
1 Preliminaries

Numbers are represented in binaries, thus creating errors.
Numerical procedures also introduce errors.
Numerical analysis is the study of the behavior of errors in computation.

• Suppose that p̂ is an approximation to p. The (absolute) error is Ep =

|p − p̂|, and the relative error is Rp = Ep

|p|
, provided that p 6= 0.

– Let x = 3.141592 (approx. π?) and x̂ = 3.14; then the error is

Ex = |x̂ − x| = |3.14 − 3.141592| = 0.001592

and the relative error is

Rx =
|x̂ − x|
|x| =

0.001592

3.141592
= 0.00507

– Let y = 1, 000, 000 and ŷ = 999, 996; then the error is (large?)

and the relative error is (small?)

– Let z = 0.000012 and ẑ = 0.000009; then the error is (small?)

and the relative error is (large?)

The relative error Rp is a better indicator of accuracy and is pre-
ferred for floating-point representations since it deals directly with
the mantissa.

• The number p̂ is said to approximate p to d significant digits if d is the
largest positive integer for which

|p̂ − p|
|p| < 0.5 × 10−d

– If x = 3.141592 and x̂ = 3.14, then |x̂−x|
|x|

= 0.000507 < 0.5× 10−2.
Therefore, x̂ approximates x to 2 significant digits.

– If y = 1000000 and ŷ = 999996, then |ŷ−y|
|y|

= 0.000004 < 0.5 ×
10−2. Therefore, ŷ approximates y to ?? significant digits.
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– If z = 0.000012 and ẑ = 0.000009, then |ẑ−z|
|z|

= 0.25 < 0.5× 10−2.
Therefore, ẑ approximates z to ?? significant digits.

• Given that

p =
∫

1/2

0

ex2

dx = 0.544987104184

and is approximated by using Taylor series as

p̂ =
∫

1/2

0

P8(x)dx =

Since 0.5 ∗ 10−5 > Rp = 7.03442× 10−7 > 10−6/2, the approximation p̂
agrees with the true answer p to 5 significant figures.

• Calculate f(500) and g(500) using 6 digits and rounding, with

f(x) = x(
√

x + 1 −
√

x), g(x) =
x√

x + 1 +
√

x

Note that g(x) is algebraically equivalent to f(x), but g(500) = 11.1748
is more accurate than f(500) to the true answer 11.174755300747198 . . .
to six digits.

• Let P (x) = x3 − 3x2 + 3x− 1 , Q(x) = ((x− 3)x + 3)x− 1. Use 3-digit
rounding arithmetic to compute P (2.19) = Q(2.19) = 1.685159:

The errors are 0.015159 and -0.004841, respectively. Thus the approx-
imation Q(2.19) ≈ 1.69 has less error.

• Consider the Taylor polynomial expansions

eh = 1 + h +
h2

2!
+

h3

3!
+ O(h4)

cosh = 1 − h2

2!
+

h4

4!
+ O(h6)

With O(h4) + O(h6) = O(h4) = O(h4) + h4

4!
, we have the sum

eh + cosh = 2 + h +
h3

3!
+

h4

4!
+ O(h4) + O(h6) = 2 + h +

h3

3!
+ O(h4)

The difference behaves similarly.
The product

eh ∗ cosh =
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= 1 + h − h3

3
+ O(h4)

and the order of approximation is O(h4).

• xn = 1

3n
, approximated by (for n = 1, 2, · · ·)

r0 = 1, rn =
1

3
rn−1

(
=

A

3n

)

p0 = 1, p1 =
1

3
, pn =

4

3
pn−1 −

1

3
pn−2

(
A

1

3n
+ B

)

q0 = 1, q1 =
1

3
, qn =

10

3
qn−1 − qn−2

(
A

1

3n
+ B3n

)

Generate a table for xn − rn, xn − pn, xn − qn, with errors introduced in
the starting values:

r0 = 0.99996, p0 = q0 = 1, p1 = q1 = 0.33332

The error for rn is stable and decreases exponentially.
The error for pn is stable, but eventually dominates as pn → 0.
The error for qn is unstable and grows exponentially.

• Write the following code and study the response.

% Determines effective machine precision for MATLAB

a = 1.0 ;

while ( (1. + a) ~= 1)

a = a/2. ;

end

delta = 2.0*a ;

sprintf(’ Machine Precision of MATLAB is %9.2e’, delta )

• Write the following code and study the response.

% uses the MATLAB chop.m function to find simulated machine

% precision for a NDIGITS decimal ( base 10 ) machine.

data = [] ;

for NDIGITS = 2: 20 ;

a = 1.0 ;

while ( chop( (1.+a), NDIGITS ) ~= chop( (1.+a/2.), NDIGITS) )

a = chop( a/2. , NDIGITS) ;

end
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theoret = 0.5*10^(1-NDIGITS) ;

data = [ data ; NDIGITS (1.5)*a theoret ] ;

end

% Note the use of (semi)logarithmic plots is usually preferable

% for displaying error behavior.

semilogy( data(:,1) , data(:,2) , ’*’, ...

data(:,1) , data(:,3) ) ;

xlabel(’NDIGITS’);

ylabel(’Machine Precision’)

legend(’Observed’,’Theoretical’);

title(’Dependence of Machine Precision on Machine "Size"’);

• Write the following code and study the response.

% Determines the accuracy of a computed expression which is potentially

% subject to cancellation errors, using the MATLAB chop.m function.

clear ;

data = [] ;

NDIGITS = 8 ;

mu_NDIGITS = 0.5*10^(1-NDIGITS) ;

mu_calc = 50*mu_NDIGITS ;

for n = 1: 30 ;

x = 2^n ;

xsing = chop( x , NDIGITS ) ;

xm1_sing = chop( xsing - 1 , NDIGITS ) ;

xsq_sing = chop( xsing*xsing , NDIGITS) ;

xsqp4_sing = chop( xsq_sing + 4 , NDIGITS ) ;

sroot_sing = chop( sqrt( xsqp4_sing ) , NDIGITS ) ;

fval_sing = chop( sroot_sing - xm1_sing , NDIGITS ) ;

f_double = sqrt( x^2 + 4 ) - ( x - 1 ) ;

rel_err = abs( f_double - fval_sing )/abs(f_double + eps ) + eps ;

data = [ data ; x rel_err f_double fval_sing] ;

end

xmin = min(data(:,1)) ; xmax = max(data(:,1)) ;

loglog( data(:,1) , data(:,2) , ’-.’ , ...

[ xmin xmax ] , [ mu_calc mu_calc ] , ’:’ ) ;

axis( [ xmin 10*xmax 10^(-10) 10^3 ] );

xlabel( ’x’ ) ; ylabel( ’Relative Difference’) ;

legend(’Observed’,’"Acceptable"’);

title(’Variation of the Accuracy of a Computed Function with x’);

figure(2);
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semilogx( data(:,1), data(:,3), data(:,1), data(:,4),’:’);

xlabel(’x’) ; ylabel(’Computed Value of f(x)’)

axis([min(data(:,1)), 10*max(data(:,1)),-.25, 2.25])

legend(’Double Precision’,’Single Precision’);

title(’Effect of Machine Precision on the Accuracy of a Computed Function’)

• Write the code and analysis output

a=123*2*pi*/360

L=inline(’9/sin(pi-2.1468-c)+7/sin(c)’)

fplot(L,[0.4,0.5]); grid on

fminbnd(L,0.4,0.5)

L(0.4677)

fminbnd(L,0.4,0.5,optimset(’Display’,’iter’))

• Write a code that adds 0.0001 one thousand times. The result should
equal 1.0 exactly but this is not true for single precision.

• Write a code that computes values of this expression

z =
(x + y)2 − 2xy − y2

x2

with different values of x and y. (Hint: use y = 10000 and change the
x-value as 0.01, 0.001, 0.0001, , . . .)
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