Nonlinear Systems

Figure 7: A pair of equations.
\includegraphics[scale=0.6]{figures/1-31}

$f(r,s)=0=f(x_i,y_i)+f_x(x_i,y_i)(r-x_i)+f_y(x_i,y_i)(s-y_i)+\ldots$
$g(r,s)=0=g(x_i,y_i)+g_x(x_i,y_i)(r-x_i)+g_y(x_i,y_i)(s-y_i)+\ldots$

$\bullet$ Truncating both series gives
$0=f(x_i,y_i)+f_x(x_i,y_i)(r-x_i)+f_y(x_i,y_i)(s-y_i)$
$0=g(x_i,y_i)+g_x(x_i,y_i)(r-x_i)+g_y(x_i,y_i)(s-y_i)$

$\bullet$ which we can rewrite as
$f_x(x_i,y_i)\Delta x_i+f_y(x_i,y_i)\Delta y_i=-f(x_i,y_i)$
$g_x(x_i,y_i)\Delta x_i+g_y(x_i,y_i)\Delta y_i=-g(x_i,y_i)$

Example:

$f(x, y) = 4 - x^2-y^2=0$
$g(x, y) = 1 -e^x - y =0$

The partial derivatives are

\begin{displaymath}
f_x=-2x,f_y=-2y,
\end{displaymath}


\begin{displaymath}
g_x=-e^x,g_y=-1
\end{displaymath}

$\bullet$ Beginning with $x_0 = 1, y_0 = - 1.7$, we solve

 
$-2\Delta x_0+3.4\Delta y_0=-0.1100$
$-2.7183 \Delta x_0 - 1.0 \Delta y_0 = 0.0183$

$\bullet$ This gives

 
$\Delta x_0=0.0043$,
$\Delta y_0=-0.0298$

$\bullet$ from which

 
$x_1 = 1.0043$,
$y_1=-1.7298$.



Subsections
Cem Ozdogan 2010-10-13