Mcs 331 Numerical Methods Midterm Dec 06, 2013 10.40–12.30 Good Luck!

Solve all the questions. Each question is 25 pts.

1.

$$f(x) = 3 * x + \sin(x) - e^x$$

This nonlinear equation is solved by using three methods, namely *Bisection*, *Newton's*, *Muller's* methods. Then, the following tables are obtained.

iteration	$(x)_1$			$(x)_2$	$(x)_3$
1	0.50000000	00000	0.33333	33333333333	0.500000000000000
2	0.250000000	00000	0.3601	7071357763	0.35491389049015
3	0.375000000	00000	0.3604	2168047602	0.36046467792776
4	0.312500000	00000	0.3604	2170296032	0.36042169766326
5	0.343750000	00000	0.3604	2170296032	0.36042170296032
iteration	$(f(x))_1$	(f($(x))_2$	$(f(x))_3$	
1	3.3070e-01	-1.000	00e+00	3.3070e-01	
2	-2.8662e-01	-6.84	18e-02	-1.3807e-02	2
3	3.6281e-02	-6.27	99e-04	1.0751e-04	
4	-1.2190e-01	-5.62	52e-08	-1.3252e-08	3
F	4.10560.02	6 66	120 16	2 22040 16	

i If the exact value is given as 0.36042170296032, fill the following tables (use scientific notation as %12.4e, see the table above);

(,
iteration	$Error_1$		$Error_2$		$Error_3$
1					
2					
3					
4					
5					
$ErrorRatio_1$		$ErrorRatio_2$		E	$rrorRatio_3$

- ii Analyze the obtained tables. Is the convergence sustained for the each methods? For the sustained ones; at which iteration and why?
- iii What can you say about the speed of convergences for each method?
- iv By using your answers for the previous items, fill the following table. You should explain your decision.

	$Method_1$	$Method_2$	$Method_3$				
Name							

v Which method is the best one? Why?

2. Consider the function:

$$f(x) = 2x - 6\log(x)$$

Plot of the function is given at the following figure;

Figure 1: Plot of the function, $2*x-6*\log(x)$

- i Use two iterations of Newton's method to estimate only one of the roots of this function. *Hint:* $\int \frac{1}{x} dx = log(x)$
- ii Estimate the error in your answer to part i.
- iii Approximately how many iterations of the bisection method would have been required to achieve for the error value of 0.0004? *Hint: Take the interval as ((initial+1)-initial)*

3. Solve this system by Gaussian elimination with pivoting

$$\begin{bmatrix} 1 & -2 & 4 & 6 \\ 8 & -3 & 2 & 2 \\ -1 & 10 & 2 & 4 \end{bmatrix}$$

- i How many row interchanges are needed?
- ii Repeat without any row interchanges. Do you get the same results?
- iii You could have saved the row multipliers and obtained a LU equivalent of the coefficient matrix. Use this LU to solve but with right-hand sides of $[-3, 7, -2]^T$

4. Consider the linear system

$$7x_1 - 3x_2 + 4x_3 = 6$$

-3x_1 + 2x_2 + 6x_3 = 2
2x_1 + 5x_2 + 3x_3 = -5

- i Solve this system with the Jacobi method. First rearrange to make it diagonally dominant if possible. Use [0, 0, 0] as the starting vector.
- ii Repeat with Gauss-Seidel method. Compare with Jacobi method.