a set of points, or nodes, with 
specified connections between them. An economic model, for example, is a 
graph with different industries as the nodes and direct economic ties as the 
connections. The computer software industry is connected to the computer 
hardware industry, which, in turn, is connected to the semiconductor industry, 
and so on.

This definition of a graph lends itself to matrix representation. The adjacency 
matrix of an undirected graph is a matrix whose (i,j)th and (j,i)th entries 
are 1 if node i is connected to node j, and 0 otherwise. For example, the 
adjacency matrix for a diamond-shaped graph looks like

Since most graphs have relatively few connections per node, most adjacency 
matrices are sparse. The actual locations of the nonzero elements depend on 
how the nodes are numbered. A change in the numbering leads to permutation 

A =

     0     1     0     1
     1     0     1     0
     0     1     0     1
     1     0     1     0

1

2

3

4
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of the rows and columns of the adjacency matrix, which can have a significant 
effect on both the time and storage requirements for sparse matrix 
computations.

Graphing Using Adjacency Matrices
The MATLAB gplot function creates a graph based on an adjacency matrix 
and a related array of coordinates. To try gplot, create the adjacency matrix 
shown above by entering

A = [0 1 0 1; 1 0 1 0; 0 1 0 1; 1 0 1 0];

The columns of gplot’s coordinate array contain the Cartesian coordinates for 
the corresponding node. For the diamond example, create the array by entering

xy = [1 3; 2 1; 3 3; 2 5];

This places the first node at location (1,3), the second at location (2,1), the 
third at location (3,3), and the fourth at location (2,5). To view the resulting 
graph, enter

gplot(A,xy)

The Bucky Ball
One interesting construction for graph analysis is the Bucky ball. This is 
composed of 60 points distributed on the surface of a sphere in such a way that 
the distance from any point to its nearest neighbors is the same for all the 
points. Each point has exactly three neighbors. The Bucky ball models four 
different physical objects:

• The geodesic dome popularized by Buckminster Fuller

• The C60 molecule, a form of pure carbon with 60 atoms in a nearly spherical 
configuration

• In geometry, the truncated icosahedron

• In sports, the seams in a soccer ball

The Bucky ball adjacency matrix is a 60-by-60 symmetric matrix B. B has three 
nonzero elements in each row and column, for a total of 180 nonzero values. 
This matrix has important applications related to the physical objects listed 
earlier. For example, the eigenvalues of B are involved in studying the chemical 
properties of C60. 
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To obtain the Bucky ball adjacency matrix, enter

B = bucky;

At order 60, and with a density of 5%, this matrix does not require sparse 
techniques, but it does provide an interesting example.

You can also obtain the coordinates of the Bucky ball graph using

[B,v] = bucky;

This statement generates v, a list of xyz-coordinates of the 60 points in 3-space 
equidistributed on the unit sphere. The function gplot uses these points to plot 
the Bucky ball graph.

gplot(B,v)
axis equal

It is not obvious how to number the nodes in the Bucky ball so that the 
resulting adjacency matrix reflects the spherical and combinatorial 
symmetries of the graph. The numbering used by bucky.m is based on the 
pentagons inherent in the ball’s structure.
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The vertices of one pentagon are numbered 1 through 5, the vertices of an 
adjacent pentagon are numbered 6 through 10, and so on. The picture on the 
following page shows the numbering of half of the nodes (one hemisphere); the 
numbering of the other hemisphere is obtained by a reflection about the 
equator. Use gplot to produce a graph showing half the nodes. You can add the 
node numbers using a for loop.

k = 1:30;
gplot(B(k,k),v);
axis square
for j = 1:30, text(v(j,1),v(j,2), int2str(j)); end

To view a template of the nonzero locations in the Bucky ball’s adjacency 
matrix, use the spy function:

spy(B)
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The node numbering that this model uses generates a spy plot with 12 groups 
of five elements, corresponding to the 12 pentagons in the structure. Each node 
is connected to two other nodes within its pentagon and one node in some other 
pentagon. Since the nodes within each pentagon have consecutive numbers, 
most of the elements in the first super- and sub-diagonals of B are nonzero. In 
addition, the symmetry of the numbering about the equator is apparent in the 
symmetry of the spy plot about the antidiagonal.

Graphs and Characteristics of Sparse Matrices
Spy plots of the matrix powers of B illustrate two important concepts related to 
sparse matrix operations, fill-in and distance. spy plots help illustrate these 
concepts.

spy(B^2)
spy(B^3)
spy(B^4)
spy(B^8)
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Fill-in is generated by operations like matrix multiplication. The product of 
two or more matrices usually has more nonzero entries than the individual 
terms, and so requires more storage. As p increases, B^p fills in and spy(B^p) 
gets more dense.

The distance between two nodes in a graph is the number of steps on the graph 
necessary to get from one node to the other. The spy plot of the p-th power of B 
shows the nodes that are a distance p apart. As p increases, it is possible to get 
to more and more nodes in p steps. For the Bucky ball, B^8 is almost completely 
full. Only the antidiagonal is zero, indicating that it is possible to get from any 
node to any other node, except the one directly opposite it on the sphere, in 
eight steps.
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An Airflow Model
A calculation performed at NASA’s Research Institute for Applications of 
Computer Science involves modeling the flow over an airplane wing with two 
trailing flaps.

In a two-dimensional model, a triangular grid surrounds a cross section of the 
wing and flaps. The partial differential equations are nonlinear and involve 
several unknowns, including hydrodynamic pressure and two components of 
velocity. Each step of the nonlinear iteration requires the solution of a sparse 
linear system of equations. Since both the connectivity and the geometric 
location of the grid points are known, the gplot function can produce the graph 
shown above. 

In this example, there are 4253 grid points, each of which is connected to 
between 3 and 9 others, for a total of 28831 nonzeros in the matrix, and a 
density equal to 0.0016. This spy plot shows that the node numbering yields a 
definite band structure.
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nz = 28831

The Laplacian of the mesh.
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Sparse Matrix Operations
Most of the MATLAB standard mathematical functions work on sparse 
matrices just as they do on full matrices. In addition, MATLAB provides a 
number of functions that perform operations specific to sparse matrices. This 
section discusses:

• Computational considerations

• Standard mathematical operations

• Permutation and reordering

• Factorization

• Simultaneous linear equations

• Eigenvalues and singular values

Computational Considerations
The computational complexity of sparse operations is proportional to nnz, the 
number of nonzero elements in the matrix. Computational complexity also 
depends linearly on the row size m and column size n of the matrix, but is 
independent of the product m*n, the total number of zero and nonzero elements.

The complexity of fairly complicated operations, such as the solution of sparse 
linear equations, involves factors like ordering and fill-in, which are discussed 
in the previous section. In general, however, the computer time required for a 
sparse matrix operation is proportional to the number of arithmetic operations 
on nonzero quantities. 

Standard Mathematical Operations
Sparse matrices propagate through computations according to these rules:

• Functions that accept a matrix and return a scalar or vector always produce 
output in full storage format. For example, the size function always returns 
a full vector, whether its input is full or sparse.

• Functions that accept scalars or vectors and return matrices, such as zeros, 
ones, rand, and eye, always return full results. This is necessary to avoid 
introducing sparsity unexpectedly. The sparse analog of zeros(m,n) is 
simply sparse(m,n). The sparse analogs of rand and eye are sprand and 
speye, respectively. There is no sparse analog for the function ones.



Sparse Matrix Operations

6-25

• Unary functions that accept a matrix and return a matrix or vector preserve 
the storage class of the operand. If S is a sparse matrix, then chol(S) is also 
a sparse matrix, and diag(S) is a sparse vector. Columnwise functions such 
as max and sum also return sparse vectors, even though these vectors may be 
entirely nonzero. Important exceptions to this rule are the sparse and full 
functions.

• Binary operators yield sparse results if both operands are sparse, and full 
results if both are full. For mixed operands, the result is full unless the 
operation preserves sparsity. If S is sparse and F is full, then S+F, S*F, and 
F\S are full, while S.*F and S&F are sparse. In some cases, the result might 
be sparse even though the matrix has few zero elements.

• Matrix concatenation using either the cat function or square brackets 
produces sparse results for mixed operands.

• Submatrix indexing on the right side of an assignment preserves the storage 
format of the operand unless the result is a scalar. T = S(i,j) produces a 
sparse result if S is sparse and either i or j is a vector. It produces a full 
scalar if both i and j are scalars. Submatrix indexing on the left, as in 
T(i,j) = S, does not change the storage format of the matrix on the left.

Permutation and Reordering
A permutation of the rows and columns of a sparse matrix S can be represented 
in two ways:

• A permutation matrix P acts on the rows of S as P*S or on the columns as 
S*P'.

• A permutation vector p, which is a full vector containing a permutation of 
1:n, acts on the rows of S as S(p,:), or on the columns as S(:,p).

For example, the statements

p = [1 3 4 2 5]
I = eye(5,5);
P = I(p,:);
e = ones(4,1);
S = diag(11:11:55) + diag(e,1) + diag(e,-1)
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produce

p =

     1     3     4     2     5

P =

     1     0     0     0     0
     0     0     1     0     0
     0     0     0     1     0
     0     1     0     0     0
     0     0     0     0     1

S =

    11     1     0     0     0
     1    22     1     0     0
     0     1    33     1     0
     0     0     1    44     1
     0     0     0     1    55

You can now try some permutations using the permutation vector p and the 
permutation matrix P. For example, the statements S(p,:) and P*S produce

ans =

    11     1     0     0     0
     0     1    33     1     0
     0     0     1    44     1
     1    22     1     0     0
     0     0     0     1    55

Similarly, S(:,p) and S*P' produce

ans =

    11     0     0     1     0
     1     1     0    22     0
     0    33     1     1     0
     0     1    44     0     1
     0     0     1     0    55
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If P is a sparse matrix, then both representations use storage proportional to n 
and you can apply either to S in time proportional to nnz(S). The vector 
representation is slightly more compact and efficient, so the various sparse 
matrix permutation routines all return full row vectors with the exception of 
the pivoting permutation in LU (triangular) factorization, which returns a 
matrix compatible with earlier versions of MATLAB.

To convert between the two representations, let I = speye(n) be an identity 
matrix of the appropriate size. Then,

P = I(p,:)
P' = I(:,p)
p = (1:n)*P'
p = (P*(1:n)')'

The inverse of P is simply R = P'. You can compute the inverse of p with 
r(p) = 1:n.

r(p) = 1:5

r =

     1     4     2     3     5

Reordering for Sparsity
Reordering the columns of a matrix can often make its LU or QR factors 
sparser. Reordering the rows and columns can often make its Cholesky, factors 
sparser. The simplest such reordering is to sort the columns by nonzero count. 
This is sometimes a good reordering for matrices with very irregular 
structures, especially if there is great variation in the nonzero counts of rows 
or columns.

The function p = colperm(S) computes this column-count permutation. The 
colperm M-file has only a single line.

[ignore,p] = sort(full(sum(spones(S))));

This line performs these steps:

1 The inner call to spones creates a sparse matrix with ones at the location of 
every nonzero element in S. 
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2 The sum function sums down the columns of the matrix, producing a vector 
that contains the count of nonzeros in each column. 

3 full converts this vector to full storage format.

4 sort sorts the values in ascending order. The second output argument from 
sort is the permutation that sorts this vector.

Reordering to Reduce Bandwidth
The reverse Cuthill-McKee ordering is intended to reduce the profile or 
bandwidth of the matrix. It is not guaranteed to find the smallest possible 
bandwidth, but it usually does. The function symrcm(A) actually operates on 
the nonzero structure of the symmetric matrix A + A', but the result is also 
useful for asymmetric matrices. This ordering is useful for matrices that come 
from one-dimensional problems or problems that are in some sense “long and 
thin.”

Approximate Minimum Degree Ordering
The degree of a node in a graph is the number of connections to that node. This 
is the same as the number of off-diagonal nonzero elements in the 
corresponding row of the adjacency matrix. The approximate minimum degree 
algorithm generates an ordering based on how these degrees are altered during 
Gaussian elimination or Cholesky factorization. It is a complicated and 
powerful algorithm that usually leads to sparser factors than most other 
orderings, including column count and reverse Cuthill-McKee. Because the 
keeping track of the degree of each node is very time-consuming, the 
approximate minimum degree algorithm uses an approximation to the degree, 
rather than the exact degree. 

The following MATLAB functions implement the approximate minimum 
degree algorithm:

• symamd — Use with symmetric matrices

• colamd — Use with nonsymmetric matrices and symmetric matrices of the 
form A*A' or A'*A.

See “Reordering and Factorization” on page 6-30 for an example using symamd.

You can change various parameters associated with details of the algorithms 
using the spparms function. 
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For details on the algorithms used by colamd and symamd, see [5]. The 
approximate degree the algorithms use is based on [1].

Factorization
This section discusses four important factorization techniques for sparse 
matrices:

• LU, or triangular, factorization

• Cholesky factorization

• QR, or orthogonal, factorization

• Incomplete factorizations

LU Factorization
If S is a sparse matrix, the following command returns three sparse matrices L, 
U, and P such that P*S = L*U.

[L,U,P] = lu(S)

lu obtains the factors by Gaussian elimination with partial pivoting. The 
permutation matrix P has only n nonzero elements. As with dense matrices, the 
statement [L,U] = lu(S) returns a permuted unit lower triangular matrix and 
an upper triangular matrix whose product is S.  By itself, lu(S) returns L and 
U in a single matrix without the pivot information.

The three-output syntax

[L,U,P] = lu(S)

selects P via numerical partial pivoting, but does not pivot to improve sparsity 
in the LU factors.  On the other hand, the four-output syntax

[L,U,P,Q]=lu(S) 

selects P via threshold partial pivoting, and selects P and Q to improve sparsity 
in the LU factors. 

You can control pivoting in sparse matrices using

lu(S,thresh)

where thresh is a pivot threshold in [0,1]. Pivoting occurs when the diagonal 
entry in a column has magnitude less than thresh times the magnitude of any 
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sub-diagonal entry in that column. thresh = 0 forces diagonal pivoting. 
thresh = 1 is the default.

MATLAB automatically allocates the memory necessary to hold the sparse L 
and U factors during the factorization. MATLAB does not use any symbolic LU 
prefactorization to determine the memory requirements and set up the data 
structures in advance.

Reordering and Factorization. If you obtain a good column permutation p that 
reduces fill-in, perhaps from symrcm or colamd, then computing lu(S(:,p)) 
takes less time and storage than computing lu(S). Two permutations are the 
symmetric reverse Cuthill-McKee ordering and the symmetric minimum 
degree ordering.

r = symrcm(B);
m = symamd(B);

The three spy plots produced by the lines below show the three adjacency 
matrices of the Bucky Ball graph with these three different numberings. The 
local, pentagon-based structure of the original numbering is not evident in the 
other three.

spy(B)
spy(B(r,r))
spy(B(m,m))
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The reverse Cuthill-McKee ordering, r, reduces the bandwidth and 
concentrates all the nonzero elements near the diagonal. The approximate 
minimum degree ordering, m, produces a fractal-like structure with large 
blocks of zeros.

To see the fill-in generated in the LU factorization of the Bucky ball, use 
speye(n,n), the sparse identity matrix, to insert -3s on the diagonal of B.

B = B - 3*speye(n,n);

Since each row sum is now zero, this new B is actually singular, but it is still 
instructive to compute its LU factorization. When called with only one output 
argument, lu returns the two triangular factors, L and U, in a single sparse 
matrix. The number of nonzeros in that matrix is a measure of the time and 
storage required to solve linear systems involving B. Here are the nonzero 
counts for the three permutations being considered.

Even though this is a small example, the results are typical. The original 
numbering scheme leads to the most fill-in. The fill-in for the reverse 
Cuthill-McKee ordering is concentrated within the band, but it is almost as 
extensive as the first two orderings. For the minimum degree ordering, the 
relatively large blocks of zeros are preserved during the elimination and the 
amount of fill-in is significantly less than that generated by the other 
orderings. The spy plots below reflect the characteristics of each reordering.

Original lu(B) 1022

Reverse Cuthill-McKee lu(B(r,r)) 968

Approximate minimum degree lu(B(m,m)) 636
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Cholesky Factorization
If S is a symmetric (or Hermitian), positive definite, sparse matrix, the 
statement below returns a sparse, upper triangular matrix R so that R'*R = S.

R = chol(S)

chol does not automatically pivot for sparsity, but you can compute minimum 
degree and profile limiting permutations for use with chol(S(p,p)).

Since the Cholesky algorithm does not use pivoting for sparsity and does not 
require pivoting for numerical stability, chol does a quick calculation of the 
amount of memory required and allocates all the memory at the start of the 
factorization. You can use symbfact, which uses the same algorithm as chol, 
to calculate how much memory is allocated.

QR Factorization
MATLAB computes the complete QR factorization of a sparse matrix S with

 [Q,R] = qr(S)

but this is usually impractical. The orthogonal matrix Q often fails to have a 
high proportion of zero elements. A more practical alternative, sometimes 
known as “the Q-less QR factorization,” is available.

With one sparse input argument and one output argument

R = qr(S)
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returns just the upper triangular portion of the QR factorization. The matrix R 
provides a Cholesky factorization for the matrix associated with the normal 
equations,

R'*R = S'*S

However, the loss of numerical information inherent in the computation of 
S'*S is avoided.

With two input arguments having the same number of rows, and two output 
arguments, the statement

[C,R] = qr(S,B)

applies the orthogonal transformations to B, producing C = Q'*B without 
computing Q.

The Q-less QR factorization allows the solution of sparse least squares 
problems

with two steps

[c,R] = qr(A,b)
x = R\c

If A is sparse, but not square, MATLAB uses these steps for the linear equation 
solving backslash operator

x = A\b

Or, you can do the factorization yourself and examine R for rank deficiency.

It is also possible to solve a sequence of least squares linear systems with 
different right-hand sides, b, that are not necessarily known when R = qr(A) 
is computed. The approach solves the “semi-normal equations”

R'*R*x = A'*b

with

x = R\(R'\(A'*b))

and then employs one step of iterative refinement to reduce roundoff error

r = b - A*x

minimize Ax b–
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e = R\(R'\(A'*r))
x = x + e

Incomplete Factorizations
The luinc and cholinc functions provide approximate, incomplete 
factorizations, which are useful as preconditioners for sparse iterative 
methods.

The luinc function produces two different kinds of incomplete LU 
factorizations, one involving a drop tolerance and one involving fill-in level. If 
A is a sparse matrix, and tol is a small tolerance, then

[L,U] = luinc(A,tol)

computes an approximate LU factorization where all elements less than tol 
times the norm of the relevant column are set to zero. Alternatively,

[L,U] = luinc(A,'0')

computes an approximate LU factorization where the sparsity pattern of L+U is 
a permutation of the sparsity pattern of A.

For example,

load west0479
A = west0479;
nnz(A)
nnz(lu(A))
nnz(luinc(A,1e-6))
nnz(luinc(A,'0'))

shows that A has 1887 nonzeros, its complete LU factorization has 16777 
nonzeros, its incomplete LU factorization with a drop tolerance of 1e-6 has 
10311 nonzeros, and its lu('0') factorization has 1886 nonzeros.

The luinc function has a few other options. See the luinc reference page for 
details.

The cholinc function provides drop tolerance and level 0 fill-in Cholesky 
factorizations of symmetric, positive definite sparse matrices. See the cholinc 
reference page for more information.
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Simultaneous Linear Equations
There are two different classes of methods for solving systems of simultaneous 
linear equations:

• Direct methods are usually variants of Gaussian elimination. These methods 
involve the individual matrix elements directly, through matrix 
factorizations such as LU or Cholesky factorization. MATLAB implements 
direct methods through the matrix division operators / and \, which you can 
use to solve linear systems.

• Iterative methods produce only an approximate solution after a finite number 
of steps. These methods involve the coefficient matrix only indirectly, 
through a matrix-vector product or an abstract linear operator. Iterative 
methods are usually applied only to sparse matrices. 

Direct Methods
Direct methods are usually faster and more generally applicable than indirect 
methods, if there is enough storage available to carry them out. Iterative 
methods are usually applicable to restricted cases of equations and depend 
upon properties like diagonal dominance or the existence of an underlying 
differential operator. Direct methods are implemented in the core of MATLAB 
and are made as efficient as possible for general classes of matrices. Iterative 
methods are usually implemented in MATLAB M-files and may make use of 
the direct solution of subproblems or preconditioners.

Using a Different Preordering. If A is not diagonal, banded, triangular, or a 
permutation of a triangular matrix, backslash (\) reorders the indices of A to 
reduce the amount of fill-in — that is, the number of nonzero entries that are 
added to the sparse factorization matrices. The new ordering, called a 
preordering, is performed before the factorization of A. In some cases, you might 
be able to provide a better preordering than the one used by the backslash 
algorithm.

To use a different preordering, first turn off the automatic preordering that 
backslash performs by default, using the function spparms as follows:

spparms('autoamd',0);
spparms('autommd',0);
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Now, assuming you have created a permutation vector p that specifies a 
preordering of the indices of A, apply backslash to the matrix A(:,p), whose 
columns are the columns of A, permuted according to the vector p.

x = A (:,p) \ b;
x(p) = x;
spparms('autoamd',1);
spparms('autommd',1);

The commands spparms('autoamd',1) and spparms('autommd',1) turns the 
automatic predordering back on, in case you use A\b later without specifying 
an appropriate preordering. 

Iterative Methods
Nine functions are available that implement iterative methods for sparse 
systems of simultaneous linear systems.

These methods are designed to solve  or . For the 
Preconditioned Conjugate Gradient method, pcg, A must be a symmetric, 
positive definite matrix. minres and symmlq can be used on symmetric 

Functions for Iterative Methods for Sparse Systems 

Function Method

bicg Biconjugate gradient

bicgstab Biconjugate gradient stabilized

cgs Conjugate gradient squared

gmres Generalized minimum residual

lsqr LSQR implementation of Conjugate Gradients on the 
Normal Equations

minres Minimum residual

pcg Preconditioned conjugate gradient

qmr Quasiminimal residual

symmlq Symmetric LQ

Ax b= min b Ax–
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indefinite matrices. For lsqr, the matrix need not be square. The other five can 
handle nonsymmetric, square matrices.

All nine methods can make use of preconditioners. The linear system

is replaced by the equivalent system

The preconditioner M is chosen to accelerate convergence of the iterative 
method. In many cases, the preconditioners occur naturally in the 
mathematical model. A partial differential equation with variable coefficients 
may be approximated by one with constant coefficients, for example. 
Incomplete matrix factorizations may be used in the absence of natural 
preconditioners.

The five-point finite difference approximation to Laplace's equation on a 
square, two-dimensional domain provides an example. The following 
statements use the preconditioned conjugate gradient method preconditioner 
M = R'*R, where R is the incomplete Cholesky factor of A.

A = delsq(numgrid('S',50));
b = ones(size(A,1),1);
tol = 1.e-3;
maxit = 10;
R = cholinc(A,tol);
[x,flag,err,iter,res] = pcg(A,b,tol,maxit,R',R);

Only four iterations are required to achieve the prescribed accuracy.

Background information on these iterative methods and incomplete 
factorizations is available in [2] and [7].

Ax b=

M 1– Ax M 1– b=
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Eigenvalues and Singular Values
Two functions are available which compute a few specified eigenvalues or 
singular values. svds is based on eigs which uses ARPACK [6].

These functions are most frequently used with sparse matrices, but they can be 
used with full matrices or even with linear operators defined by M-files.

The statement

[V,lambda] = eigs(A,k,sigma)

finds the k eigenvalues and corresponding eigenvectors of the matrix A which 
are nearest the “shift” sigma. If sigma is omitted, the eigenvalues largest in 
magnitude are found. If sigma is zero, the eigenvalues smallest in magnitude 
are found. A second matrix, B, may be included for the generalized eigenvalue 
problem

The statement

[U,S,V] = svds(A,k)

finds the k largest singular values of A and

[U,S,V] = svds(A,k,0)

finds the k smallest singular values.

For example, the statements

L = numgrid('L',65);
A = delsq(L);

set up the five-point Laplacian difference operator on a 65-by-65  grid in an 
L-shaped, two-dimensional domain. The statements

Functions to Compute a Few Eigenvalues or Singular Values 

Function Description

eigs Few eigenvalues

svds Few singular values

Av λBv=
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size(A)
nnz(A)

show that A is a matrix of order 2945 with 14,473 nonzero elements.

The statement

[v,d] = eigs(A,1,0);

computes the smallest eigenvalue and eigenvector.  Finally,

L(L>0) = full(v(L(L>0)));
x = -1:1/32:1;
contour(x,x,L,15)
axis square

distributes the components of the eigenvector over the appropriate grid points 
and produces a contour plot of the result. 

The numerical techniques used in eigs and svds are described in [6]. 
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Nondouble Data Types

Introduction (p. 7-2) Introduces the nondouble data types in MATLAB.

Integer Mathematics (p. 7-4) Describes how MATLAB performs operations on integer 
data types.

Single-Precision Mathematics (p. 7-17) Describes how MATLAB performs operations on data 
type single.
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Introduction
MATLAB provides several data types that you can assign to numbers or 
numerical variables. By default, MATLAB assigns numbers the data type 
double, which means that they are double-precision floating-point numbers 
that are 64 bits in length. MATLAB performs operations on numbers of type 
double using double-precision arithmetic. For most numerical purposes, 
double is the recommended data type. 

Besides double, MATLAB also provides several other data types that require 
less memory than double. These include

• single — Single-precision floating-point numbers that are 32 bits in length

• int8 and uint8 — Signed and unsigned integers that are 8 bits in length

• int16 and uint16 — Signed and unsigned integers that are 16 bits in length

• int32 and uint32 — Signed and unsigned integers that are 32 bits in length

These data types are useful if you need to conserve memory, for example, if you 
are working with very large data sets such as image files. The following 
sections explain the issues you need to keep in mind when performing 
operations on nondouble data types:

• “Integer Mathematics” on page 7-4 explains how to perform operations on 
numbers of integer data type.

• “Single-Precision Mathematics” on page 7-17 explains how to perform 
operations on numbers of type single.

“Data Types” in the MATLAB Programming documentation provides more 
information about these data types.

The following MATLAB functions return output of type single or an integer 
data type when you call them with the optional input argument datatype, 
which is a string containing one of data types listed above:

• eye

• ones

• zeros

For example,

ones(2,2,'int8')
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returns a 2-by-2 matrix of ones of type int8.

ans =

    1    1
    1    1

In addition, the following functions return output of type single when you call 
them with the input argument 'single':

• eps

• Inf

• NaN

See the reference pages for these functions for more information.
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Integer Mathematics
This section describes operations on integer data types in MATLAB. The 
section covers the following topics:

• “Integer Data Types” on page 7-4

• “Largest and Smallest Values for Integer Data Types” on page 7-5

• “Integer Arithmetic” on page 7-6

• “Example — Digitized Signals” on page 7-8

• “Warnings for Integer Data Types” on page 7-15

Integer Data Types
Integer data types in MATLAB take on integer values in a specified range. For 
example, an integer of type int8 can take any of the 28 possible values of signed 
8-bit integers in the range -128 to 127. Integer data types are useful for storing 
data that can be described using only integers, such as image files. The 
following table lists the integer data types that support arithmetic operations 
and their ranges.

To assign an integer data type to a number or variable, use one of the functions 
listed in the first column of the table. For example,

x = int8(5)

Data Type Description Range of Values

int8 Signed 8-bit integer -128 to 127

uint8 Unsigned 8-bit integer 0 to 255

int16 Signed 16-bit integer -215 to 215 - 1

uint16 Unsigned 16-bit integer 0 to 216 - 1

int32 Signed 32-bit integer -231 to 231 - 1

uint32 Unsigned 32-bit integer 0 to 232 - 1
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sets the value of x to be 5 with data type int8. You can verify the data type of 
the result using the class command.

class(x)

ans =

int8

When you convert a number to one of the integer data types, MATLAB rounds 
the result to the nearest integer. For example,

int8(2.7)

ans =

     3

For numbers that are halfway between two integers, MATLAB rounds up if the 
number is positive and rounds down if the number is negative. For example, 

int8(2.5)

ans =

     3

int8(-2.5)

ans =

    -3

Largest and Smallest Values for Integer Data Types
For each integer data type, there is a largest and smallest integer that you can 
represent with that data type. The table in “Integer Data Types” on page 7-4 
lists the largest and smallest values for each integer data type in the “Range of 
Values” column. You can also return these values with the intmax and intmin 
commands. For example,

intmax('int8')
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ans =

   127

intmin('int8')

ans =

  -128

If you convert a number that is larger than the maximum value of an integer 
data type to that data type, MATLAB returns the maximum value. This is 
called saturating on overflow.

int8(300)

ans =

  127

Similarly, if you convert a number that is smaller than the minimum value of 
the integer data type, MATLAB returns the minimum value.

You can make MATLAB return a warning when your input is outside the range 
an integer data type. “Warnings for Integer Data Types” on page 7-15 explains 
how to turn these warnings on. 

Integer Arithmetic
MATLAB can perform arithmetic operations on arrays of the same integer data 
type, and the result has the same type. For example,

x = int16(5) + int16(9)

x =

    14

class(x)
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returns

ans =

int16

For a list of the operations that support integer data types, see “Nondouble 
Data Type Support” in the arithmetic operators reference page.

When the result of an operation exceeds the maximum value of the data type, 
MATLAB returns the maximum value. For example,

int8(100)+int8(100)

ans =

  127

MATLAB returns 127, which is the maximum value for numbers of type int8. 

Similarly, if the result is less than the minimum value of the data type, 
MATLAB returns the minimum value.

You can make MATLAB return a warning when the result of an operation is 
outside the range an integer data type. “Warnings for Integer Data Types” on 
page 7-15 explains how to turn these warnings on. 

MATLAB computes elementwise division, A./B and A.\B, where A and B are 
arrays of integer data type, using elementwise double-precision arithmetic and 
then converting the result back to the original integer data type. For example,

int8(4)./int8(3)

ans =

     1

MATLAB computes 4/3 in double precision and then converts the result to 
int8, rounding 4/3 to 1.
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Combining Integer Data Types with Scalars of Type double
You can combine scalars or arrays of an integer data type with scalars (but not 
arrays) of type double and the result has the same integer data type. For 
example,

class(5*int8(3))

ans =

int8

However, you cannot combine scalars or arrays of an integer data type with 
scalars or arrays of a different integer data type or data type single.

For all binary operations in which one operand is an array of integer data type 
and the other is a scalar double, MATLAB computes the operation using 
elementwise double-precision arithmetic and then converts the result back to 
the original integer data type. For example,

int8([1 2 3 4 5])*0.8

ans =

     1     2     2     3     4

MATLAB computes [1 2 3 4 5]*0.8 in double precision and then converts the 
result to int8. Note that the second and third entries of [1 2 3 4 5]*0.8, 
which are 1.6 and 2.4, are both rounded to the nearest integer, which is 2.

Example — Digitized Signals
This section describes how you can use integer data types when modeling a 
digital communication system, such as a telephone network. A digital 
telephone converts an analog signal—your voice—to a digital signal before 
transmission. While the analog signal takes on real number values, the digital 
signal takes on only a finite set of integer values. If you are modeling a digital 
communication system using MATLAB, you can model these practical 
implementation effects and save memory by storing the digital signal as an 
integer data type rather than as type double. 
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Source Coding
To convert an analog, or source, signal to a digital signal, a digital telephone 
samples the signal at discrete time intervals and encodes, or quantizes, the 
sampled values, which are real numbers, as integers. The encoding process is 
called source coding. One simple way to quantize a sampled signal is to

1 Partition the range of the signal into a finite number of intervals.

2 Assign each sampled value an integer based on the interval of the partition 
the value lies in.

For example, if the signal is a sine wave, whose range is [-1 1], you could 
partition the range into four equal intervals, labeled 0, 1, 2, and 3, as shown in 
the following figure.

The vertical lines correspond to the sample times. For example, if you sample 
the signal at time -6, its value lies in the interval [0 0.5], so the quantized value 
is 2.

Typically, the sample times are closer together and the number of intervals in 
the partition is larger, to make the encoding more accurate. The following table 

The quantized value at this sample time is 2.
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defines a partition of [-1 1] into 256 intervals, which are assigned integer 
values from -128 to 127, the range of data type int8.

You can use the function int8 to compute the quantized value of a sample 
whose value is x by the formula

quantize = int8(128*x)

For example, 

int8(128*.37)

ans =

    47

Note that any samples greater than 1 have the quantized value 127, the 
maximum value for data type int8, due to saturation, so they cannot be 
distinguished by this quantization scheme. To distinguish such samples, you 

Interval Quantized Value

[-Inf, -255/256] -128

(-255/256, 
-253/256]

-127

(-253/256, 
-251/256]

-126

... ...

(-3/256, -1/256] -1

(-1/256, 1/256) 0

[1/256 3/256) 1

... ...

[249/256, 251/256) 125

[251/256, 253/256) 126

[253/256, Inf] 127
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would need to enlarge the range of values that are partitioned. Similarly, any 
samples less than -1 have the quantized value -128, the minimum value for 
int8. 

As an illustration, suppose you sample a sine wave signal at time intervals of 
.01. The following code converts the sampled values to integers of data type 
int8 and plots the result:

sample_times = [-2*pi:.01: 2*pi];
source = sin(sample_times);
signal = int8(128*source);
plot(sample_times, signal, '.')

While the curve appears to be smooth, you can magnify a portion of it by 
clicking the magnify icon on the toolbar and then clicking the plot three 
times at one of the peaks, as shown in the following figure.
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The result shows that the plot is actually made up of discrete points with 
integer y-values.

The Communcations Toolbox provides several functions that implement more 
sophisticated source coding schemes.

Click three times

Click the magnify icon once
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Combining Two Signals
Suppose you want to model two signals transmitted over the same channel, 
such as two people speaking at the same time into separate telephones on the 
same line. When these signals are combined in a channel, their values are 
added together. To illustrate this, the following code creates two signals and 
plots them separately:

source1=1/3*sin(2*sample_times)+2/3*cos(sample_times);
source2=3/4*sin(3*sample_times)+1/4*cos(sample_times);
signal1 = int8(128*source1);
signal2 = int8(128*source2);
plot(sample_times,signal1)
hold on
plot(sample_times,signal2,'color','red')
legend('Signal1', 'Signal2')
hold off

'

The following code adds the signals and plots the result.

plot(sample_times, signal1 + signal2, 'color', 'black')
legend('Signal1 + Signal2')
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Notice that the tops of the peaks are truncated at 127, the maximum value for 
int8, while the bottoms of the valleys are truncated at -128, the minimum 
value for int8. This occurs because the sum of the signals in the truncated 
regions lies outside the original range [-1 1], so it saturates to 127 or -128. One 
way to deal with this is to first average the source signals before quantizing 
them, so that their average lies in the range [-1 1]. The following code quantizes 
the average and plots the result along with the previous plot.

hold on
avg_signal=int8(128*(mean([source1; source2])));
plot(sample_times, avg_signal, 'color', 'black')
legend('Signal1 + Signal2', `Average of signals')
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Warnings for Integer Data Types
You can use the intwarning('on') command to make MATLAB return a 
warning message when it converts a number outside the range of an integer 
data type to that data type or when the result of an arithmetic operation 
overflows. For example,

intwarning('on')
int16(50000)
Warning: Out of range value converted to intmin('int16') or 
intmax('int16').

ans =

  32767

There are four possible warning messages that you can turn on using 
intwarning. The following example illustrates all four warning messages.

intwarning('on')
int8([NaN Inf pi])+1000
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Warning: NaN converted to int8(0).
Warning: Out of range value converted to intmin('int8') or 
intmax('int8').
Warning: Conversion rounded non-integer floating point value to 
nearest int8 value.
Warning: Out of range value or NaN computed in integer arithmetic.

ans =

  127  127  127

To turn these warnings off (their default state when you start MATLAB), enter

intwarning('off')

Turning Warnings On or Off Temporarily
When writing M-files that contain integer data types, it is sometimes 
convenient to temporarily turn integer warnings on and then return the states 
of the warnings ('on' or 'off') to their previous settings. The following 
commands illustrate how to do this:

oldState = intwarning('on');
int8(200)
Warning: Out of range value converted to intmin('int8') or 
intmax('int8').

ans =

  127

intwarning(oldState)

To temporarily turn the warnings off, change the first line of the preceding code 
to 

oldState = intwarning('off');
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Single-Precision Mathematics
This section describes operations on single-precision numbers — that is, 
numbers of type single. Because MATLAB stores numbers of type single 
using 32 bits, they require less memory than numbers of type double, which 
use 64 bits. However, because they are stored with fewer bits, numbers of type 
single are represented to less precision than numbers of type double.

This section covers the following topics:

• “Data Type single” on page 7-17

• “Single-Precision Arithmetic” on page 7-18

• “The Function eps” on page 7-19

• “Example — Writing M-Files for Different Data Types” on page 7-20

• “Largest and Smallest Numbers of Type double and single” on page 7-23

Data Type single
To assign the data type single to a numbers or variable, use the command 
single. For example,

a = single(5)

sets the value of a to be 5 with data type single.

Storing a number as type single require only half as much memory as storing 
it as type double. You can compare how many bytes of memory are used to 
store 5 as type single versus type double using the whos command.

b = 5;
whos
  Name      Size                   Bytes  Class

  a         1x1                        4  single array
  b         1x1                        8  double array

When you convert a number of type double to type single, MATLAB rounds 
the number to the nearest single-precision number. This can change the stored 
value slightly. For example,

format long
single(3.14)
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ans =

   3.1400001

You can return an upper bound for how much the stored value of a number 
changes when you convert it to single using the eps command, as described in 
“The Function eps” on page 7-19. 

Single-Precision Arithmetic
You can combine two numbers of type single and the result is of type single. 
For example,

x = single(2)*single(3)

x =

     6

You can verify that the result has data type single with the class command.

class(x)

ans =

single

You can combine scalars or arrays of type single with scalars or arrays of type 
double, and the result has type single. For example,

x = single(8) + 3

x =

    11

class(x)

ans =

single
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However, you cannot combine scalars or arrays of type single with scalars or 
arrays of an integer data type.

The Function eps
Because there are only finitely many double-precision numbers, you cannot 
represent all numbers in double-precision storage. On any computer, there is a 
small gap between each double-precision number and the next larger 
double-precision number. You can determine the size of this gap, which limits 
the precision of your results, using the eps function. For example, to find the 
distance between 5 and the next larger double-precision number, enter

format long
eps(5)

ans =

    8.881784197001252e-016

This tells you that there are no double-precision numbers between 5 and 
5 + eps(5). If a double-precision computation returns the answer 5, the result 
is only accurate to within eps(5).

The value of eps(x) depends on x: as x gets larger, so does eps(x). For 
example,

eps(50)

ans =

    7.105427357601002e-015

so that eps(50) is larger than eps(5).

If you enter eps with no input argument, MATLAB returns the value of eps(1), 
the distance from 1 to the next larger double-precision number.

Similarly, there are gaps between any two single-precision numbers. If x has 
type single, eps(x) returns the distance between x and the next larger 
single-precision number. For example,

x = single(5);
eps(x)
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returns

ans =

  4.7684e-007

Note that this result is larger than eps(5). Because there are fewer 
single-precision numbers than double-precision numbers, the gaps between 
the single-precision numbers are larger than the gaps between 
double-precision numbers. This means that results in single-precision 
arithmetic are less precise than in double-precision.

For a number x of type double, eps(single(x)) gives you an upper bound for 
the amount that x is rounded when you convert it from double to single. For 
example, when you convert the double-precision number 3.14 to single, it is 
rounded by 

double(single(3.14) - 3.14

ans =

  1.0490e-007 

The amount that 3.14 is rounded is less than 

eps(single(3.14))

ans =

  2.3842e-007

Example — Writing M-Files for Different Data Types 
If you write an M-file that works with data of type single or double, the M-file 
might need to return different answers depending on the data type. The 
following example illustrates this. 
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Computing the Ratios of Fibonacci Numbers
The Fibonacci numbers are the numbers fn defined recursively by

The first seven numbers in the Fibonacci sequence are 1, 1, 2, 3, 5, 8, 13. As n 
gets larger, the ratio of the n+1st Fibonacci number divided by the nth 
Fibonacci number tends to the golden mean, . That is,

Suppose you want to compute how large n must be so that the ratio

is within eps of the golden mean. The answer depends on whether you are 
computing in single or double-precision arithmetic, because the value of 
eps((1+sqrt(5))/2) depends on the data type of the golden mean.

eps((1+sqrt(5))/2)

ans =

  2.2204e-016

while 

eps(single((1+sqrt(5))/2))

ans =

  1.1921e-007

f1 1=

f2 1=

fn 2+ fn 1+ fn+=

1 5+( ) 2⁄

fn 1+
fn

------------
n ∞→
lim 1 5+

2
-----------------=

fn 1+
fn

------------ 1 5+
2

-----------------–
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You can write an M-file to compute the answer in either case, by passing in the 
data type as an input argument. The following code shows how to do this.

function count = fib(data_type)
f_current = ones(1,1,data_type);
f_next = f_current;
golden_mean = (1+sqrt(5))/2*ones(1,1,data_type);
count = 2;
while abs(f_next/f_current - golden_mean) >= eps(golden_mean)
    count = count + 1;
    temp  = f_next;
    f_next = f_next + f_current;
    f_next = temp;
end

The output count is the smallest integer for which

is smaller than eps(golden_mean).

For double-precision arithmetic, the answer is

fib('double')

ans =

    39

For single-precision arithmetic, the answer is 

fib('single')

ans =

    17

fn 1+
fn

------------ 1 5+
2

-----------------–
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Largest and Smallest Numbers of Type double and 
single
This section explains the largest and smallest numbers of data types double 
and single. This section covers the following topics:

• “Largest Double- and Single-Precision Numbers” on page 7-23

• “Smallest Positive Double- and Single-Precision Numbers” on page 7-24

Largest Double- and Single-Precision Numbers
The MATLAB command realmax returns the largest value that you can 
represent as a double-precision floating-point number. 

realmax

ans =

  1.7977e+308

When the result of an operation on numbers of type double exceeds realmax, 
MATLAB returns Inf. 

Similarly, the MATLAB command realmax('single') returns the largest 
value that you can represent as a single-precision number.

realmax('single')

ans =

  3.4028e+038

Note that realmax for type double is much larger than realmax('single'), 
because the range of numbers that you can represent in single-precision is 
more limited than in double-precision. 

When the result of an operation on numbers of type single exceeds 
realmax('single'), MATLAB returns Inf of class single. For example,

(realmax('single')/2)^2

ans =

   Inf
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Because realmax is larger than realmax('single'), performing the same 
computation in double precision returns a finite answer.

(double(realmax('single'))/2)^2

ans =

  2.8948e+076

Smallest Positive Double- and Single-Precision Numbers
The MATLAB command realmin returns the smallest positive normalized 
floating-point number that you can represent in double precision. 

realmin

ans =

  2.2251e-308

When the result of a computation on numbers of type double is a positive 
number that is less than realmin, MATLAB returns either 0 or a subnormal 
floating-point number, that is, one that is not in standard form. 

Similarly, there is a smallest positive normalized floating-point number that 
you can represent in single precision, whose value is returned by 
realmin('single'). 

realmin('single')

ans =

  1.1755e-038

Because realmin is less than realmin('single'), operations that return a 
nonzero double-precision result in standard form might return 0 or a 
subnormal answer when you do the same operations in single precision.

References
The following references provide more information about floating-point 
arithmetic.
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advantages 6-5
and complex values 6-6
Cholesky factorization 6-32
computational considerations 6-24
contents 6-12
conversion from full 6-7
creating 6-6

directly 6-7
from diagonal elements 6-9

density 6-6
distance between nodes 6-21
eigenvalues 6-38
fill-in 6-21
importing 6-11
linear systems of equations 6-35
LU factorization 6-29

and reordering 6-29
mathematical operations 6-24
nonzero elements 6-12

maximum number 6-8
specifying when creating matrix 6-8
storage 6-5, 6-12
values 6-12

nonzero elements of sparse matrix
number of 6-12

operations 6-24
permutation 6-25
preconditioner 6-34
propagation through computations 6-24
QR factorization 6-32
reordering 6-25
storage 6-5

for various permutations 6-27
viewing 6-12

triangular factorization 6-29
viewing contents graphically 6-14
viewing storage 6-12
visualizing 6-20

sparse ODE examples
Brusselator system (brussode) 5-42

spconvert 6-11
spdiags 6-9
speye 6-24
spones 6-27
spparms 6-36
sprand 6-24
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spy 6-14
spy plot 6-20
startup cost

minimizing for ODE solvers 5-56
statistical data

missing values 3-13
normalizing 3-22
outliers 3-15
preprocessing 3-13
removing NaNs 3-14
See also multivariate data
See also univariate data

statistics
descriptive 3-7

step size (DDE)
initial step size 5-78
upper bound 5-78

step size (ODE) 5-28, 5-77
initial step size 5-29
upper bound 5-29

stiff ODE examples
Brusselator system (brussode) 5-42
differential-algebraic problem (hb1dae) 5-52
finite element discretization (fem1ode) 5-39
van der Pol (vdpode) 5-37

stiffness (ODE), defined 5-13
storage

minimizing for ODE problems 5-56
permutations of sparse matrices 6-27
sparse and full, comparison 6-6
sparse matrix 6-5
viewing for sparse matrix 6-12

sum

counting nonzeros in sparse matrix 6-28
sparse matrices 6-25

sunspot periodicity
calculating using Fourier transforms 3-44

symamd

minimum degree ordering 6-28
symmetric matrix

transpose 1-7
symmmd

minimum degree ordering 6-28
symrcm

column permutation 6-30
reducing sparse matrix bandwidth 6-28

systems of equations. See linear systems of 
equations

T
tessellations, multidimensional

Delaunay 2-29
Voronoi diagrams 2-31

theoretical graph 6-16
example 6-17
node 6-16

three-dimensional interpolation 2-16
transfer functions

using partial fraction expansion 2-7
transpose

complex conjugate 1-8
unconjugated complex 1-8

triangular factorization
sparse matrices 6-29

triangular matrix 1-28
triangulation

closest point searches 2-24
Delaunay 2-20
scattered data 2-18
Voronoi diagrams 2-25
See also tessellation

tricubic interpolation 2-16
trilinear interpolation 2-16
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troubleshooting (ODE) 5-54
twobvp demo 5-83
two-dimensional interpolation 2-12

comparing methods graphically 2-13

U
underdetermined

rectangular matrices 1-20
unitary matrices

QR factorization 1-31
univariate data 3-3
unknown parameters (BVP) 5-92

example 5-88

V
van der Pol example 5-37

simple, nonstiff 5-10
simple, stiff 5-13

variable-order solver (ODE) 5-35
vdpode demo 5-37
vector products

dot or scalar 1-8
outer and inner 1-6

vectorizing ODE function (BVP) 5-109
vectors

column and row 1-5
multiplication 1-6

vehicle traffic sample data 3-3
visualizing

sparse matrix 6-20
visualizing solver results

BVP 5-91
DDE 5-67
ODE 5-12
PDE 5-123

Voronoi diagrams
multidimensional 2-31
two-dimensional 2-25

Z
zeros

of mathematical functions 4-21
zeros

sparse matrices 6-24
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