1 Interpolation and Curve Fitting

1. The MATLAB procedure for polynomial least-squares is *polyfit*. Study the following example;

x =(0:0.1:5)'; % x from 0 to 5 in steps of 0.1 y = sin(x); % get y values p = polyfit(x,y,3); % fit a cubic to the data f = polyval(p,x); % evaluate the cubic on the x data plot(x,y,'o',x,f,'-') % plot y and its approximation f

2. For the given data points;

x	Y
0.000	1.500
0.142	1.495
0.285	1.040
0.428	0.821
0.571	1.003
0.714	0.821
0.857	0.442
1.000	0.552

x	z
0.000	
0.142	
0.285	
0.428	
0.571	
0.714	
0.857	
1.000	

- Construct the normal equations
 Hints: A = lnα and C = β
- Solve these normal equations to find A and C
- Convert back to the original variables
- Plot Y vs x and y vs x then compare them.

- Soln: $y(x) = 1.561e^{-1.132x}$
- 3. Apply the procedure given in the first item by using the data set in the previous item.
 - Hints:
 - fit a cubic to the data
 - evaluate the cubic on the x data
 - Plot by plot(x, Y, o', x, f, -')
 - Compare this least-square polynomial with the function used in the previous item.