
CENG328
Operating Systems

Laboratory XI
Files and Directories

2Cankaya University
Department of Computer Engineering

2011

1.1 File Types

● stat, fstat, and lstat functions; code48.c

● Given a pathname, the stat function returns a structure of information about the named
file. The fstat function obtains information about the file that is already open on the
descriptor (file descriptor). The lstat function is similar to stat, but when the named file
is a symbolic link, lstat returns information about the symbolic link, not the file
referenced by the symbolic link.

● Study the following command in detail;

man 2 stat

● The type of a file is encoded in the st_mode member of the stat structure.

● We can determine the file type with the macros in <sys/stat.h> (S_IS***()).

● Compile the code and execute as the following;

./code48 code48.c /etc /dev/random /dev/sda /vmlinuz /dev/log

● Study the output.

● Exercise: Modify the code such that it will be able to print out the information (present
status, values, etc.) about all the fields in the stat structure (man 2 stat; see struct stat)
not only the field protection.

http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code48.c

3Cankaya University
Department of Computer Engineering

2011

1.2 File Access

● chmod and fchmod functions; code49.c

● These two functions allow us to change the file access permissions for an existing file.
The chmod function operates on the specified file, whereas the fchmod function
operates on a file that has already been opened.

● To change the permission bits of a file, the effective user ID of the process must be equal
to the owner ID of the file, or the process must have superuser permissions (we will not
discuss the effective user ID and superuser concepts).

● The mode constants for chmod functions, from <sys/stat.h> are S_IRWXU, S_IRUSR,
S_IWUSR, S_IXUSR, S_IRWXG, S_IRGRP, S_IWGRP, S_IXGRP, S_IRWXO, S_IROTH,
S_IWOTH, S_IXOTH.

● They are self-explanatory, but as an example S_IRWXU stands for read, write and execute
by user (owner).

http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code49.c

4Cankaya University
Department of Computer Engineering

2011

1.2 File Access

● chmod and fchmod functions; code49.c

● Compile the code.

● Before execution, create two files as the following;

-rw------- 1 ozdogan ozdogan 0 May 9 15:10 foo
-rw------- 1 ozdogan ozdogan 0 May 9 15:10 bar

by using touch and chmod commands.

● Execute the code. Observe how the final state of the two files are changed after running
the program.

● Note that the time and date listed by the ls command did not change after we ran the
program. By default, the ls -l lists the time when the contents of the file were last
modified.

http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code49.c

5Cankaya University
Department of Computer Engineering

2011

1.3 Reading Directories

● File tree walk code50.c, code51.c, code52.c

● Directories can be read by anyone who has access permission to read the directory. (But
only the kernel can write to a directory, to preserve file system sanity)

● We'll use these directory routines (opendir, readdir, etc.) to write a program that
traverses a file hierarchy. The goal is to produce the count of the various types of files.

● The program takes a single argument the starting pathname and recursively descends the
hierarchy from that point.

● Apply the following commands;

gcc -c code52.c
gcc -c code51.c
gcc -o code50 code50.c code51.o code52.o
./code50 .
./code50 ..

● Also try with different paths.

● You can also use this program to see the file profile in your system by executing with root
privileges and with the pathname "/".

● Also see man nftw.

http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code50.c
http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code51.c
http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code52.c

6Cankaya University
Department of Computer Engineering

2011

1.4 File I/O Performance

● A program to show the effect of the buffer. code53.c (also download ourhdr.h),

● Many applications assume that standard input is file descriptor 0 and standard output is
file descriptor 1. In this code we use the two defined names STDIN_FILENO and
STDOUT_FILENO from <unistd.h>. The program does not close the input file or output
file. Instead it uses the fact that whenever a process terminates, all open file descriptors
are closed.

● This program works for both text file and binary files, since there is no difference
between the two to the kernel.

● First create an input file by

dd if=/dev/zero of=inputfile bs=8K count=100

– The output is:
100+0 records in
100+0 records out
819200 bytes (819 kB) copied, 0.00343696 s, 238 MB/s

– Timing for the writing speed is given as the last item (as 238 MB/s),
– What are the parameters bs and count? (man dd)
– Observe the writing speed by changing the value of bs,
– Observe the writing speed by changing the value of count.

http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code53.c
http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/ourhdr.h

7Cankaya University
Department of Computer Engineering

2011

1.4 File I/O Performance

● Download the table week11l_table.ods.

● Using dd, create a 100 MiB file named as inputfile.

● Now, execute the program as:

time ./code53 < inputfile > outputfile

● Run the program using BUFFSIZE as 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096,
8192, 16384, 32768, 65536 and 131072. Fill the table according to the values you see on
screen.

http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/week11l/week11l_table.ods

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

