Other Rearrangements


\begin{displaymath}
x=g_2(x)=\frac{3}{(x-2)}
\end{displaymath}

$x_0=4$ $\rightarrow$ $x_1=1.5$ $\rightarrow$
$x_2=-6$ $\rightarrow$ $x_3=-0.375$ $\rightarrow$
$x_4= - 1.263158$ $\rightarrow$ $x_5 = -0.919355$ $\rightarrow$
$x_5 = -0.919355$ $\rightarrow$ $x_6= - 1.02762$ $\rightarrow$
$x_7=-0.990876$ $\rightarrow$ $x_8= - 1.00305$


\begin{displaymath}
x=g_3(x)=\frac{(x^2-3)}{2}
\end{displaymath}

$x_0=4$ $\rightarrow$ $x_1=6.5$ $\rightarrow$
$x_2 = 19.625$ $\rightarrow$ $x_3 = 191.070$

Figure 5: The fixed point of $x=g(x)$ is the intersection of the line $y=x$ and the curve $y = g(x)$ plotted against $x$. Where A: $x = g_1(x) =\sqrt {2x + 3}$. B: $x=g_2(x)=\frac{3}{(x-2)}$. C: $x=g_3(x)=\frac{(x^2-3)}{2}$.
\includegraphics[scale=0.37]{figures/1-23}

Figure 5 shows the three cases.

Cem Ozdogan 2010-10-13