
Quiz 3, Q&A

Q. What is the Mutual Exclusion?

A. Mutual exclusion is a mechanism to ensure that only one process (or person) is doing certain things at
one time, thus avoid data inconsistency. All others should be prevented from modifying shared data until
the current process finishes 

Q Explain the Strict Alternation Solution.

A. Strict Alternation (see Fig. 1)

the two processes strictly alternate in entering their CR 

the integer variable turn, initially 0, keeps track of whose turn is to enter the critical region 

busy waiting, continuously testing a variable until some value appears, a lock that uses busy waiting is
called a spin lock 

both processes are executing in their noncritical regions 

process 0 finishes its noncritical region and goes back to the top of its loop 

unfortunately, it is not permitted to enter its CR, turn is 1 and process 1 is busy with its nonCR 

this algorithm does avoid all races 

but violates condition 3 (Fault tolerance-processes running outside their CR should not block with others
accessing the CR) 

Figure 1 A proposed solution to the CR problem. (a) Process 0, (b) Process 1

Q Explain the Petersons’s solution.

A. Petersons’s solution (see Fig. 2) 

does not require strict alternation 



this algorithm consists of two procedures 

before entering its CR, each process calls enter_region with its own process number, 0 or 1 

after it has finished with the shared variables, the process calls leave_region to allow the other process to
enter 

consider the case that both processes call enter_region almost simultaneously 

both will store their process number in turn . Whichever store is done last is the one that counts; the first
one is overwritten and lost 

suppose that process 1 stores last , so turn is 1. 

when both processes come to the while statement, process 0 enters its critical region 

process 1 loops until process 0 exists its CR 

no violation, implements mutual exclusion 

burns CPU cycles (requires busy waiting), can be extended to work for n processes, but overhead, cannot
be extended to work for an unknown number of processes, unexpected effects (i.e.,priority inversion
problem) 

Figure 2: Peterson’ solution for achieving mutual exclusion


