
1 Numerical Differentiation and Integration

with a Computer

• If we are working with experimental data that are displayed in a table
of [x, f(x)] pairs emulation of calculus is impossible.

• We must approximate the function behind the data in some way.

• Differentiation with a Computer:

– Employs the interpolating polynomials to derive formulas for get-
ting derivatives.

– These can be applied to functions known explicitly as well as those
whose values are found in a table.

• Numerical Integration-The Trapezoidal Rule:

– Approximates, the integrand function with a linear interpolating
polynomial to derive a very simple but important formula for nu-
merically integrating functions between given limits.

• We continue to exploit the useful properties of polynomials to develop
methods for a computer to do integrations and to find derivatives.

• When the function is explicitly known, we can emulate the methods of
calculus.

• But doing so in getting derivatives requires the subtraction of quantities
that are nearly equal and that runs into round-off error.

• However, integration involves only addition, so round-off is not problem.

• We cannot often find the true answer numerically because the analytical
value is the limit of the sum of an infinite number of terms.

• We must be satisfied with approximations for both derivatives and inte-
grals but, for most applications, the numerical answer is adequate.

1.1 Differentiation with a Computer

• The derivative of a function, f(x) at x = a, is defined as

df

dx
|x=a = lim∆x→0

f(a+∆x)− f(a)

∆x
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• This is called a forward-difference approximation.

• The limit could be approached from the opposite direction, giving a
backward-difference approximation.

• Forward-difference approximation. A computer can calculate an ap-
proximation to the derivative, if a very small value is used for ∆x.

df

dx
|x=a =

f(a+∆x)− f(a)

∆x

• Recalculating with smaller and smaller values of x starting from an
initial value.

• What happens if the value is not small enough?

• We should expect to find an optimal value for x.

• Because round-off errors in the numerator will become great as x ap-
proaches zero.

• When we try this for
f(x) = exsin(x)

at x = 1.9. The analytical answer is 4.1653826.

• Starting with ∆x = 0.05 and halving ∆x each time. Table 1 gives the
results.

• We find that the errors of the approximation decrease as ∆x is reduced
until about ∆x = 0.05/128.

• Notice that each successive error is about 1/2 of the previous error as
∆x is halved until ∆x gets quite small, at which time round off

affects the ratio.

• At values for ∆x smaller than 0.05/128, the error of the approximation
increases due to round off.

• In effect, the best value for ∆x is when the effects of round-off and

truncation errors are balanced.

• If a backward-difference approximation is used; similar results are ob-
tained.
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Table 1: Forward-difference approximations for f(x) = exsin(x).

• Backward-difference approximation.

df

dx
|x=a =

f(a)− f(a−∆x)

∆x

With MATLAB. Analytical answer to the function of Table 1.

With MATLAB. Numerical answer to the function of Table 1.

• It is not by chance that the errors are about halved each time.

• Look at this Taylor series where we have used h for ∆x:

f(x+ h) = f(x) + f ′(x) ∗ h+ f ′′(ξ) ∗ h2/2

• Where the last term is the error term. The value of ξ is at some point
between x and x+ h.

• If we solve this equation for f ′(x), we get

f ′(x) =
f(x+ h)− f(x)

h
− f ′′(ξ) ∗

h

2
(1)
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• Which shows that the errors should be about proportional to h, pre-
cisely what Table 1 shows.

• If we repeat this but begin with the Taylor series for f(x− h), it turns
out that

f ′(x) =
f(x)− f(x− h)

h
+ f ′′(ζ) ∗

h

2
(2)

• Where ζ is between x and x− h.

• The two error terms of Eqs. 1 and 2 are not identical though both are
O(h).

• If we add Eqs. 1 and 2, then divide by 2, we get the central-difference

approximation to the derivative:

f ′(x) =
f(x+ h)− f(x− h)

2h
− f ′′′(ξ) ∗

h2

6
(3)

• We had to extend the two Taylor series by an additional term to get
the error because the f ′′(x) terms cancel.

• This shows that using a central-difference approximation is a much
preferred way to estimate the derivative.

• Even though we use the same number of computations of the function
at each step,

• we approach the answer much more rapidly.
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With MATLAB,
Table 2 illustrates this, showing that errors decrease about four fold when

∆x is halved (as Eq. 3 predicts) and that a more accurate value is obtained.

Table 2: Central-difference approximations for f(x) = exsin(x).

1.2 Numerical Integration - The Trapezoidal Rule

• Given the function, f(x), the antiderivative is a function F (x) such
that F ′(x) = f(x).
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• The definite integral

∫

b

a

f(x)dx = F (b)− F (a)

can be evaluated from the antiderivative.

• Still, there are functions that do not have an antiderivative expressible
in terms of ordinary functions.

• Is there any way that the definite integral can be found when the an-
tiderivative is unknown?

• We can do it numerically by using the composite trapezoidal rule

• The definite integral is the area between the curve of f(x) and the
x-axis.

• That is the principle behind all numerical integration;

• We divide the distance from x = a to x = b into vertical strips and
add the areas of these strips.

• The strips are often made equal in widths but that is not always re-
quired.
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Figure 1: The trapezoidal rule.

1.2.1 The Trapezoidal Rule

• Approximate the curve with a sequence of straight lines.

• In effect, we slope the top of the strips to match with the curve as best
we can.

• We are approximating the curve with interpolating polynomials of
degree-1.

• The gives us the trapezoidal rule. Figure 1 illustrates this.

• It is clear that the area of the strip from xi to xi+1 gives an approxi-
mation to the area under the curve:

∫

xi+1

xi

f(x)dx ≈
fi + fi+1

2
(xi+1 − xi)

• We will usually write h = (xi+1 − xi) for the width of the interval.

• Error term for the trapezoidal integration is

Error = −(1/12)h3f ′′(ξ) = O(h3)

• What happens, if we are getting the integral of a known function over
a larger span of x-values, say, from x = a to x = b?
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1.2.2 The Composite Trapezoidal Rule

• We subdivide [a,b] into n smaller intervals with ∆x = h, apply the rule
to each subinterval, and add.

• This gives the composite trapezoidal rule;

∫

b

a

≈
n−1
∑

i=0

h

2
(fi + fi+1) =

h

2
(f0 + 2f1 + 2f2 + . . .+ 2fn−1 + fn)

• The error is not the local error O(h3) but the global error, the sum of
n local errors;

Global error = (−1/12)h3[f ′′(ξ1) + f ′′(ξ2) + . . .+ f ′′(ξn)]

• In this equation, each of the ξi is somewhere within each subinterval.

• If f ′′(x) is continuous in [a, b], there is some point within [a,b] at which
the sum of the f ′′(ξi) is equal to nf ′′(ξ), where ξ in [a, b].

• We then see that, because nh = (b− a),

Global error = (−1/12)h3nf ′′(ξ) =
−(b− a)

12
h2f ′′(ξ) = O(h2)

• Example: Given the values for x and f(x) in Table3.

Table 3: Example for the trapezoidal rule.

• Use the trapezoidal rule to estimate the integral from x = 1.8 to x =
3.4.
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• Applying the trapezoidal rule:

∫ 3.4

1.8
f(x)dx ≈ 0.2

2
[6.050 + 2(7.389) + 2(9.025) + 2(11.023)

+2(13.464) + 2(16.445) + 2(20.086) + 2(24.533)
+29.964] = 23.9944

• The data in Table 3 are for f(x) = ex and the true value is e3.4− e1.8 =
23.9144.

• The trapezoidal rule value is off by 0.08; there are three digits of accu-

racy.

• How does this compare to the estimated error?

Error = − 1

12
h3nf ′′(ξ), 1.8 ≤ ξ ≤ 3.4

= − 1
12
(0.2)3(8) ∗

{

e1.8 (max)
e3.4 (min)

}

=

{

−0.0323 (max)
−0.1598 (min)

}

Alternatively,

Error = − 1

12
(0.2)2(3.4− 1.8) ∗

{

e1.8 (max)
e3.4 (min)

}

=

{

−0.0323 (max)
−0.1598 (min)

}

• The actual error was −0.080. It is reasonable since the value is in the
error bounds.

Thanks for attending and listening.
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