1 Numerical Differentiation and Integration with a Computer

- If we are working with experimental data that are displayed in a table of [x, f(x)] pairs emulation of calculus is **impossible**.
- We must *approximate* the function behind the data in some way.
- Differentiation with a Computer:
 - Employs the interpolating polynomials to derive formulas for getting derivatives.
 - These can be applied to functions known explicitly as well as those whose values are found in a table.
- Numerical Integration-The Trapezoidal Rule:
 - Approximates, the integrand function with a <u>linear</u> interpolating polynomial to derive a very simple but important formula for numerically integrating functions between given limits.
- We continue to exploit the useful properties of polynomials to develop methods for a computer to do integrations and to find derivatives.
- When the function is explicitly known, we can emulate the methods of calculus.
- But doing so in getting derivatives requires the <u>subtraction</u> of quantities that are nearly equal and that runs into **round-off** error.
- However, integration involves only <u>addition</u>, so round-off is not problem.
- We cannot often find the true answer numerically because the analytical value is the limit of the sum of an infinite number of terms.
- We must be satisfied with approximations for both derivatives and integrals but, for most applications, the **numerical answer is adequate**.

1.1 Differentiation with a Computer

• The derivative of a function, f(x) at x = a, is defined as

$$\frac{df}{dx}|_{x=a} = \lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x}$$

- This is called a *forward-difference* approximation.
- The limit could be approached from the opposite direction, giving a *backward-difference* approximation.
- Forward-difference approximation. A computer can calculate an approximation to the derivative, if a very small value is used for Δx .

$$\frac{df}{dx}|_{x=a} = \frac{f(a+\Delta x) - f(a)}{\Delta x}$$

- Recalculating with smaller and smaller values of x starting from an initial value.
- What happens if the value is not small enough?
- We should expect to find an *optimal value* for x.
- Because round-off errors in the numerator will become great as x approaches zero.
- When we try this for

$$f(x) = e^x \sin(x)$$

at x = 1.9. The analytical answer is 4.1653826.

- Starting with $\Delta x = 0.05$ and halving Δx each time. Table 1 gives the results.
- We find that the errors of the approximation decrease as Δx is reduced until about $\Delta x = 0.05/128$.
- Notice that each successive error is about 1/2 of the previous error as Δx is halved until Δx gets quite small, at which time round off affects the ratio.
- At values for Δx smaller than 0.05/128, the error of the approximation increases due to round off.
- In effect, the best value for Δx is when the effects of round-off and truncation errors are balanced.
- If a backward-difference approximation is used; similar results are obtained.

Δx	Approximation	Error	Ratio of errors
0.05	4.05010	-0.11528	
0.05/2	4.10955	-0.05583	2.06
0.05/4	4.13795	-0.02743	2.04
0.05/8	4.15176	-0.01362	2.01
0.05/16	4.15863	-0.00675	2.02
0.05/32	4.16199	-0.00389	1.99
0.05/64	4.16382	-0.00156	2.18
0.05/128	4.16504	-0.00034	4.67*
0.05/256	4.16504	-0.00034	
0.05/512	4.16504	-0.00034	
0.05/1024	4.16992	0.00454	
0.05/2048	4.17969	0.01430	

Table 1: Forward-difference approximations for $f(x) = e^x sin(x)$.

• Backward-difference approximation.

$$\frac{df}{dx}|_{x=a} = \frac{f(a) - f(a - \Delta x)}{\Delta x}$$

With MATLAB. Analytical answer to the function of Table 1.

format long; syms x; f='exp(x)*sin(x)'; df=diff(f,x) exactvalue=subs(df,1.9,'x')

With MATLAB. Numerical answer to the function of Table 1.

- It is not by chance that the errors are about halved each time.
- Look at this Taylor series where we have used h for Δx :

$$f(x+h) = f(x) + f'(x) * h + f''(\xi) * h^2/2$$

- Where the last term is the error term. The value of ξ is at some point between x and x + h.
- If we solve this equation for f'(x), we get

$$f'(x) = \frac{f(x+h) - f(x)}{h} - f''(\xi) * \frac{h}{2}$$
(1)

```
%%%Forward-Difference%%%%%
disp('Step Del Numerical Error
disp(' Derivative
                                                  Error')
disp('
                                                  Ratio')
disp('----- -----')
x=1.9;
delini=1;
error(1)=1;
for i=1:30
del=delini/2;
xplus=x+del;
 f = \exp(x) \cdot \sin(x);
fplus=exp(xplus).*sin(xplus);
 num=fplus-f;
deriv=num/del;
 error(i+1)=deriv-exactvalue;
 [D]=sprintf('%2d %1.15f %12.10f %12.10f %f ',i,del,deriv,error(i),
                                           error(i)/error(i+1));
disp(D);
delini=del;
end
```

- Which shows that the errors should be about proportional to h, precisely what Table 1 shows.
- If we repeat this but begin with the Taylor series for f(x-h), it turns out that

$$f'(x) = \frac{f(x) - f(x - h)}{h} + f''(\zeta) * \frac{h}{2}$$
(2)

- Where ζ is between x and x h.
- The two error terms of Eqs. 1 and 2 are not identical though both are O(h).
- If we add Eqs. 1 and 2, then divide by 2, we get the *central-difference* approximation to the derivative:

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - f'''(\xi) * \frac{h^2}{6}$$
(3)

- We had to extend the two Taylor series by an additional term to get the error because the f''(x) terms cancel.
- This shows that using a central-difference approximation is a much *preferred way* to estimate the derivative.
- Even though we use the <u>same number of computations</u> of the function at each step,
- we approach the answer **much more rapidly**.

```
%%%Central-Difference%%%
disp('Step Del Numerical Error
disp(' Derivative
                                                Error')
disp('
                                                Ratio')
disp('-
      ____ _
                        _____
                                                        x=1.9;
delini=0.1;
error(1)=1;
for i=1:20
del=delini/2;
xplus=x+del;
xminus=x-del;
fplus=exp(xplus).*sin(xplus);
fminus=exp(xminus).*sin(xminus);
num=fplus-fminus;
deriv=num/(2*del);
 error(i+1)=deriv-exactvalue;
[D]=sprintf('%2d %1.15f %12.10f %12.10f %f ',i,del,deriv,error(i),
                                         error(i)/error(i+1));
disp(D);
delini=del;
end
```

With MATLAB,

Table 2 illustrates this, showing that errors decrease about four fold when Δx is halved (as Eq. 3 predicts) and that a more accurate value is obtained.

Ratio of errors	Error	Approximation	Δx
	-0.00708	4.15831	0.05
4.00	-0.00177	4.16361	0.05/2
4.21	-0.00042	4.16496	0.05/4
3.80	-0.00011	4.16527	0.05/8
2.75	-0.00004	4.16534	0.05/16
	-0.00004	4.16534	0.05/32
	-0.00027	4.16565	0.05/64

Table 2: Central-difference approximations for $f(x) = e^x sin(x)$.

1.2 Numerical Integration - The Trapezoidal Rule

• Given the function, f(x), the **antiderivative** is a function F(x) such that F'(x) = f(x).

• The definite integral

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

can be evaluated from the antiderivative.

• Still, there are functions that <u>do not</u> have an antiderivative <u>expressible</u> in terms of ordinary functions.

```
>> syms x
>> int(exp(x)/log(x))
Warning: Explicit integral could not be found.
> In sym.int at 58
ans = int(exp(x)/log(x),x)
```

- Is there any way that the definite integral can be found when the antiderivative is unknown?
- We can do it numerically by using the **composite trapezoidal rule**

```
>> fx(i)=exp(x(i))/log(x(i))
>> x=linspace(2,3,10);
>> for i=1:10
fx(i)=exp(x(i))/log(x(i));
end
>> result=fx(1)+fx(10);
>> for i=2:9
result=result+2*fx(i);
end
>> result=(((3-2)/(10-1))/2)*result
%%%result=(0.1111/2)*result
result = 13.6904
```

- The definite integral is the area between the curve of f(x) and the x-axis.
- That is the principle behind all numerical integration;
- We divide the distance from x = a to x = b into vertical strips and add the areas of these strips.
- The strips are often made equal in widths but that is not always required.

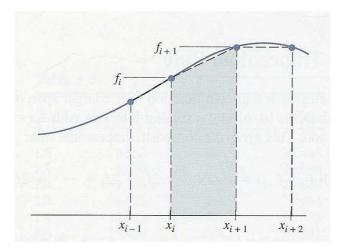


Figure 1: The trapezoidal rule.

1.2.1 The Trapezoidal Rule

- Approximate the curve with a sequence of straight lines.
- In effect, we slope the top of the strips to match with the curve as best we can.
- We are approximating the curve with interpolating polynomials of degree-1.
- The gives us the *trapezoidal rule*. Figure 1 illustrates this.
- It is clear that the area of the strip from x_i to x_{i+1} gives an approximation to the area under the curve:

$$\int_{x_i}^{x_{i+1}} f(x) dx \approx \frac{f_i + f_{i+1}}{2} (x_{i+1} - x_i)$$

- We will usually write $h = (x_{i+1} x_i)$ for the width of the interval.
- Error term for the trapezoidal integration is

$$Error = -(1/12)h^3 f''(\xi) = O(h^3)$$

• What happens, if we are getting the integral of a known function over a larger span of x-values, say, from x = a to x = b?

1.2.2 The Composite Trapezoidal Rule

- We subdivide [a,b] into n smaller intervals with $\Delta x = h$, apply the rule to each subinterval, and add.
- This gives the composite trapezoidal rule;

$$\int_{a}^{b} \approx \sum_{i=0}^{n-1} \frac{h}{2} (f_{i} + f_{i+1}) = \frac{h}{2} (f_{0} + 2f_{1} + 2f_{2} + \dots + 2f_{n-1} + f_{n})$$

• The error is not the local error $O(h^3)$ but the global error, the sum of n local errors;

Global error =
$$(-1/12)h^3[f''(\xi_1) + f''(\xi_2) + \ldots + f''(\xi_n)]$$

- In this equation, each of the ξ_i is somewhere within each subinterval.
- If f''(x) is continuous in [a, b], there is some point within [a,b] at which the sum of the $f''(\xi_i)$ is equal to $nf''(\xi)$, where ξ in [a, b].
- We then see that, because nh = (b a),

Global error =
$$(-1/12)h^3nf''(\xi) = \frac{-(b-a)}{12}h^2f''(\xi) = O(h^2)$$

• **Example:** Given the values for x and f(x) in Table3.

x	f(x)	x	f(x)
1.6	4.953	2.8	16.445
1.8	6.050	3.0	20.086
2.0	7.389	3.2	24.533
2.2	9.025	3.4	29.964
2.4	11.023	3.6	36.598
2.6	13.464	3.8	44.701

Table 3: Example for the trapezoidal rule.

• Use the trapezoidal rule to estimate the integral from x = 1.8 to x = 3.4.

• Applying the trapezoidal rule:

$$\int_{1.8}^{3.4} f(x) dx \approx \frac{0.2}{2} [6.050 + 2(7.389) + 2(9.025) + 2(11.023) \\ + 2(13.464) + 2(16.445) + 2(20.086) + 2(24.533) \\ + 29.964] = 23.9944$$

- The data in Table 3 are for $f(x) = e^x$ and the true value is $e^{3.4} e^{1.8} = 23.9144$.
- The trapezoidal rule value is <u>off by 0.08</u>; there are *three digits of accuracy*.
- How does this compare to the estimated error?

$$Error = -\frac{1}{12}h^{3}nf''(\xi), \ 1.8 \le \xi \le 3.4$$
$$= -\frac{1}{12}(0.2)^{3}(8) * \begin{cases} e^{1.8} & (max) \\ e^{3.4} & (min) \end{cases} = \begin{cases} -0.0323 & (max) \\ -0.1598 & (min) \end{cases}$$

Alternatively,

$$Error = -\frac{1}{12}(0.2)^2(3.4 - 1.8) * \left\{ \begin{array}{c} e^{1.8} & (max) \\ e^{3.4} & (min) \end{array} \right\} = \left\{ \begin{array}{c} -0.0323 & (max) \\ -0.1598 & (min) \end{array} \right\}$$

• The actual error was -0.080. It is reasonable since the value is in the error bounds.

Thanks for attending and listening.