1 Divided Differences

- There are two disadvantages to using the Lagrangian polynomial or Neville's method for interpolation.
	- 1. It involves more arithmetic operations than does the divided- difference method.
	- 2. More importantly, if we desire to add or subtract a point from the set used to construct the polynomial, we essentially have to start over in the computations.
- Both the Lagrangian polynomials and Neville's method also must repeat all of the arithmetic if we must interpolate at a new x-value.
- The divided-difference method <u>avoids all</u> of this computation.
- Actually, we will not get a polynomial different from that obtained by Lagrange's technique.
- Every n^{th} -degree polynomial that **passes through the same** $n + 1$ points is identical.
- Only the way that the polynomial is expressed is different.
- The function, $f(x)$, is known at several values for x:

$$
\begin{array}{ccc}\nx_0 & f_0 \\
x_1 & f_1 \\
x_2 & f_2 \\
x_3 & f_3\n\end{array}
$$

- We do not assume that the x 's are evenly spaced or even that the values are arranged in any particular order.
- Consider the n^{th} -degree polynomial written as:

$$
P_n(x) = a_0 + (x - x_0)a_1 + (x - x_0)(x - x_1)a_2 + (x - x_0)(x - x_1)\dots(x - x_{n-1})a_n
$$

- If we chose the a_i 's so that $P_n(x) = f(x)$ at the $n+1$ known points, then $P_n(x)$ is an interpolating polynomial.
- The a_i 's are readily determined by using what are called the **divided** differences of the tabulated values.

• A special standard notation for divided differences is

$$
f[x_0, x_1] = \frac{f_1 - f_0}{x_1 - x_0}
$$

called the *first divided difference* between x_0 and x_1 .

• And, $f[x_0] = f_0 = f(x_0)$ (zero-order difference).

$$
f[x_s] = f_s
$$

• In general,

$$
f[x_s, x_t] = \frac{f_t - f_s}{x_t - x_s}
$$

• Second- and higher-order differences are defined in terms of lower-order differences.

$$
f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}
$$

• For n-terms,

$$
f[x_0, x_1, \dots, x_n] = \frac{f[x_1, x_2, \dots, f_n] - f[x_0, x_1, \dots, f_{n-1}]}{x_n - x_0}
$$

• Using the standard notation, a divided-difference table is shown in symbolic form in Table [1.](#page-1-0)

	$x_i \quad f_i$	$f[x_i, x_{i+1}]$	$f[x_i, x_{i+1}, x_{i+2}]$	$f[x_i, x_{i+1}, x_{i+2}, x_{i+3}]$
	x_0 t_0	$f[x_0, x_1]$	$f[x_0, x_1, x_2]$	$f[x_0, x_1, x_2, x_3]$
x_1 t_1		$f[x_1, x_2]$	$f[x_1, x_2, x_3]$	$f[x_1, x_2, x_3, x_4]$
	x_2 t_2	$f[x_2, x_3]$	$f[x_2, x_3, x_4]$	
x_3	$\frac{1}{3}$	$f[x_3, x_4]$		

Table 1: Divided-difference table in symbolic form.

• Table [2](#page-2-0) shows specific numerical values.

$$
f[x_0, x_1] = \frac{f_1 - f_0}{x_1 - x_0} = \frac{17.8 - 22.0}{2.7 - 3.2} = 8.4
$$

$$
f[x_1, x_2] = \frac{f_2 - f_1}{x_2 - x_1} = \frac{14.2 - 17.8}{1.0 - 2.7} = 2.1176
$$

Table 2: Divided-difference table in numerical values.

$$
f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = \frac{2.1176 - 8.4}{1.0 - 3.2} = 2.8556
$$

and the others..

$$
x = x_0: P_0(x_0) = a_0
$$

\n
$$
x = x_1: P_1(x_1) = a_0 + (x_1 - x_0)a_1
$$

\n
$$
x = x_2: P_2(x_2) = a_0 + (x_2 - x_0)a_1 + (x_2 - x_0)(x_2 - x_1)a_2
$$

\n
$$
\vdots \qquad \vdots
$$

\n
$$
x = x_n: P_n(x_n) = a_0 + (x_n - x_0)a_1 + (x_n - x_0)(x_n - x_1)a_2 + \dots + (x_n - x_0) \dots (x_n - x_{n-1})a_n
$$

• If $P_n(x)$ is to be an interpolating polynomial, it must match the table for all $n + 1$ entries:

$$
P_n(x_i) = f_i \text{ for } i = 0, 1, 2, ..., n.
$$

• Each $P_n(x_i)$ will equal f_i , if $a_i = f[x_0, x_1, \ldots, x_i]$. We then can write:

$$
P_n(x) = f[x_0] + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2]
$$

$$
+ (x - x_0)(x - x_1)(x - x_2)f[x_0, \dots, x_3]
$$

$$
+ (x - x_0)(x - x_1)\dots(x - x_{n-1})f[x_0, \dots, x_n]
$$

• Write interpolating polynomial of degree-3 that fits the data of Table [2](#page-2-0) at all points $x_0 = 3.2$ to $x_3 = 4.8$.

$$
P_3(x) = 22.0 + 8.400(x - 3.2) + 2.856(x - 3.2)(x - 2.7)
$$

$$
-0.528(x - 3.2)(x - 2.7)(x - 1.0)
$$

- What is the fourth-degree polynomial that fits at all five points?
- We only have to add one more term to $P_3(x)$

$$
P_4(x) = P_3(x) + 0.2568(x - 3.2)(x - 2.7)(x - 1.0)(x - 4.8)
$$

- If we compute the interpolated value at $x = 3.0$, we get the same result: $P_3(3.0) = 20.2120.$
- This is not surprising, because all third-degree polynomials that pass through the same four points are identical.
- They may look different but they can all be reduced to the same form.
- Example m-file: Constructs a table of divided-difference coefficients. Diagonal entries are coefficients of the polynomial. [\(divDiffTable.m\)](http://siber.cankaya.edu.tr/NumericalComputations/mfiles/chapter3/divDiffTable.m)

```
>> x=[3.2 2.7 1.0 4.8]; y=[22.0 17.8 14.2 38.3];
>> D=divDiffTable(x,y)
D =22.0000
                     D
                                D
                                           0
   17.8000
               8.4000
                                O
                                           O
   14.2000
               2.1176
                          2.8556
                                           D
   38.3000
               6.3421
                          2.0116
                                    -0.5275>> c = diag(D);>> xx=3;>>p3=c(1)+c(2) * (xx-x(1))+c(3) * (xx-x(1)) * (xx-x(2)) +c(4) * (xx-x(1)) * (xx-x(2)) * (xx-x(3))p3 =20.2120
```
• Divided differences for a polynomial

- It is of interest to look at the divided differences for $f(x) = P_n(x)$.
- Suppose that $f(x)$ is the cubic

$$
f(x) = 2x^3 - x^2 + x - 1.
$$

• Here is its divided-difference table:

- Observe that the third divided differences are all the same.
- It then follows that all higher divided differences will be zero.

$$
P_3(x) = f[x_0] + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2]
$$

$$
+ (x - x_0)(x - x_1)(x - x_2)f[x_0, x_1, x_2, x_3]
$$

which is same with the starting polynomial.

```
>> syms x>> P3=-0.736+(x-0.3) *2.48+(x-0.3) *(x-1) *3+(x-0.3) *(x-1)
                                                x (x-0.7) x 2P3 = -37/25+62/25  * x+3 * (x-3/10)  * (x-1)+2 * (x-3/10)  * (x-1) * (x-7/10)>> expand (P3)
ans = -1+x-x^2+2 *x<sup>2</sup>3
```
2 Spline Curves

- There are times when fitting an interpolating polynomial to data points is very difficult.
- Figure [1a](#page-5-0) is plot of $f(x) = cos^{10}(x)$ on the interval $[-2, 2]$.
- It is a nice, smooth curve but has a pronounced maximum at $x = 0$ and is near to the x-axis for $|x| > 1$.

Figure 1: Fitting with different degrees of the polynomial.

- The curves of Figure [1b](#page-5-0),c, d, and e are for polynomials of degrees $-2, -4, -6,$ and -8 that match the function at evenly spaced points.
- None of the polynomials is a good representation of the <u>function</u>.

Figure 2: Fitting with quadratic in subinterval.

- One might think that a solution to the problem would be to break up the interval $[-2, 2]$ into subintervals
- and fit separate polynomials to the function in these smaller intervals.
- Figure [2](#page-5-1) shows a much better fit if we use a quadratic between $x =$ -0.65 and $x = 0.65$, with $P(x) = 0$ outside that interval.
- That is better but there are discontinuities in the slope where the separate polynomials join.
- This solution is known as spline curves.
- Suppose that we have a set of $n+1$ points (which do not have to be evenly spaced):

 $(x_i, y_i), \ with \ i = 0, 1, 2, \ldots, n.$

- A spline fits a set of n^{th} -degree polynomials, $g_i(x)$, between each pair of points, from x_i to x_{i+1} .
- The points at which the splines join are called knots.

Figure 3: Linear spline.

- If the polynomials are all of degree-1, we have a *linear spline* and the curve would appear as in the Fig. [3.](#page-6-0)
- The slopes are discontinuous where the segments join.

2.1 The Equation for a Cubic Spline

Figure 4: Cubic spline.

- We will create a succession of cubic splines over successive intervals of the data (See Fig. [4\)](#page-6-1).
- Each spline must join with its neighbouring cubic polynomials at the knots where they join with the same slope and curvature.
- We write the equation for a cubic polynomial, $g_i(x)$, in the *i*th interval, between points $(x_i, y_i), (x_{i+1}, y_{i+1}).$
- It looks like the solid curve shown here.
- The dashed curves are other cubic spline polynomials. It has this equation:

$$
g_i(x) = a_i(x - x_i)^3 + b_i(x - x_i)^2 + c_i(x - x_i) + d_i
$$

• Thus, the cubic spline function we want is of the form

$$
g(x) = g_i(x)
$$
 on the interval $[x_i, x_{i+1}]$, for $i = 0, 1, ..., n-1$

• and meets these conditions:

–

–

–

–

$$
g_i(x_i) = y_i
$$
, $i = 0, 1, ..., n - 1$ and $g_{n-1}(x_n) = y_n$ (1)

$$
g_i(x_{i+1}) = g_{i+1}(x_{i+1}), \ i = 0, 1, \dots, n-2 \tag{2}
$$

$$
g_i'(x_{i+1}) = g_{i+1}'(x_{i+1}), \ i = 0, 1, \dots, n-2
$$
 (3)

$$
g_i^{''}(x_{i+1}) = g_{i+1}^{''}(x_{i+1}), \ i = 0, 1, \dots, n-2
$$
 (4)

• Equations say that the cubic spline fits to each of the points Eq. [1,](#page-7-0) is continuous Eq. [2,](#page-7-1) and is continuous in slope and curvature Eq. [3](#page-7-2) and Eq. [4,](#page-7-3) throughout the region spanned by the points.

3 Least-Squares Approximations

- Until now, we have assumed that the data are accurate,
- but when these values are derived from an experiment, there is some error in the measurements.
- Some students are assigned to find the effect of temperature on the resistance of a metal wire.
- They have recorded the temperature and resistance values in a table and have plotted their findings, as seen in Fig. [5.](#page-8-0)
- The graph suggest a linear relationship.

$$
R = aT + b
$$

Figure 5: Resistance vs Temperature graph for the Least-Squares Approximation.

- • Values for the parameters, a and b , can be obtained from the plot.
- If someone else were given the data and asked to draw the line,
- it is not likely that they would draw exactly the same line and they would get different values for a and b.
- In analyzing the data, we will assume that the temperature values are accurate
- and that the errors are only in the resistance numbers; we then will use the vertical distances.
- A way of fitting a line to experimental data that is to minimize the deviations of the points from the line.
- The usual method for doing this is called the **least-squares method**.
- The deviations are determined by the distances between the points and the line.
	- Consider the case of only two points (See Fig. [6\)](#page-9-0).
	- Obviously, the best line passes through each point,
	- but any line that passes through the midpoint of the segment connecting them has a sum of errors equal to zero.
- We might first suppose we could minimize the deviations by making their sum a minimum, but this is not an adequate criterion.

Figure 6: Minimizing the deviations by making the sum a minimum.

- We might accept the criterion that we make the magnitude of the maximum error a minimum (the so-called minimax criterion).
- The usual criterion is to minimize the sum of the *squares* of the errors, the least-squares principle.
- In addition to giving a unique result for a given set of data, the leastsquares method is also in accord with the maximum-likelihood principle of statistics.
- If the measurement errors have a so-called normal distribution
- and if the standard deviation is constant for all the data,
- the line determined by minimizing the sum of squares can be shown to have values of slope and intercept that have maximum likelihood of occurrence.
- Let $\underline{Y_i}$ represent an <u>experimental</u> value, and let $\underline{y_i}$ be a value from the equation

$$
y_i = ax_i + b
$$

where x_i is a particular value of the variable assumed to be free of error.

- We wish to determine the best values for a and b so that the y's predict the function values that correspond to x -values.
- Let

$$
e_i = Y_i - y_i
$$

• The least-squares criterion requires that S be a minimum.

$$
S = e_1^2 + e_2^2 + \dots + e_n^2 = \sum_{i=1}^N e_i^2
$$

= $\sum_{i=1}^N (Y_i - ax_i - b)^2$

- N is the number of (x, Y) -pairs.
- We reach the minimum by proper choice of the parameters a and b , so they are the variables of the problem.
- At a minimum for S , the two partial derivatives will be zero.

∂S/∂a & ∂S/∂b

• Remembering that the x_i and Y_i are data points unaffected by our choice our values for a and b , we have

$$
\frac{\partial S}{\partial a} = 0 = \sum_{i=1}^{N} 2(Y_i - ax_i - b)(-x_i)
$$

$$
\frac{\partial S}{\partial b} = 0 = \sum_{i=1}^{N} 2(Y_i - ax_i - b)(-1)
$$

• Dividing each of these equations by −2 and expanding the summation, we get the so-called normal equations

$$
a \sum x_i^2 + b \sum x_i = \sum x_i Y_i
$$

$$
a \sum x_i + bN = \sum Y_i
$$

- All the summations are from $i = 1$ to $i = N$.
- Solving these equations simultaneously gives the values for *slope and* intercept a and b.
- For the data in Fig. [5](#page-8-0) we find that

$$
N = 5, \sum T_i = 273.1, \sum T_i^2 = 18607.27,
$$

$$
\sum R_i = 4438, \sum T_i R_i = 254932.5
$$

• Our *normal equations* are then

$$
18607.27a + 273.1b = 254932.5
$$

$$
273.1a + 5b = 4438
$$

• From these we find $a = 3.395$, $b = 702.2$, and

$$
R = 702.2 + 3.395T
$$

- MATLAB gets a least-squares polynomial with its *polyfit* command.
- When the numbers of points (the size of x) is greater than the degree plus one, the polynomial is the least squares fit.

>> x=[20.5 32.7 51.0 73.2 95.7]; >> y=[765 826 873 942 1032]; >> $eq = polyfit(x, y, 1)$ eg= 3.3949 702.1721