1 Hands-on–Interpolation and Curve Fitting with MATLAB I

1. For the given data points;

x	y
2	2.12
4	2.24
6	2.68
10	3.56

- Study this example in MATLAB; $Start \Rightarrow Toolboxes \Rightarrow CurveFitting \Rightarrow Curve Fitting Tool.$
- Fit to linear polynomial, quadratic polynomial, cubic polynomial.
- For each polynomial;
 - interpolate for x = 5
 - extrapolate for x = 12
- Compare your results, which one is the best? Why?
- 2. For the given data points;

x	Y
1	1.3
2	3.5
3	4.2
4	5.0
5	7.0
6	8.8
7	10.1
8	12.5
9	13.0
10	15.6

- i Plot it (such as plot(x,Y,'o')).
- ii The graph suggest a linear relationship.

$$y = ax + b$$

values for the parameters, a and b, can be obtained from the plot.

iii Write a MATLAB code that calculates each summation;

$$\begin{array}{cccc} \sum x_i^2 & \sum x_i & \sum x_i Y_i \\ \sum x_i & N & \sum Y_i \end{array}$$

All the summations are from i = 1 to i = N.

iv Then it is obtained as

$$a \sum x_i^2 + b \sum x_i = \sum x_i Y_i a \sum x_i + bN = \sum Y_i$$

Solving these equations simultaneously gives the values for slope and intercept a and b. Now, we have a function in the form;

$$y = ax + b$$

v Plot them (such as plot(x,y,x,Y,'o')).