1 Preliminaries

Numbers are represented in binaries, thus creating errors.
Numerical procedures also introduce errors.
Numerical analysis is the study of the behavior of errors in computation.

e Suppose that p is an approximation to p. The (absolute) error is E, =

|p — p|, and the relative error is R, = %, provided that p # 0.

— Let # = 3.141592 (approx. n?) and Z = 3.14; then the error is

E, = |7 — x| = |3.14 — 3.141592| = 0.001592

and the relative error is

Z— x|  0.001592
lz|  3.141592

— Let y = 1,000,000 and 5 = 999, 996; then the error is (large?)

R, = — 0.00507

and the relative error is (small?)

— Let 2 =0.000012 and Zz = 0.000009; then the error is (small?)
and the relative error is (large?)

The relative error R, is a better indicator of accuracy and is pre-
ferred for floating-point representations since it deals directly with
the mantissa.

e The number p is said to approximate p to d significant digits if d is the
largest positive integer for which
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|p|
~ Ifz = 3.141592 and # = 3.14, then =21 — 0.000507 < 0.5 x 10~2.

|z|
Therefore, ¥ approximates = to 2 significant digits.

— If y = 1000000 and § = 999996, then 2% = 0.000004 < 0.5 x

ly|
10~2. Therefore, §j approximates y to ?? significant digits.

<0.5x 107
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— Tf 2 = 0.000012 and 2 = 0.000009, then 222l = 0.25 < 0.5 x 102,

||
Therefore, Z approximates z to 77 significant digits.

e (Given that s
p= / e dor — 0.544987104184
0

and is approximated by using Taylor series as

1/2
D= / Py(x)dx =
0

Since 0.5%107° > R, = 7.03442 x 1077 > 107%/2, the approximation p
agrees with the true answer p to 5 significant figures.

e Calculate f(500) and ¢g(500) using 6 digits and rounding, with

f@)=2(Ve+1-Va), g(r) = NS

Note that g(z) is algebraically equivalent to f(z), but g(500) = 11.1748
is more accurate than f(500) to the true answer 11.174755300747198 . ..

to six digits.

o Let P(z)=a-322+32—1,Q(z) = ((r—3)x+3)z — 1. Use 3-digit
rounding arithmetic to compute P(2.19) = (2.19) = 1.685159:

The errors are 0.015159 and -0.004841, respectively. Thus the approx-
imation Q(2.19) ~ 1.69 has less error.

e Consider the Taylor polynomial expansions

b h? K3 4
e :1+h+5+§+0(h)

h?  ht 6
coshzl—i—l—ﬂ—i-()(h)

With O(h*) + O(h®) = O(h*) = O(h*) + L, we have the sum
3 4 3

h
eh+cosh:2+h+§+z+0(h4)+0(h6):2+h+§+0(h4)

The difference behaves similarly.
The product

e % cosh =



h3
:1+h—§~HX#)
and the order of approximation is O(h?).

° I, = 3%, approximated by (forn=1,2, .- ")

1 A
ro=1,r, = grn—l <: 3_n>

1 4 1 1
=1.pi==,pp= =Pn1— =Pno|A—+ B
Do » 1 3717 327 1 3p 2( 3n+ )

1 10 1
= 1 = — n = ——(Qn—1 — Qn— A— Bgﬂ,)
o L= 554 3 In—1 = n—2 < 3 +

Generate a table for z,, —r,, £, — pn, T, — ¢n, With errors introduced in
the starting values:

To = 099996,])0 =(qo = 1,p1 =(q1 = 0.33332

The error for r, is stable and decreases exponentially.
The error for p,, is stable, but eventually dominates as p,, — 0.
The error for g, is unstable and grows exponentially.

e Write the following code and study the response.

yA Determines effective machine precision for MATLAB
a=1.0;
while ( (1. + a) "= 1)
a = a/2. ;
end

delta = 2.0%*a ;
sprintf(’ Machine Precision of MATLAB is %9.2e’, delta )

e Write the following code and study the response.

% uses the MATLAB chop.m function to find simulated machine
% precision for a NDIGITS decimal ( base 10 ) machine.
data = [] ;
for NDIGITS = 2: 20 ;
a=1.0;
while ( chop( (1.+a), NDIGITS ) ~= chop( (1.+a/2.), NDIGITS) )
a chop( a/2. , NDIGITS) ;

end



theoret = 0.5%107 (1-NDIGITS) ;

data = [ data ; NDIGITS (1.5)*a theoret ] ;
end
% Note the use of (semi)logarithmic plots is usually preferable
% for displaying error behavior.
semilogy( data(:,1) , data(:,2) , ’%’°,

data(:,1) , data(:,3) ) ;

xlabel (’NDIGITS’);
ylabel (’Machine Precision’)
legend (’Observed’,’Theoretical’);
title(’Dependence of Machine Precision on Machine "Size"’);

e Write the following code and study the response.

% Determines the accuracy of a computed expression which is potentially
% subject to cancellation errors, using the MATLAB chop.m function.

clear ;
data = [] ;
NDIGITS =8 ;
mu_NDIGITS = 0.5%10"(1-NDIGITS) ;
mu_calc = 50*mu_NDIGITS ;
for n = 1: 30 ;
X =2"n ;
xsing = chop( x , NDIGITS ) ;
xml_sing = chop( xsing - 1 , NDIGITS ) ;
xsq_sing = chop( xsing#*xsing , NDIGITS) ;

xsqp4_sing = chop( xsq_sing + 4 , NDIGITS ) ;
sroot_sing = chop( sqrt( xsqp4_sing ) , NDIGITS ) ;

fval_sing = chop( sroot_sing - xml_sing , NDIGITS ) ;
f_double = sqrt( x"2+4) - (x-1) ;
rel_err = abs( f_double - fval_sing )/abs(f_double + eps ) + eps ;
data = [ data ; x rel_err f_double fval_sing] ;
end
xmin = min(data(:,1)) ; =xmax = max(data(:,1)) ;
loglog( data(:,1) , data(:,2) , ’-.” ,

[ xmin xmax ] , [ mu_calc mu_calc ] , ’:’ ) ;
axis( [ xmin 10*xmax 10°(-10) 10°3 ] );
xlabel( ’x’ ) ; ylabel( ’Relative Difference’) ;
legend (’0Observed’,’"Acceptable"’);
title(’Variation of the Accuracy of a Computed Function with x’);
figure(2);



semilogx( data(:,1), data(:,3), data(:,1), data(:,4),’:7);

xlabel(’x’) ; ylabel(’Computed Value of f(x)’)

axis([min(data(:,1)), 10*max(data(:,1)),-.25, 2.25])

legend (’Double Precision’,’Single Precision’);

title(’Effect of Machine Precision on the Accuracy of a Computed Function

e Write the code and analysis output

a=123%2*pi*/360
L=inline(’9/sin(pi-2.1468-c)+7/sin(c)’)
fplot(L,[0.4,0.5]); grid on
fminbnd(L,0.4,0.5)

L(0.4677)

fminbnd(L,0.4,0.5,optimset (’Display’,’iter’))

e Write a code that adds 0.0001 one thousand times. The result should
equal 1.0 exactly but this is not true for single precision.

e Write a code that computes values of this expression

(x+y)* —2zy —
- 2

T

with different values of  and y. (Hint: use y = 10000 and change the
x-value as 0.01,0.001,0.0001,,...)
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