
1 Divided Differences

• There are two disadvantages to using the Lagrangian polynomial or
Neville’s method for interpolation.

1. It involves more arithmetic operations than does the divided- dif-
ference method.

2. More importantly, if we desire to add or subtract a point from
the set used to construct the polynomial, we essentially have to
start over in the computations.

• Both the Lagrangian polynomials and Neville’s method also must re-
peat all of the arithmetic if we must interpolate at a new x-value.

• The divided-difference method avoids all of this computation.

• Actually, we will not get a polynomial different from that obtained by
Lagrange’s technique.

• Every nth-degree polynomial that passes through the same n + 1
points is identical.

• Only the way that the polynomial is expressed is different.

• The function, f(x), is known at several values for x:

x0 f0
x1 f1
x2 f2
x3 f3

• We do not assume that the x’s are evenly spaced or even that the values
are arranged in any particular order.

• Consider the nth-degree polynomial written as:

Pn(x) = a0 + (x− x0)a1 + (x − x0)(x − x1)a2 + (x − x0)(x − x1) . . . (x − xn−1)an

• If we chose the ai’s so that Pn(x) = f(x) at the n + 1 known points,
then Pn(x) is an interpolating polynomial.

• The ai’s are readily determined by using what are called the divided

differences of the tabulated values.
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• A special standard notation for divided differences is

f [x0, x1] =
f1 − f0
x1 − x0

called the first divided difference between x0 and x1.

• And, f [x0] = f0 = f(x0) (zero-order difference).

f [xs] = fs

• In general,

f [xs, xt] =
ft − fs
xt − xs

• Second- and higher-order differences are defined in terms of lower-order

differences.

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0

• For n-terms,

f [x0, x1, . . . , xn] =
f [x1, x2, . . . , fn]− f [x0, x1, . . . , fn−1]

xn − x0

• Using the standard notation, a divided-difference table is shown in
symbolic form in Table 1.

xi fi f [xi, xi+1] f [xi, xi+1, xi+2] f [xi, xi+1, xi+2, xi+3]
x0 f0 f [x0, x1] f [x0, x1, x2] f [x0, x1, x2, x3]
x1 f1 f [x1, x2] f [x1, x2, x3] f [x1, x2, x3, x4]
x2 f2 f [x2, x3] f [x2, x3, x4]
x3 f3 f [x3, x4]

Table 1: Divided-difference table in symbolic form.

• Table 2 shows specific numerical values.

f [x0, x1] =
f1 − f0
x1 − x0

=
17.8− 22.0

2.7− 3.2
= 8.4

f [x1, x2] =
f2 − f1
x2 − x1

=
14.2− 17.8

1.0− 2.7
= 2.1176
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xi fi f [xi, xi+1] f [xi, xi+1, xi+2] f [xi, . . . , xi+3] f [xi, . . . , xi+4]
3.2 22.0 8.400 2.856 -0.528 0.256
2.7 17.8 2.118 2.012 0.0865
1.0 14.2 6.342 2.263
4.8 38.3 16.750
5.6 51.7

Table 2: Divided-difference table in numerical values.

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0

=
2.1176− 8.4

1.0− 3.2
= 2.8556

and the others..

x = x0 : P0(x0) = a0
x = x1 : P1(x1) = a0 + (x1 − x0)a1
x = x2 : P2(x2) = a0 + (x2 − x0)a1 + (x2 − x0)(x2 − x1)a2
...

...
x = xn : Pn(xn) = a0 + (xn − x0)a1 + (xn − x0)(xn − x1)a2 + . . .

+(xn − x0) . . . (xn − xn−1)an

• If Pn(x) is to be an interpolating polynomial, it must match the table
for all n+ 1 entries:

Pn(xi) = fi for i = 0, 1, 2, . . . , n.

• Each Pn(xi) will equal fi, if ai = f [x0, x1, . . . , xi]. We then can write:

Pn(x) = f [x0] + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x0, x1, x2]

+(x− x0)(x− x1)(x− x2)f [x0, . . . , x3]

+(x− x0)(x− x1) . . . (x− xn−1)f [x0, . . . , xn]

• Write interpolating polynomial of degree-3 that fits the data of Table
2 at all points x0 = 3.2 to x3 = 4.8.

P3(x) = 22.0 + 8.400(x− 3.2) + 2.856(x− 3.2)(x− 2.7)

−0.528(x− 3.2)(x− 2.7)(x− 1.0)
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• What is the fourth-degree polynomial that fits at all five points?

• We only have to add one more term to P3(x)

P4(x) = P3(x) + 0.2568(x− 3.2)(x− 2.7)(x− 1.0)(x− 4.8)

• If we compute the interpolated value at x = 3.0, we get the same result:
P3(3.0) = 20.2120.

• This is not surprising, because all third-degree polynomials that pass
through the same four points are identical.

• They may look different but they can all be reduced to the

same form.

• Example m-file: Constructs a table of divided-difference coefficients.
Diagonal entries are coefficients of the polynomial. (divDiffTable.m)

• Divided differences for a polynomial

• It is of interest to look at the divided differences for f(x) = Pn(x).

• Suppose that f(x) is the cubic

f(x) = 2x3 − x2 + x− 1.
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• Here is its divided-difference table:

xi f [xi] f [xi, xi+1]f [xi, xi+1f [xi, . . . f [xi, . . . f [xi, . . .

, xi+2] , xi+3] , xi+4] , xi+5]
0.30 -

0.736
2.480 3.000 2.000 0.000 0.000

1.00 1.000 3.680 3.600 2.000 0.000
0.70 -

0.104
2.240 5.400 2.000

0.60 -
0.328

8.720 8.200

1.90 11.008 21.020
2.10 15.212

• Observe that the third divided differences are all the same.

• It then follows that all higher divided differences will be zero.

P3(x) = f [x0] + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x0, x1, x2]

+(x− x0)(x− x1)(x− x2)f [x0, x1, x2, x3]

which is same with the starting polynomial.

2 Spline Curves

• There are times when fitting an interpolating polynomial to data points
is very difficult.

• Figure 1a is plot of f(x) = cos10(x) on the interval [−2, 2].

• It is a nice, smooth curve but has a pronounced maximum at x = 0
and is near to the x-axis for |x| > 1.
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Figure 1: Fitting with different degrees of the polynomial.

• The curves of Figure 1b,c, d, and e are for polynomials of degrees
−2,−4,−6, and −8 that match the function at evenly spaced points.

• None of the polynomials is a good representation of the function.

Figure 2: Fitting with quadratic in subinterval.

• One might think that a solution to the problem would be to break up the interval
[−2, 2] into subintervals

• and fit separate polynomials to the function in these smaller inter-
vals.

• Figure 2 shows a much better fit if we use a quadratic between x =
−0.65 and x = 0.65, with P (x) = 0 outside that interval.

• That is better but there are discontinuities in the slope where the sep-
arate polynomials join.
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• This solution is known as spline curves.

• Suppose that we have a set of n + 1 points (which do not have to be
evenly spaced):

(xi, yi), with i = 0, 1, 2, . . . , n.

• A spline fits a set of nth-degree polynomials, gi(x), between each pair
of points, from xi to xi+1.

• The points at which the splines join are called knots.

Figure 3: Linear spline.

• If the polynomials are all of degree-1, we have a linear spline and the
curve would appear as in the Fig. 3.

• The slopes are discontinuous where the segments join.

2.1 The Equation for a Cubic Spline

Figure 4: Cubic spline.

• We will create a succession of cubic splines over successive intervals of
the data (See Fig. 4).

• Each spline must join with its neighbouring cubic polynomials at the knots
where they join with the same slope and curvature.

• We write the equation for a cubic polynomial, gi(x), in the ith interval,
between points (xi, yi), (xi+1, yi+1).
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• It looks like the solid curve shown here.

• The dashed curves are other cubic spline polynomials. It has this equa-
tion:

gi(x) = ai(x− xi)
3 + bi(x− xi)

2 + ci(x− xi) + di

• Thus, the cubic spline function we want is of the form

g(x) = gi(x) on the interval[xi, xi+1], for i = 0, 1, . . . , n− 1

• and meets these conditions:

–

gi(xi) = yi, i = 0, 1, . . . , n− 1 and gn−1(xn) = yn (1)

–

gi(xi+1) = gi+1(xi+1), i = 0, 1, . . . , n− 2 (2)

–

g
′

i(xi+1) = g
′

i+1(xi+1), i = 0, 1, . . . , n− 2 (3)

–

g
′′

i
(xi+1) = g

′′

i+1(xi+1), i = 0, 1, . . . , n− 2 (4)

• Equations say that the cubic spline fits to each of the points Eq. 1, is
continuous Eq. 2, and is continuous in slope and curvature Eq. 3 and
Eq. 4, throughout the region spanned by the points.

3 Least-Squares Approximations

• Until now, we have assumed that the data are accurate,

• but when these values are derived from an experiment, there is some

error in the measurements.

• Some students are assigned to find the effect of temperature on the
resistance of a metal wire.

• They have recorded the temperature and resistance values in a table
and have plotted their findings, as seen in Fig. 5.

• The graph suggest a linear relationship.

R = aT + b
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Figure 5: Resistance vs Temperature graph for the Least-Squares Approxi-
mation.

• Values for the parameters, a and b, can be obtained from the plot.

• If someone else were given the data and asked to draw the line,

• it is not likely that they would draw exactly the same line and they
would get different values for a and b.

• In analyzing the data, we will assume that the temperature values are
accurate

• and that the errors are only in the resistance numbers; we then will use
the vertical distances.

• A way of fitting a line to experimental data that is to minimize the

deviations of the points from the line.

• The usual method for doing this is called the least-squares method.

• The deviations are determined by the distances between the points

and the line.

– Consider the case of only two points (See Fig. 6).

– Obviously, the best line passes through each point,

– but any line that passes through the midpoint of the segment
connecting them has a sum of errors equal to zero.

• We might first suppose we could minimize the deviations by making
their sum a minimum, but this is not an adequate criterion.
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Figure 6: Minimizing the deviations by making the sum a minimum.

• We might accept the criterion that we make the magnitude of the
maximum error a minimum (the so-called minimax criterion).

• The usual criterion is to minimize the sum of the squares of the errors,
the least-squares principle.

• In addition to giving a unique result for a given set of data, the least-
squares method is also in accord with the maximum-likelihood principle
of statistics.

• If the measurement errors have a so-called normal distribution

• and if the standard deviation is constant for all the data,

• the line determined by minimizing the sum of squares can be shown
to have values of slope and intercept that have maximum likelihood of
occurrence.

• Let Yi represent an experimental value, and let yi be a value from the

equation

yi = axi + b

where xi is a particular value of the variable assumed to be free of error.

• We wish to determine the best values for a and b so that the y’s predict
the function values that correspond to x-values.

• Let
ei = Yi − yi

• The least-squares criterion requires that S be a minimum.

S = e21 + e22 + . . .+ e2
n
=

∑
N

i=1 e
2
i

=
∑

N

i=1(Yi − axi − b)2
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• N is the number of (x, Y )-pairs.

• We reach the minimum by proper choice of the parameters a and b, so
they are the variables of the problem.

• At a minimum for S, the two partial derivatives will be zero.

∂S/∂a & ∂S/∂b

• Remembering that the xi and Yi are data points unaffected by our
choice our values for a and b, we have

∂S

∂a
= 0 =

∑
N

i=1 2(Yi − axi − b)(−xi)
∂S

∂b
= 0 =

∑
N

i=1 2(Yi − axi − b)(−1)

• Dividing each of these equations by −2 and expanding the summation,
we get the so-called normal equations

a
∑

x2
i
+ b

∑
xi =

∑
xiYi

a
∑

xi + bN =
∑

Yi

• All the summations are from i = 1 to i = N .

• Solving these equations simultaneously gives the values for slope and

intercept a and b.

• For the data in Fig. 5 we find that

N = 5,
∑

Ti = 273.1,
∑

T 2
i = 18607.27,

∑
Ri = 4438,

∑
TiRi = 254932.5

• Our normal equations are then

18607.27a + 273.1b = 254932.5
273.1a + 5b = 4438

• From these we find a = 3.395, b = 702.2, and

R = 702.2 + 3.395T

• MATLAB gets a least-squares polynomial with its polyfit command.

• When the numbers of points (the size of x) is greater than the degree
plus one, the polynomial is the least squares fit.
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