

Çankaya University Mcs 331 Numerical Methods Final Examination Dec 31, 2014 09.30 – 11.30 Good Luck!

NAME-SURNAME:

SIGNATURE:

ID:

DEPARTMENT:

DURATION: 120 minutes

 \diamond Answer all the questions.

♦ Write the solutions explicitly and clearly.
Use the numerical terminology.

◊ You are allowed to use Formulae Sheet.

 \diamond Calculator is allowed.

 \diamond You are not allowed to use any other

electronic equipment in the exam.

◊ I declare hereby that I fulfilled the requirements for the attendance according to the University regulations and I accept that my examination will not be valid otherwise.

Question	Grade	Out of
1		15
2		10
3		15
4		20
5		20
6		20
7		20
TOTAL		120

- 1. Answer the following questions, choose only 4 of them.
 - i What are the advantages and disadvantages of numerical analysis?
 - ii Describe the general working of a bracketing method. What are the assumptions for this family of methods?
 - iii Describe truncation and round-off errors. Give example.
 - iv Describe the concept of ill-condition. Give an example.
 - v What does singularity mean for a matrix? Make a comparison of singular and nonsingular matrices.
 - vi What information can be obtained from the condition number of a matrix?
 - vii What are the differences between the interpolation and curve fitting?

2. Consider the matrix

$$A = \begin{bmatrix} 3 & -1 & 2 \\ 1 & 1 & 3 \\ -3 & 0 & 5 \end{bmatrix}$$

- i Get the inverse of the matrix through **either** Gaussian elimination **or** Gauss-Jordan method.
- ii Check your result: $AA^{-1} = I$

3. For the given data points;

$$\begin{array}{c|cc} x & y \\ \hline 1 & 1.06 \\ 2 & 1.12 \\ 3 & 1.34 \\ 5 & 1.78 \end{array}$$

- i construct the divided-difference table.
- ii interpolate for x = 4.
- iii extrapolate for x = 5.5.

4. A material is tested for cyclic fatigue failure whereby a stress (S), in MPa, is applied to the material and the number of cycles (N) needed to cause failure is measured. The results are in the table below.

-	
Х	Y
Cycles (N)	Stress (S)
1	1100
10	1000
100	925
1000	800
10000	625
100000	550
1000000	420

When a log-log plot of stress versus cycles is generated, the data trend **shows a linear relationship**; Y' = aX' + b. Use least-squares method to determine a bestfit equation for this data. **Hints**:

- i Start by taking logarithms of the data.
- ii Construct the normal equations.
- iii Find the values a and b.
- iv Determine the best-fit equation for Y(X).

5. Write the expression to economize the the Maclaurin series for e^{2x} with the precision 0.08 by using Chebyshev polynomials. Do not perform the calculation.

6. Use the Fourier series to approximate the square wave function (see Figure).

$$f(t) = \begin{cases} -1 & -T/2 < t < -T/4; \\ 1 & -T/4 < t < T/4; \\ -1 & T/4 < t < T/2. \end{cases}$$

- i Find the Fourier coefficients. Do not evaluate the integrals. **Hint:** Odd or even function?
- ii Write the Fourier series expansion for this function up to 2^{nd} term.

7. If the velocity distribution of a fluid flowing through a pipe is known (see Figure), the flow rate Q (that is, the volume of water passing through the pipe per unit time) can be computed by $Q = \int v dA$, where v is the velocity and A is the pipe's cross-sectional area. For a circular pipe, $A = \pi r^2$ and $dA = 2\pi r dr$. Therefore, $Q = \int_0^r v(2\pi r) dr$, where r is the radial distance measured outward from the center of the pipe.

If the velocity distribution is given by

$$v = 2(1 - \frac{r}{r_0})^{1/6}$$

where r_0 is the total radius (in this case, 3 cm), compute Q using the *Composite Trape*zoidal Rule.

i First fill the table within the four digit accuracy.

r_i	q_i
0.0000	0.0000
0.5000	
3.0000	

- ii Approximate the integral with a step size of h = 0.5.
- iii Approximate the integral with a step size of h = 1.0.

iv Estimate the *error* in your answers;

- Exact value of the integral is 44.7419. Find the errors for parts ii and iii.
- Also use the global error formula to find the errors for parts ii and iii.
- Analyze and compare these error values.