Assignment I

  1. (20 pts) Write a code that computes $x_n$,$r_n$,$p_n$,$q_n$, makes error analysis and tabulates the outcomes;
    $x_n =\frac{1}{3^n}$, approximated by (for n = 1, 2, )

    \begin{displaymath}
r_0 = 1 , r_n =\frac{1}{3}r_{n-1}\Longrightarrow\left(=\frac{A}{3^n}\right)
\end{displaymath}


    \begin{displaymath}
p_0 = 1 , p_1 =\frac{1}{3}, p_n =\frac{4}{3}p_{n-1} -\frac{1}{3}p_{n-2}\Longrightarrow\left(A\frac{1}{3^n}+B\right)
\end{displaymath}


    \begin{displaymath}
q_0 = 1 , q_1 =\frac{1}{3}, q_n =\frac{10}{3}q_{n-1} -q_{n-2}\Longrightarrow\left(A\frac{1}{3^n}+B3^n\right)
\end{displaymath}

    Generate a table for $x_n-r_n,x_n-p_n,x_n-q_n$, with errors introduced in the starting values: (should be similar to the Table 1)

    \begin{displaymath}
r_0 = 0.99996 , p_0 = q_0 = 1 , p_1 = q_1 = 0.33332
\end{displaymath}


    Table 1: The Error Sequences
    $x_n - r_n$ $x_n - p_n$ $x_n - q_n$
    0.0000400000 0.0000000000 0.0000000000
    0.0000133333 0.0000133333 0.0000013333
    0.0000044444 0.0000177778 0.0000444444
    0.0000014815 0.0000192593 0.0001348148
    0.0000004938 0.0000197531 0.0004049383
    0.0000001646 0.0000199177 0.0012149794
    0.0000000549 0.0000199726 0.0036449931
    0.0000000183 0.0000199909 0.0109349977
    0.0000000061 0.0000199970 0.0328049992
    0.0000000020 0.0000199990 0.0984149998
    0.0000000007 0.0000199997 0.2952449999


    Comment the behaviors of the errors for the each case.
  2. (20 pts) Write a code that computes values of this expression

    \begin{displaymath}
z=\frac{(x+y)^2-2xy-y^2}{x^2}
\end{displaymath}

    with different values of $x$ and $y$. (Hint: use $y=10000$ and change the x-value as $0.01,0.001,0.0001,,\ldots$)
    x=0.01;  y=10000;z=((x+y)^2-2*x*y-y^2)/x^2;
    x=0.001;  y=10000;z=((x+y)^2-2*x*y-y^2)/x^2
    x=0.0001;  y=10000;z=((x+y)^2-2*x*y-y^2)/x^2
    x=0.00001;  y=10000;z=((x+y)^2-2*x*y-y^2)/x^2
    x=0.000001;  y=10000;z=((x+y)^2-2*x*y-y^2)/x^2
    x=0.0000001;  y=10000;z=((x+y)^2-2*x*y-y^2)/x^2
    
  3. (60 pts) The function $h(x)=xsin(x)$ occurs in the study of undamped forced oscillations. Write a MATLAB program to solve $h(x)=1$ in [0,2] by:
    1. Halving the Interval (Bisection) Method
    2. The Method of False Position (regula falsi)
    3. Newton's Method
    4. Muller's method
    5. Fixed-point Iteration; $x=g(x)$ Method
2005-10-24