Ceng 328 Operating Systems Midterm April 6, 2011 10.40–12.30 Good Luck!

Answer all the questions.

- 1. (40 pts) Choose only <u>five</u> questions. Each questions 8 pts.
 - i Discuss and compare
 - a Single Programming
 - b Pure Multiprogramming
 - c Multiprogramming
 - ii You are supposed to design a highly reliable operating system. What is meant by "reliable"? Which criteria and measures should be taken care?
 - iii What are the two main purposes of an operating system?
 - iv An operating system runs in privileged mode, a hardware state where it has full access to machine resources. Why is such a mode needed, and why can't normal user processes and threads enter privileged mode?
 - v What are the advantages of using a higher-level language to implement an operating system?
 - vi What are the differences between a trap and an interrupt? What is the use of each function?
 - vii What is the purpose of system calls?
 - viii Explain the difference between an I/O-bound process and a CPUbound process.
 - ix What is an "atomic" operation? Give an example.
- 2. (10 pts) What advantages do threads have over multiple processes? Suggest one application that would benefit from the use of threads?
- 3. (10 pts) Why is the separation of mechanism and policy a desirable principle?

- (10 pts) Three jobs (A, B, and C) arrive to the job scheduler at time
 Job A needs 15 seconds of CPU time, Job B needs 25 seconds, and
 Job C needs 35 seconds.
 - i What is the average turnaround time for the jobs, assuming a shortest-job-first (SJF) scheduling policy?
 - ii What is the average turnaround time assuming a longest-job-first (LJF) policy?
 - iii Which finishes first, Job C in SJF or Job A in LJF?
- 5. (15 pts) Describe the round-robin scheduling algorithm. Discuss what issues need to be consider to achieve good performance from this algorithm.
- 6. (10 pts) What is a "Critical Region (Section)"? List and explain the conditions that need to be satisfied to solve the critical region problem?
- 7. (15 pts) Describe the "Strict Alternation" as a solution for mutual exclusion (see the figure)?

w }	hile (TRUE) { while (turn != 0) critical_region(); turn = 1; noncritical_region();	/* loop */ ;	<pre>while (TRUE) { while (turn != 1) critical_region(); turn = 0; noncritical_region(); }</pre>	/* loop */ ;
	(a)		(b)	

Figure 1: Strict alternation for achieving mutual exclusion, (a) process0 (b) process1.