Hands-on-Solving Sets of Equations with MATLAB I

  1. Solve the following set of linear equations first by hand using Gaussian Elimination method and then by MATLAB as the following.

    \includegraphics[scale=1]{figures/2-5}
  2. Upper Triangularization Followed by Back Substitution. To construct the solution to $ Ax=b$, by first reducing the augmented matrix $ [A\vert b]$ to upper-triangular form then performing back substitution. Analyze these MATLAB codes, then by using these codes solve the following linear system;

    \begin{displaymath}
\begin{array}{r}
x_1+2x_2+x_3+4x_4=13\\
2x_1+4x_3+3x_4=28...
... 4x_1+2x_2+2x_3+x_4=20\\
-3x_1+x_2+3x_3+2x_4=6\\
\end{array}\end{displaymath}

    Solution:
    save with the names http://siber.cankaya.edu.tr/ozdogan/NumericalComputations/mfiles/chapter2/uptrbk.muptrbk.m and http://siber.cankaya.edu.tr/ozdogan/NumericalComputations/mfiles/chapter2/backsub.mbacksub.m. Then;
    >> A=[? ? ? ?;? ? ? ?;? ? ? ?;? ? ? ?]
    >> B=[? ? ? ?]'
    >> uptrbk(A,B)
    
  3. Factorization with Pivoting, $ PA=LU$. Solution:
Cem Ozdogan 2011-12-27