
Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.1

Lecture 10
Virtual Memory
Lecture Information

Ceng328 Operating Systems at April 27, 2010

Dr. Cem Özdoğan
Computer Engineering Department

Çankaya University



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.2

Contents

1 Virtual Memory
Background
Demand Paging

Basic Concepts
Performance of Demand Paging

Copy-on-Write
Page Replacement

Basic Page Replacement
FIFO Page Replacement
Optimal Page Replacement
LRU Page Replacement

Allocation of Frames
Allocation Algorithms
Global versus Local Allocation

Thrashing
Cause of Thrashing



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.3

Virtual Memory

• Virtual memory is a technique that allows the execution of
processes that are not completely in memory.

• One major advantage of this scheme is that programs can
be larger than physical memory.

• Further, virtual memory abstracts main memory into an
extremely large, uniform array of storage, separating logical
memory as viewed by the user from physical memory.

• Virtual memory also allows processes to share files easily
and to implement shared memory.

• Virtual memory is not easy to implement, however, and
may substantially decrease performance if it is used
carelessly.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.4

Background I

• An examination of real programs shows us that, in many
cases, the entire program (in memory) is not needed.

• Programs often have code to handle unusual error
conditions (seldom used).

• Arrays, lists, and tables are often allocated more memory
than they actually need.

• Certain options and features of a program may be used
rarely.

• The ability to execute a program that is only partially in
memory would offer many benefits:

• A program would no longer be constrained by the amount of
physical memory that is available (simplifying the
programming task).

• Because each user program could take less physical
memory, more programs could be run at the same time,

• with a corresponding increase in CPU utilization and
throughput

• with no increase in response time or turnaround time.

• Less I/O would be needed to load or swap each user
program into memory, so each user program would run
faster.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.5

Background II

• Virtual memory involves the separation of logical memory
as perceived by users from physical memory.

• This separation allows an extremely large virtual memory
to be provided for programmers when only a smaller
physical memory is available (see Fig. 1).

Figure: Diagram showing virtual memory that is larger than
physical memory.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.6

Background III
• The virtual address space of a process refers to the

logical (or virtual) view of how a process is stored in
memory.

Figure: Virtual address space.

• The large blank space (or hole) between the heap and the
stack is part of the virtual address space but will require
actual physical pages only if the heap or stack grows.

• heap to grow upward in memory as it is used for dynamic
memory allocation

• stack to grow downward in memory through successive
function calls



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.7

Background IV

• Using a sparse address space is beneficial because the
holes can be filled as the stack or heap segments grow

• or if we wish to dynamically link libraries (or possibly other
shared objects) during program execution.

• In addition to separating logical memory from physical
memory,

• virtual memory also allows files and memory to be shared
by two or more processes through page sharing.

Figure: Shared library using virtual memory.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.8

Background V

• This leads to the following benefits:
• System libraries can be shared by several processes

through mapping of the shared object into a virtual address
space. Actual pages where the libraries reside in physical
memory are shared by all the processes (see Fig. 3).

• Similarly, virtual memory enables processes to share
memory. Two or more processes can communicate through
the use of shared memory (see Fig. 3).

• Virtual memory can allow pages to be shared during
process creation with the fork() system call, thus speeding
up process creation.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.9

Demand Paging I

• Consider how an executable program might be loaded
from disk into memory.

• One option is to load the entire program in physical memory
at program execution time. However, a problem with this
approach is that we may not initially need the entire
program in memory.

• An alternative strategy is to initially
load pages only as they are needed. This technique is
known as demand paging and is commonly used in virtual
memory systems.

• When we want to execute a process, we swap it into
memory.

• Rather than swapping the entire process into memory,
however, we use a lazy swapper .

• A lazy swapper never swaps a page into memory unless
that page will be needed.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.10

Demand Paging II
• A demand-paging system is similar to a paging system

with swapping (see Fig. 4) where processes reside in
secondary memory (usually a disk).

Figure: Transfer of a paged memory to contiguous disk space.

• A swapper manipulates entire processes, whereas a
pager is concerned with the individual pages of a process.

• We thus use pager , rather than swapper, in connection
with demand paging.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.11

Basic Concepts I

• When a process is to be swapped in, the pager
guesses which pages will be used before the process is
swapped out again.

• Some form of hardware support is needed to distinguish
between the pages that are in memory and the pages that
are on the disk.

• The valid -invalid bit scheme can be used for this purpose.
• This time however, when this bit is set to “valid”, the

associated page is both legal and in memory.
• If the bit is set to “invalid”, the page either is not valid (that

is, not in the logical address space of the process) or
is valid but is currently on the disk.

• The page-table entry for a page that is brought into memory
is set as usual,

• but the page-table entry for a page that is not currently in
memory is either simply marked invalid or contains the
address of the page on disk (see Fig. 5).



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.12

Basic Concepts II

Figure: Page table when some pages are not in main memory.

• While the process executes and accesses pages that are
memory resident, execution proceeds normally.

• But what happens if the process tries to access a page
that was not brought into memory?

• Access to a page marked invalid causes a page-fault
trap .



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.13

Basic Concepts III

The paging hardware, in translating the address through the
page table, will notice that the invalid bit is set, causing a trap
to the OS.

Figure: Steps in handling a page fault.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.14

Basic Concepts IV

• The procedure for handling this page fault is
straightforward (see Fig. 6).

1 We check an internal table (in PCB) for this process to
determine whether the reference was a valid or an invalid
memory access.

2 If the reference was invalid, we terminate the process. If it
was valid, but we have not yet brought in that page, we now
page it in.

3 We find a free frame.
4 We schedule a disk operation to read the desired page into

the newly allocated frame.
5 When the disk read is complete, we modify the internal

table kept with the process and the page table.
6 We restart the instruction that was interrupted by the trap.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.15

Basic Concepts V

• In the extreme case, we can start executing a process with
no pages in memory.

• When the OS sets the instruction pointer to the first
instruction of the process, which is on a
non-memory-resident page, the process immediately faults
for the page.

• After this page is brought into memory, the process
continues to execute, faulting as necessary until every page
that it needs is in memory.

• At that point, it can execute with no more faults.

• This scheme is pure demand paging : Never bring a page
into memory until it is required.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.16

Basic Concepts VI

• Theoretically, some programs could access several new
pages of memory with each instruction execution (one
page for the instruction and many for data), possibly
causing multiple page faults per instruction.

• This situation would result in unacceptable system
performance (but fortunately this behavior is exceedingly
unlikely).

• Programs tend to have locality of reference which results
in reasonable performance from demand paging.

• Because we save the state (registers, condition code,
instruction counter) of the interrupted process when the
page fault occurs, we must be able to restart the process
in exactly the same place and state.

• If the page fault occurs on the instruction fetch, we can
restart by fetching the instruction again.

• If a page fault occurs while we are fetching an operand, we
must fetch and decode the instruction again and then
fetch the operand.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.17

Performance of Demand Paging I

• Demand paging can significantly affect the performance of
a computer system.

• Let’s compute the effective access time for a
demand-paged memory.

• For most computer systems, the memory-access time,
denoted ma, ranges from 10 to 200 nanoseconds.

• As long as we have no page faults, the effective access time
is equal to the memory access time.

• If, however a page fault occurs, we must first
read the relevant page from disk and then access the
desired word.

• Let p be the probability of a page fault (0 ≤ p ≤ 1). We
would expect p to be close to zero -that is, we would expect
to have only a few page faults.

• The effective access time is then
effective access time=(1 - p)*ma+p*page fault time



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.18

Performance of Demand Paging II

• Service the page-fault interrupt and Restart the process
tasks may take from 1 to 100 microseconds each.

• The page-switch time (Read in the page), however, will
probably be close to 8 milliseconds.

• A typical hard disk has an average latency of 3 milliseconds,
a seek of 5 milliseconds, and a transfer time of 0.05
milliseconds.

• Thus, the total paging time is about 8 milliseconds,
including hardware and software time.

• If we take an average page-fault service time of 8
milliseconds and a memory-access time of 200
nanoseconds, then the effective access time in
nanoseconds is

effective access time
= (1 - p)*(200) + p*(8 milliseconds)
= (1 - p)*200 + p*8,000,000
= 200 + 7,999,800 x p.

• Where p is the page-fault rate.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.19

Performance of Demand Paging III

• We see, then, that the effective access time is directly
proportional to the page-fault rate .

• If one access out of 1,000 causes a page fault, the
effective access time is 8.2 microseconds.

• It is important to keep the page-fault rate low in a
demand-paging system.

• Otherwise, the effective access time increases, slowing
process execution dramatically.

• An additional aspect of demand paging is the handling and
overall use of swap space.

• Disk I/O to swap space is generally faster than that to the
file system.

• The system can therefore gain better paging throughput by
copying an entire file image into the swap space at process
startup and then performing demand paging from the swap
space.

• Another option is to demand pages from the file system
initially but to write the pages to swap space
as they are replaced.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.20

Copy-on-Write I

• Process creation using the fork() system call may initially
bypass the need for demand paging.

• Recall that the fork() system call creates a child process
as a duplicate of its parent.

• Traditionally, fork() worked by creating a copy of the
parent’s address space for the child, duplicating the pages
belonging to the parent.

• However, considering that many child processes invoke the
exec() system call immediately after creation, the copying of
the parent’s address space may be unnecessary.

• Alternatively, we can use a technique known as
copy-an-write , which works by allowing the parent and
child processes initially to share the same pages.

• These shared pages are marked as copy-an-write pages,
meaning that if either process writes to a shared page, a
copy of the shared page is created (see Figs. 7 and 8).

• Only pages that can be modified need be marked as
copy-on-write. Pages that cannot be modified (pages
containing executable code) can be shared by the parent
and child.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.21

Copy-on-Write II

Figure: Before process 1 modifies page C.

Figure: After process 1 modifies page C.

Copy-on-write is a common technique used by several OSs,
including Windows XP, Linux, and Solaris.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.22

Page Replacement I

• If we increase our degree of multiprogramming, we are
over-allocating memory.

• Further, consider that system memory is not used only for
holding program pages.

• Buffers for I/O also consume a significant amount of
memory.

• Over-allocation of memory manifests itself as follows (see
Fig. 9).

• While a user process is executing, a page fault occurs.
• The OS determines where the desired page is residing on

the disk but then finds that there are no free frames on the
free-frame list; all memory is in use.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.23

Page Replacement II

Figure: Need for page replacement.

The OS could swap out a process, freeing all its frames and
reducing the level of multiprogramming.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.24

Basic Page Replacement I

• Page replacement takes the following approach (see Fig.
10).

• We modify the page-fault service routine to include page
replacement:

1 Find the location of the desired page on the disk.
2 Find a free frame:

a If there is a free frame, use it.
b If there is no free frame, use a page-replacement algorithm to

select a victim frame.
c Write the victim frame to the disk; change the page and frame

tables accordingly.

3 Read the desired page into the newly freed frame; change
the page and frame tables.

4 Restart the user process.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.25

Basic Page Replacement II

Figure: Page replacement.

• Notice that, if no frames are free, two page transfers (one
out and one in) are required.

• We can reduce this overhead by using a modify bit (or
dirty bit ).



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.26

Basic Page Replacement III

• The modify bit for a page is set by the hardware whenever
any word or byte in the page is written into, indicating that
the page has been modified.

• When we select a page for replacement, we examine its
modify bit.

• If the bit is set, we know that the page has been modified
since it was read in from the disk (write that page to the
disk).

• If the modify bit is not set, the page has not been modified
since it was read into memory (not write the memory page
to the disk: It is already there).

• This technique also applies to read-only pages (for
example, pages of binary code).

• This scheme can significantly reduce the time required to
service a page fault, since it reduces I/O time by one-half
if the page has not been modified.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.27

Basic Page Replacement IV

• Page replacement is basic to demand paging. It
completes the separation between logical memory and
physical memory.

• We must solve two major problems to implement demand
paging:

1 develop a frame-allocation algorithm . If we have multiple
processes in memory, we must decide how many frames to
allocate to each process.

2 develop a page-replacement algorithm . When page
replacement is required, we must select the frames that are
to be replaced.

• Designing appropriate algorithms to solve these problems
is an important task, because disk I/O is so expensive.

• Even slight improvements in demand-paging methods
yield large gains in system performance.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.28

Basic Page Replacement V

• Second major problem will be discussed firstly.

• For a given page size (and the page size is generally fixed
by the hardware or system), we need to consider only the
page number, rather than the entire address.

• If we have a reference to a page p, then any immediately
following references to page p will never cause a page
fault (page p will be in memory after the first reference).

• For example, if we trace a particular process, we might
record the following address sequence:
0100,0432,0101,0612,0102,0103,0104,0101,0611,0102,
0103,0104,0101,0610,0102,0103,0104,0101,0609,O102,
0105

• At 100 bytes per page, this sequence is reduced to the
following reference string:

1,4,1,6,1,6,1,6,1,6,1



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.29

Basic Page Replacement VI

• As the number of frames increases, the number of page
faults drops to some minimal level (see Fig. 11).

Figure: Graph of page faults versus number of frames.

• The following reference string will be used to exemplify for
a memory with three frames for next several
page-replacement algorithms.

7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.30

FIFO Page Replacement I

• The simplest page-replacement algorithm is a first-in,
first-out (FIFO) algorithm.

• A FIFO replacement algorithm associates with each page
the time when that page was brought into memory.

• When a page must be replaced, the oldest page is
chosen .

• For our example reference string, our three frames are
initially empty.

Figure: FIFO page-replacement algorithm.

• There are 15 faults altogether.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.31

FIFO Page Replacement II

• The FIFO page-replacement algorithm is easy to
understand and program. However, its performance is not
always good.

• On the one hand, the page replaced may be an
initialization module that was used a long time ago and is
no longer needed.

• On the other hand, it could contain a heavily used variable
that was initialized early and is in constant use.

• Notice that, even if we select for replacement
a page that is in active use, everything still works correctly.

• After we replace an active page with a new one, a fault
occurs almost immediately to retrieve the active page.

• Some other page will need to be replaced to bring the active
page back into memory.

• Thus, a bad replacement choice increases the page-fault
rate and slows process execution.

• It does not cause incorrect execution.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.32

Optimal Page Replacement I

• An optimal page-replacement algorithm has the
lowest page-fault rate of all algorithms (called OPT or
MIN). It is simply this:
Replace the page that will not be used
for the longest period of time.

• For example, on our sample reference string, the optimal
page-replacement algorithm would yield nine page faults
(see Fig. 13).

Figure: Optimal page-replacement algorithm.

• With only nine page faults, optimal replacement is much
better than a FIFO algorithm, which resulted in fifteen
faults.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.33

Optimal Page Replacement II

• If we ignore the first three, which all algorithms must suffer,
then optimal replacement is twice as good as FIFO
replacement.

• Unfortunately, the optimal page-replacement algorithm is
difficult to implement, because it
requires future knowledge of the reference string (similar
situation with the SJF CPU-scheduling algorithm).

• As a result, the optimal algorithm is
used mainly for comparison studies.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.34

LRU Page Replacement I
• The key distinction between the FIFO and OPT algorithms

(other than looking backward versus forward in time) is
that

• the FIFO algorithm uses the time when a page was brought
into memory,

• whereas the OPT algorithm uses the time when a page is to
be used.

• If we use the
recent past as an approximation of the near future, then
we can replace the page that has not been used for the
longest period of time (see Fig. 14).

Figure: LRU page-replacement algorithm.

• This approach is the least-recently-used (LRU)
algorithm .



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.35

LRU Page Replacement II

• The result of applying LRU replacement to our example
reference string is shown in Fig. 14. The LRU algorithm
produces 12 faults.

• Notice that the first 5 faults are the same as those for
optimal replacement.

• When the reference to page 4 occurs, however, LRU
replacement sees that, of the three frames in memory, page
2 was used least recently.

• Thus, the LRU algorithm replaces page 2, not knowing that
page 2 is about to be used.

• When it then faults for page 2, the LRU algorithm replaces
page 3, since it is now the least recently used of the three
pages in memory.

• Despite these problems, LRU replacement with 12 faults is
much better than FIFO replacement with 15.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.36

Allocation of Frames
• Now, first major problem mentioned in Section 1 will be

discussed.
• How do we allocate the fixed amount of free memory

among the various processes?
• If we have 93 free frames and two processes, how many

frames does each process get?
• Under pure demand paging, all 93 frames would initially

be put on the free-frame list.
• When a user process started execution, it would generate a

sequence of page faults.
• The first 93 page faults would all get free frames from the

free-frame list.
• When the free-frame list was exhausted, a

page-replacement algorithm would be used to select one of
the 93 in-memory pages to be replaced with the 94th, and
so on.

• When the process terminated, the 93 frames would once
again be placed on the free-frame list.

• We can require that the OS allocate all its buffer and table
space from the free-frame list.

• When this space is not in use by the OS, it can be used to
support user paging.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.37

Allocation Algorithms I

• The easiest way to split m frames among n processes is to
give everyone an equal share, m/n frames. This scheme
is called equal allocation .

• For instance, if there are 93 frames and five processes,
each process will get 18 frames.

• The leftover three frames can be used as a free-frame
buffer pool.

• An alternative is to recognize that various processes will
need differing amounts of memory.

• Consider a system with a 1-KB frame size.
• If a small student process of 10 KB and an interactive

database of 127 KB are the only two processes running in a
system with 62 free frames, it does not make much sense to
give each process 31 frames.

• The student process does not need more than 10 frames,
so the other 21 are, strictly speaking, wasted.

• To solve this problem, we allocate available memory to
each process according to its size (proportional allocation).



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.38

Allocation Algorithms II

• Let the size of the virtual memory for process pi be si , and
define

S =
∑

si

• Then, if the total number of available frames is m, we
allocate ai frames to process pi , where ai is approximately

ai =
si

S ∗ m

• For proportional allocation, we would split 62 frames
between two processes, one of 10 pages and one of 127
pages, by allocating 4 frames and 57 frames, respectively,
since

10/137 x 62 ~ 4,
127/137 x 62 ~ 57.

• In this way, both processes share the available frames
according to their “needs”, rather than equally.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.39

Allocation Algorithms III

• In both equal and proportional allocation, of course, the
allocation may vary according to the multiprogramming
level.

• If the multiprogramming level is increased, each process will
lose some frames to provide the memory needed for the
new process.

• If the multiprogramming level decreases, the frames that
were allocated to the departed process can be spread over
the remaining processes.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.40

Global versus Local Allocation

• With multiple processes competing for frames, we can
classify page-replacement algorithms into two broad
categories:

1 Global replacement . Global replacement allows a process
to select a replacement frame from the set of all frames,
even if that frame is currently allocated to some other
process; that is, one
process can take a frame from another.

2 Local replacement . Local replacement requires that each
process select from only its own set of allocated frames.

• With a local replacement strategy, the number of frames
allocated to a process does not change.

• With global replacement, a process may happen to select
only frames allocated to other processes, thus increasing
the number of frames allocated to it (assuming that other
processes do not choose its frames for replacement).

• Global replacement generally results in greater system
throughput and is therefore the more common method.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.41

Thrashing

• If the number of frames allocated to a low-priority process
falls below the minimum number required, we must
suspend that process’s execution.

• We should then page out its remaining pages, freeing all
its allocated frames.

• In fact, look at any process that does not have “enough”
frames.

• If the process does not have the number of frames it needs
to support pages in active use, it will quickly page-fault.

• At this point, it must replace some page.
• However, since all its pages are in active use, it must

replace a page that will be needed again right away.
• Consequently, it quickly faults again, and again, and again,

replacing pages that it must bring back in immediately.

• This high paging activity is called thrashing .

• A process is thrashing if it is spending more time paging
than executing.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.42

Cause of Thrashing I
• Thrashing results in severe performance problems.

Consider the following scenario (see Fig. 15);

Figure: Thrashing.

• Thrashing has occurred. The page-fault rate increases
tremendously.

• No work is getting done, because the processes are
spending all their time paging.

• At this point, to increase CPU utilization and stop
thrashing, we must decrease the degree of
multiprogramming.



Virtual Memory

Dr. Cem Özdo ğan

Virtual Memory
Background

Demand Paging

Basic Concepts

Performance of Demand
Paging

Copy-on-Write

Page Replacement

Basic Page Replacement

FIFO Page Replacement

Optimal Page
Replacement

LRU Page Replacement

Allocation of Frames

Allocation Algorithms

Global versus Local
Allocation

Thrashing

Cause of Thrashing

10.43

Cause of Thrashing II
• The OS monitors CPU utilization. If CPU utilization is too

low, we increase the degree of multiprogramming by
introducing a new process to the system.

• Now suppose that a process enters a new phase in its
execution and needs more frames.

• It starts faulting and taking frames away from other
processes (global page-replacement algorithm).

• These processes need those pages, however, and so they
also fault, taking frames from other processes.

• These faulting processes must use the paging device to
swap pages in and out.

• As processes wait for the paging device, CPU utilization
decreases.

• The CPU scheduler sees the decreasing CPU utilization
and increases the degree of multiprogramming as a result.

• The new process tries to get started by taking frames from
running processes, causing more page faults and a longer
queue for the paging device.

• As a result, CPU utilization drops even further, and the CPU
scheduler tries to increase the degree of multiprogramming
even more.


	Virtual Memory
	Background
	Demand Paging
	Copy-on-Write
	Page Replacement
	Allocation of Frames
	Thrashing


