
1 Hands-on– Solving Sets of Equations with

MATLAB II

1. The following MATLAB code is given for Jacobi Iteration. To solve
the linear system Ax = b by starting with an initial guess x = P0 and
generating a sequence Pk that converges to the solution. A sufficient
condition for the method to be applicable is that A is strictly diagonally
dominant.

function [k,X]=jacobi(A,B,P,delta, max1)

% Input - A is an N x N nonsingular matrix

% - B is an N x 1 matrix

% - P is an N x 1 matrix; the initial guess

% - delta is the tolerance for P

% - max1 is the maximum number of iterations

% Output - X is an N x 1 matrix: the jacobi approximation to

% the solution of AX = B

N = length(B);

for k=1:max1

for j=1:N

X(j)=(B(j)-A(j,[1:j-1,j+1:N])*P([1:j-1,j+1:N]))/A(j,j);

end

err=abs(norm(X’-P));

relerr=err/(norm(X)+eps);

P=X’;

if (err<delta)|(relerr<delta)

break

end

end

X=X’;

• Analyze the MATLAB code above, then by using solve the follow-
ing linear system;

4x − y + z = 7
4x − 8y + z = −21
−2x + y + 5z = 15

– Start by P0 = (1, 2, 2); then answer: x = 2, y = 4, z = 3 and
number of iterations k = 19.

– Try some other starting sets and compare them.

Solution:
save with the name jacobi.m. Then;

1



>> A=[4 -1 1; 4 -8 1;-2 1 5]

>> B=[7 -21 15]’

>> P=[1,2,2]

>> [k,X]=jacobi(A,B,P,10^-9,20)

2. Modify the code given in the previous item for Gauss-Seidel method.
Solve the same linear system and compare your results. Is convergence
accelerated?

2 Hands-on– Interpolation and Curve Fitting

with MATLAB I

1. For the given data points;

x y

1 1.06
2 1.12
3 1.34
5 1.78

• construct the interpolating cubic P3(x) = ax3 + bx2 + cx + d.
Hint: First, write the set of equations then solve it by writ-
ing/using a MATLAB program.

• Interpolate for x = 4

• Extrapolate for x = 5.5

Solution:

>> A=[1 1 1 1; 8 4 2 1; 27 9 3 1;125 25 5 1]

>> B=[1.06 1.12 1.34 1.78]’

>> X=uptrbk(A,B)

X =

-0.0200

0.2000

-0.4000

1.2800

>> X’*[27 9 3 1]’

ans = 1.3400

>> X’*A(3,1:4)’

ans = 1.3400

2



>> X’*[4^3 4^2 4 1]’

ans = 1.6000

>> X’*[(5.5)^3 (5.5)^2 5.5 1]’

ans = 1.8025

2. We have given the following MATLAB code to evaluate the Lagrange

polynomial P (x) =
∑N

k=0 yk

∏
j 6=k

(x−xj)∏
j 6=k

(xk−xj)
based on N + 1 points (xk, yk)

for k = 0, 1, . . . , N .

function [C,L]=lagran(X,Y)

%Input - X is a vector that contains a list of abscissas

% - Y is a vector that contains a list of ordinates

%Output - C is a matrix that contains the coefficents of

% the Lagrange interpolatory polynomial

% - L is a matrix that contains the Lagrange coefficient polynomials

w=length(X);

n=w-1;

L=zeros(w,w);

%Form the Lagrange coefficient polynomials

for k=1:n+1

V=1;

for j=1:n+1

if k~=j

V=conv(V,poly(X(j)))/(X(k)-X(j));

end

end

L(k,:)=V;

end

%Determine the coefficients of the Lagrange interpolator polynomial

C=Y*L;

where

• The poly command creates a vector whose entries are the coefficients
of a polynomial with specified roots.

>P=poly(2)

>> 1 -2

>>Q=poly(3)

>> 1 -3

• The conv command produces a vector whose entries are the coefficients
of a polynomial that is the product of two other polynomials.

3



>>conv(P,Q)

>> 1 -5 6 %Thus the product of P(x) and Q(x) is x^2-5x+6

Study this MATLAB code and then use the data set in the previous item to

• interpolate for x = 4

• extrapolate for x = 5.5

Solution:
save with the name lagran.m. Then;

>> X=[1 2 3 5]

>> Y=[1.06 1.12 1.34 1.78]

>> [C,L]=lagran(X,Y)

C = -0.0200 0.2000 -0.4000 1.2800

L =

-0.1250 1.2500 -3.8750 3.7500

0.3333 -3.0000 7.6667 -5.0000

-0.2500 2.0000 -4.2500 2.5000

0.0417 -0.2500 0.4583 -0.2500

>> C*A(3,1:4)’

ans = 1.3400

>> C*[4^3 4^2 4 1]’

ans = 1.6000

>> C*[(5.5)^3 (5.5)^2 5.5 1]’

ans = 1.8025

3. We have given the following MATLAB code to construct and evaluate divided-
difference table for the (Newton) polynomial of degree ≤ N that passes
through (xk, yk) for k = 0, 1, . . . , N :

P (x) = d0,0+d1,1(x−x0)+d2,2(x−x0)(x−x1)+. . .+dN,N (x−x0)(x−x1) . . . (x−xN−1)

where

dk,0 = yk and dk,j =
dk,j−1 − dk−1,j−1

xk − xk−j

function [C,D]=newpoly(X,Y)

%Input - X is a vector that contains a list of abscissas

% - Y is a vector that contains a list of ordinates

%Output - C is a vector that contains the coefficients

% of the Newton interpolatory polynomial

% - D is the divided difference table

n=length(X);

4



D=zeros(n,n);

D(:,1)=Y’;

%Use the formula above to form the divided difference table

for j=2:n

for k=j:n

D(k,j)=(D(k,j-1)-D(k-1,j-1))/(X(k)-X(k-j+1));

end

end

%Determine the coefficients of the Newton interpolatory polynomial

C=D(n,n);

for k=(n-1):-1:1

C=conv(C,poly(X(k)));

m=length(C);

C(m)=C(m)+D(k,k);

end

Study this MATLAB code and then use the data set in the first item to

• construct the divided-difference table by hand

• run the MATLAB code and compare with your table

• interpolate for x = 4

• extrapolate for x = 5.5

Solution:
save with the name newpoly.m. Then;

>> X=[1 2 3 5]

>> Y=[1.06 1.12 1.34 1.78]

>> [C,D]=newpoly(X,Y)

C = -0.0200 0.2000 -0.4000 1.2800

D =

1.0600 0 0 0

1.1200 0.0600 0 0

1.3400 0.2200 0.0800 0

1.7800 0.2200 0 -0.0200

>> C*A(4,1:4)’

ans = 1.7800

>> C*[4^3 4^2 4 1]’

ans = 1.6000

>> C*[(5.5)^3 (5.5)^2 5.5 1]’

ans = 1.8025

5


	Hands-on-- Solving Sets of Equations with MATLAB II
	Hands-on-- Interpolation and Curve Fitting with MATLAB I

