
1 Operating-System Structures

• We can view an OS from several points.

– One view focuses on the services that the system provides;

– Another, on the interface that it makes available to users and
programmers;

– A third, on its components and their interconnections.

• We consider what services an OS provides, how they are provided, and
what the various methodologies are for designing such systems.

1.1 Operating-System Services

• One set of operating-system services provides functions that are helpful
to the user.

– User interface. Almost all OSs have a user interface (UI). Com-
mand - Line Interface (CLI). Batch Interface. Graphical User In-
terface (GUI).

– Program execution. The system must be able to load a program
into memory and to run that program. The program must be able
to end its execution, either normally or abnormally (indicating
error).

– I/O operations. A running program may require I/O, which
may involve a file or an I/O device.

– File-system manipulation. Programs need to read and write
files and directories. They also need to create and delete them
by name, search for a given file, and list file information. Finally,
some programs include permissions management to allow or deny
access to files or directories based on file ownership.

– Communications. There are many circumstances in which one
process needs to exchange information with another process. Com-
munications may be implemented via shared memory or through
message passing, in which packets of information are moved be-
tween processes by the OS.

– Error detection. The OS needs to be constantly aware of pos-
sible errors. Errors may occur in the CPU and memory hardware
(such as a memory error or a power failure), in I/O devices (such
as a parity error on tape, a connection failure on a network, or

1



lack of paper in the printer), and in the user program (such as
an arithmetic overflow, an attempt to access an illegal memory
location, or a too-great use of CPU time). For each type of error,
the OS should take the appropriate action to ensure correct and
consistent computing.

• Another set of operating-system functions exists not for helping the
user but rather for ensuring the efficient operation of the system itself.

– Resource allocation. When there are multiple users or multiple
jobs running at the same time, resources must be allocated to each
of them. Many different types of resources are managed by the
OS.

– Accounting. We want to keep track of which users use how much
and what kinds of computer resources.

– Protection and security. When several separate processes ex-
ecute concurrently, it should not be possible for one process to
interfere with the others or with the OS itself. Protection involves
ensuring that all access to system resources is controlled.

1.2 User Operating-System Interface

There are two fundamental approaches for users to interface with the OS.

• One technique is to provide a command-line interface or command
interpreter that allows users to directly enter commands that are to
be performed by the OS.

• The second approach allows the user to interface with the OS via a
graphical user interface or GUI.

1.2.1 Command Interpreter

• Some OSs include the command interpreter in the kernel. Others, such
as Windows XP and UNIX, treat the command interpreter as a special
program that is running when a job is initiated or when a user first
logs on (on interactive systems).

• On systems with multiple command interpreters to choose from, the
interpreters are known as shells. Although it is not part of the OS, it
makes heavy use of many OS features and serves as a good example of
how the system calls can be used.

2



• The main function of the command interpreter is to get and execute
the next user-specified command. When a command is typed, the shell
forks off a new process. This child process must execute the user
command.

• A highly simplified shell illustrating the use of fork, waitpid, and execve
is shown in Fig. 1.

Figure 1: A stripped-down shell.

1.2.2 Graphical User Interfaces

• A second strategy for interfacing with the OS is through a user-friendly
graphical user interface or GUI. Rather than having users directly en-
ter commands via a command-line interface, a GUI allows provides a
mouse-based window-and-menu system as an interface.

– Graphical user interfaces first appeared due in part to research
taking place in the early 1970s at Xerox PARC research facility.
The first GUI appeared on the Xerox Alto computer in 1973.

– However, graphical interfaces became more widespread with the
advent of Apple Macintosh computers in the 1980s.

– Microsoft’s first version of Windows -version 1.O- was based upon
a GUI interface to the MS-DOS OS.

– Traditionally, UNIX systems have been dominated by command-
line interfaces, although there are various GUI interfaces available.

3



• The choice of whether to use a command-line or GUI interface is mostly
one of personal preference. As a very general rule, many UNIX users
prefer a command-line interface as they often provide powerful shell
interfaces.

• Alternatively, most Windows users are pleased to use the Windows
GUI environment and almost never use the MS-DOS shell interface.

1.3 System Calls

• Any single-CPU computer can execute only one instruction at a time.
If a process is running a user program in user mode and needs a system
service, such as reading a data from a file, it has to execute a trap
instruction to transfer control to the OS.

• System calls provide an interface to the services made available by
an OS. These calls are generally available as routines written in C
and C++, although certain low-level tasks (for example, tasks where
hardware must be accessed directly), may need to be written using
assembly-language instructions.

• To illustrate how system calls are used: writing a simple program to
read data from one file and copy them to another file. The system-call
sequence is shown in Fig. 2.

Figure 2: Example of how system calls are used.

4



• As we can see, even simple programs may make heavy use of the OS.
Frequently, systems execute thousands of system calls per second.

• The run-time support system (a set of functions built into libraries
included with a compiler) for most programming languages provides
a system-call interface that serves as the link to system calls made
available by the OS.

• Typically, a number is associated with each system call, and the system-
call interface maintains a table indexed according to these numbers.
The system call interface then invokes the intended system call in the
OS kernel and returns the status of the system call and any return
values.

• The relationship between an application program interface (API), the
system-call interface, and the OS is shown in Fig. 3, which illustrates
how the OS handles a user application invoking the open() system call.

Figure 3: The handling of a user application invoking the open() system call.

• Three general methods are used to pass parameters to the OS.

1. The simplest approach is to pass the parameters in registers. In
some cases, however, there may be more parameters than registers.
In these cases, the parameters are generally stored in a block, or
table, in memory, and the address of the block is passed as a
parameter in a register (see Fig. 4). This is the approach taken
by Linux and Solaris.

5



Figure 4: Passing of parameters as a table.

2. Parameters also can be placed, or pushed, onto the stack by the
program and popped off the stack by the OS.

3. Some OSs prefer the block or stack method, because those ap-
proaches do not limit the number or length of parameters being
passed.

1.4 Types of System Calls

• System calls can be grouped roughly into six major categories:

– process control, file manipulation, device manipulation, informa-
tion maintenance, communications,

– protection.

• Some of the most heavily used POSIX system calls, or more specifically,
the library procedures that make those system calls are given in Fig.
5.

• Fig. 6 gives some examples of Windows and Unix System Calls.

1.4.1 Example of Standard C Library

• The standard C library provides a portion of the system call interface
for many version of UNIX and Linux.

• As an example, let’s assume a C program invokes printf() statement.

• The C library intercepts this call and invokes the necessary system
call(s) in the OS.

6



Figure 5: Some of the major POSIX system calls.

• The C library takes the value returned by write() and passes it back
to the user program (see Fig. 7).

1.4.2 Process Control

• A running program needs to be able to halt its execution either nor-
mally (end) or abnormally (abort). If a system call is made to terminate
the currently runing program abnormally, or if the program runs into
a problem and causes an error trap, a dump of memory is sometimes
taken and an error message generated.

7



Figure 6: Examples of Windows and Unix System Calls.

• A process or job executing one program may want to load and execute
another program.

• An interesting question is where to return control when the loaded
program terminates. This question is related to the problem of whether
the existing program is lost, saved, or allowed to continue execution
concurrently with the new program.

• There are so many facets of and variations in process and job control
that we next use two examples to clarify these concepts.

– one involving a single-tasking system

– the other a multi-tasking system

• The MS-DOS OS is an example of a single-tasking system. It has a
command interpreter that is invoked when the computer is started (see
Fig. 8(a)).

• Because MS-DOS is single-tasking, it uses a simple method to run a
program and does not create a new process. It loads the program

8



Figure 7: C library handling of write().

into memory, writing over most of itself to give the program as much
memory as possible (see Fig. 8(b)).

Figure 8: MS-DOS execution. (a) At system start-up. (b) Running a pro-
gram.

• Next, it sets the instruction pointer to the first instruction of the pro-
gram. The program then runs, and either an error causes a trap, or
the program executes a system call to terminate.

• FreeBSD (derived from Berkeley UNIX) is an example of a multitasking

9



system. When a user logs on to the system, the shell of the user’s choice
is run.

• This shell is similar to the MS-DOS shell in that it accepts commands
and executes programs that the user requests. However, since FreeBSD
is a multitasking system, the command interpreter may continue run-
ning while another program is executed (see Fig. 9).

Figure 9: FreeBSD running multiple programs.

• To start a new process, the shell executes a fork() system call. Then,
the selected program is loaded into memory via an exec() system call,
and the program is executed.

1.4.3 File Management

• We first need to be able to create and delete files. Either system call
requires the name of the file and perhaps some of the file’s attributes.

• Once the file is created, we need to open it and to use it. We may also
read, write, or reposition (rewinding or skipping to the end of the file,
for example). Finally, we need to close the file, indicating that we are
no longer using it.

• We may need these same sets of operations for directories if we have a
directory structure for organizing files in the file system.

10



• In addition, for either files or directories, we need to be able to de-
termine the values of various attributes and perhaps to reset them if
necessary. File attributes include the file name, a file type, protection
codes, accounting information, and so on. At least two system calls,
get file attribute and set file attribute, are required for this function.

1.4.4 Device Management

• A process may need several resources to execute - main memory, disk
drives, access to files, and so on. If the resources are available, they can
be granted, and control can be returned to the user process. Otherwise,
the process will have to wait until sufficient resources are available.

• The various resources controlled by the OS can be thought of as devices.
Some of these devices are physical devices (for example, tapes), while
others can be thought of as abstract or virtual devices (for example,
files).

• Once the device has been requested (and allocated to us), we can read,
write, and (possibly) reposition the device, just as we can with files.

• In fact, the similarity between I/O devices and files is so great that
many OSs, including UNIX, merge the two into a combined file-device
structure.

• A set of system calls is used on files and devices. Sometimes, 1/0
devices are identified by special file names, directory placement, or file
attributes.

1.4.5 Information Maintenance

• Many system calls exist simply for the purpose of transferring informa-
tion between the user program and the OS. For example, most systems
have a system call to return the current time and date.

• Other system calls may return information about the system, such as
the number of current users, the version number of the OS, the amount
of free memory or disk space, and so on.

• In addition, the OS keeps information about all its processes, and sys-
tem calls are used to access this information. Generally, calls are also
used to reset the process information (get process attributes and set
process attributes).

11



1.4.6 Communication

• There are two common models of interprocess communication: the
message-passing model and the shared-memory model. In the
message-passing model, the communicating processes exchange mes-
sages with one another to transfer information.

• In the shared-memory model, processes use shared memory create and
shared memory attach system calls to create and gain access to regions
of memory owned by other processes.

• Recall that, normally, the OS tries to prevent one process from ac-
cessing another process’s memory. Shared memory requires that two
or more processes agree to remove this restriction. They can then ex-
change information by reading and writing data in the shared areas.

• Message passing is useful for exchanging smaller amounts of data, be-
cause no conflicts need be avoided. It is also easier to implement than
is shared memory for intercomputer communication.

• Shared memory allows maximum speed and convenience of communica-
tion, since it can be done at memory speeds when it takes place within
a computer. Problems exist, however, in the areas of protection and
synchronization between the processes sharing memory.

1.5 Operating-System Design and Implementation

• Because an OS is large and complex, it must be created piece by piece.
Each of these pieces should be a well delineated portion of the system,
with carefully defined inputs, outputs, and functions.

• Large Systems: 100k’s to millions of lines of code involving 100 to 1000
man-years of work

• Complex: Performance is important while there is conflicting needs of
different users.

• It is not possible to remove all bugs from such complex and large soft-
ware. Behavior is hard to predict; tuning is done by guessing.

1.5.1 Design Goals

• The first problem in designing a system is to define goals and specifi-
cations. At the highest level, the design of the system will be affected

12



by the choice of hardware and the type of system: batch, time shared,
single user, multiuser, distributed, real time, or general purpose.

• The requirements can, however, be divided into two basic groups:
user goals and system goals.

1. Users desire certain obvious properties in a system: The system
should be convenient to use, easy to learn and to use, reliable,
safe, and fast.

2. A similar set of requirements can be defined by those people who
must design, create, maintain, and operate the system: The sys-
tem should be easy to design, implement, and maintain; it should
be flexible, reliable, error free, and efficient.

• There is, in short, no unique solution to the problem of defining the
requirements for an OS. The wide range of systems in existence shows
that different requirements can result in a large variety of solutions for
different environments.

• For example, the requirements for VxWorks, a realtime OS for em-
bedded systems, must have been substantially different from those for
MVS, a large multiuser, multiaccess OS for IBM mainframes.

1.5.2 Mechanisms and Policies

• One important principle is the separation of policy from mechanism.

– Mechanisms determine how to do something; policies determine
what will be done.

– For example, the timer construct is a mechanism for ensuring
CPU protection, but deciding how long the timer is to be set for
a particular user is a policy decision.

• The separation of policy and mechanism is important for flexibility.
Policies are likely to change across places or over time.

• For instance, consider a mechanism for giving priority to certain types
of programs over others. If the mechanism is properly separated from
policy, it can be used to support a policy decision that I/O-intensive
programs should have priority over CPU-intensive ones or to support
the opposite policy.

13



• Policy decisions are important for all resource allocation. Whenever it
is necessary to decide whether or not to allocate a resource, a policy
decision must be made. Whenever the question is how rather than
what, it is a mechanism that must be determined.

1.5.3 Implementation

• Once an OS is designed, it must be implemented. Traditionally, OSs
have been written in assembly language. Now, however, they are most
commonly written in higher-level languages such as C or C++.

• The advantages of using a higher-level language, or at least a systems-
implementation language, for implementing OSs are the same as those
accrued when the language is used for application programs:

– The code can be written faster, is more compact, and is easier to
understand and debug.

– In addition, improvements in compiler technology will improve the
generated code for the entire OS by simple recompilation.

– Finally, an OS is far easier to port (to move to some other hard-
ware) if it is written in a higher-level language.

∗ For example, MS-DOS was written in Intel 8088 assembly
language. Consequently, it is available on only the Intel family
of CPUs.

∗ The Linux OS, in contrast, is written mostly in C and is avail-
able on a number of different CPUs, including Inte180X86,
Motorola 680XO, SPARC, and MIPS RXOOO.

• The only possible disadvantages of implementing an OS in a higher-
level language are reduced speed and increased storage requirements.

• As is true in other systems, major performance improvements in OSs
are more likely to be the result of better data structures and algorithms
than of excellent assembly-language code.

• In addition, although OSs are large, only a small amount of the code
is critical to high performance; the memory manager and the CPU
scheduler are probably the most critical routines.

14



1.6 Operating-System Structure

A system as large and complex as a modern OS must be engineered carefully
if it is to function properly and be modified easily. A common approach is to
partition the task into small components rather than have one monolithic
system.

1.6.1 Simple Structure

• MS-DOS was originally designed and implemented by a few people who
had no idea that it would become so popular. It was written to provide
the most functionality in the least space, so it was not divided into
modules carefully. Fig. 10 shows its structure.

Figure 10: MS-DOS layer structure.

• In MS-DOS, the interfaces and levels of functionality are not well sep-
arated.

– For instance, application programs are able to access the basic
I/O routines to write directly to the display and disk drives.

– Such freedom leaves MS-DOS vulnerable to errant (or malicious)
programs, causing entire system crashes when user programs fail.

• Of course, MS-DOS was also limited by the hardware of its era. Because
the Intel 8088 for which it was written provides no dual mode and
no hardware protection, the designers of MS-DOS had no choice but
to leave the base hardware accessible.

• Another example of limited structuring is the original UNIX OS. UNIX
is another system that initially was limited by hardware functionality.

15



• It consists of two separable parts: the kernel and the system programs.

– The kernel is further separated into a series of interfaces and device
drivers, which have been added and expanded over the years as
UNIX has evolved.

• We can view the traditional UNIX OS as being layered, as shown in
Fig. 11. The kernel provides the file system, CPU scheduling, mem-
ory management, and other operating-system functions through system
calls.

Figure 11: UNIX system structure.

• Taken in sum, that is an enormous amount of functionality to be com-
bined into one level. This monolithic structure was difficult to imple-
ment and maintain.

• Monolithic systems is the most common organization. The structure is
that there is no structure. The OS is written as a collection of procedures,
each of which can call any of the other ones whenever it needs to.

• To construct the actual object program of the OS when this approach is
used, one first compiles all the individual procedures, or files containing
the procedures, and then binds them all together into a single object
file using the system linker.

• In terms of information hiding, there is essentially none – every proce-
dure is visible to every other procedure. Even in monolithic systems,
however, it is possible to have at least a little structure, remember the
system calls.

16



1.6.2 Layered Approach

• With proper hardware support, OSs can be broken into pieces that
are smaller and more appropriate than those allowed by the original
MS-DOS or UNIX systems. Under the top-down approach, the over-
all functionality and features are determined and are separated into
components.

• A system can be made modular in many ways. One method is the
layered approach, in which the OS is broken up into a number of
layers (levels). The bottom layer (layer 0) is the hardware; the highest
(layer N) is the user interface. This layering structure is depicted in
Fig. 12.

Figure 12: A layered operating system.

• The first system constructed in this way was the THE system built
at the Technische Hogeschool Eindhoven in the Netherlands by E. W.
Dijkstra (1968) and his students.

• The system had 6 layers, as shown in Fig. 13.

1. Layer 0 dealt with allocation of the processor, switching between
processes when interrupts occurred or timers expired. Layer 0
provided the basic multiprogramming of the CPU.

2. Layer 1 did the memory management. It allocated space for pro-
cesses in main memory. Layer 1 software took care of making sure
pages were brought into memory whenever they were needed.

3. Layer 2 handled communication between each process and the
operator console.

17



Figure 13: Structure of the THE operating system.

4. Layer 3 took care of managing the I/O devices and buffering the
information streams to and from them. Above layer 3 each process
could deal with abstract I/O devices with nice properties, instead
of real devices with many peculiarities.

5. Layer 4 was where the user programs were found. They did not
have to worry about process, memory, console, or I/O manage-
ment.

6. The system operator process was located in layer 5.

• A further generalization of the layering concept was present in the
MULTICS (Multiplexed Information and Computing Service, an ex-
tremely influential early time-sharing OS, 1964) system. Instead of
layers, MULTICS was described as having a series of concentric rings,
with the inner ones being more privileged than the outer ones.

• A typical operating-system layer-say, layer M-consists of data struc-
tures and a set of routines that can be invoked by higher-level layers.
Layer M, in turn, can invoke operations on lower-level layers.

• The main advantage of the layered approach is simplicity of construc-
tion and debugging. The layers are selected so that each uses functions
(operations) and services of only lower-level layers. This approach sim-
plifies debugging and system verification.

• Each layer is implemented with only those operations provided by
lower-level layers. A layer does not need to know how these opera-
tions are implemented; it needs to know only what these operations
do. Hence, each layer hides the existence of certain data structures,
operations, and hardware from higher-level layers.

• A problem with layered implementations is that they tend to be less
efficient than other types. For instance, when a user program executes

18



an I/O operation, it executes a system call that is trapped to the I/O
layer, which calls the memory-management layer, which in turn calls
the CPU-scheduling layer, which is then passed to the hardware. Each
layer adds overhead to the system call; the net result is a system call
that takes longer than does one on a nonlayered system.

1.6.3 Microkernels

• Ten bugs per thousand lines of code. This means that a monolithic
OS of five million lines of code is likely to contain something like 50000
kernel bugs. The basic idea behind the microkernel design is to achieve
high reliability by splitting the OS up into small, well-defined modules.

• Modularizing the kernel using the microkernel approach: This method
structures the OS by removing all nonessential components from the
kernel and implementing them as system and user-level programs.

• If the hardware provides multiple privilege levels, then the microkernel
is the only software executing at the most privileged level.

• The result is a smaller kernel. There is little consensus regarding which
services should remain in the kernel and which should be implemented
in user space. Typically, however, microkernels provide minimal process
and memory management, in addition to a communication facility.

• The main function of the microkernel is to provide a communication
facility between the client program and the various services that are
also running in user space.

• Communication is provided by message passing. For example, if the
client program wishes to access a file, it must interact with the file
server. The client program and service never interact directly. Rather,
they communicate indirectly by exchanging messages with the micro-
kernel.

• One benefit of the microkernel approach is ease of extending the OS.

• Unfortunately, microkernels can suffer from performance decreases due
to increased system function overhead. Consider the history of Win-
dows NT.

– The first release had a layered microkernel organization. How-
ever, this version delivered low performance compared with that
of Windows 95.

19



– Windows NT 4.0 partially redressed the performance problem by
moving layers from user space to kernel space and integrating
them more closely. By the time Windows XP was designed, its
architecture was more monolithic than microkernel.

• The MINIX 3 microkernel is only about 3200 lines of C and 800 lines of
assembler for very low-level functions such as catching interrupts and
switching processes.

• The C code manages and schedules processes, handles interprocess com-
munication (by passing message between processes), and offers a set of
about 35 kernel calls. The process structure of MINIX 3 is shown in
Fig. 14

User
mode

Microkernel handles interrupts, 
processes, scheduling, IPC

SysClock

FS Proc. Reinc. Other
... Servers

Disk TTY Netw Print Other
...

Drivers

Shell Make
...

Process

User progs.Other

Figure 14: Structure of the MINIX 3 system.

1.6.4 Modules

• Perhaps the best current methodology for operating-system design in-
volves using object-oriented programming techniques to create a mod-
ular kernel.

• Here, the kernel has a set of core components and dynamically links in
additional services either during boot time or during run time. Such a
strategy uses dynamically loadable modules and is common in modern
implementations of UNIX, such as Solaris, Linux, and Mac OS X.

• For example, the Solaris OS structure, shown in Fig. 15, is organized
around a core kernel with seven types of loadable kernel modules.

• Such a design allows the kernel to provide core services yet also allows
certain features to be implemented dynamically. For example, device

20



Figure 15: Solaris loadable modules.

and bus drivers for specific hardware can be added to the kernel, and
support for different file systems can be added as loadable modules.

• The overall result resembles a layered system in that each kernel section
has defined, protected interfaces; but it is more flexible than a layered
system in that any module can call any other module.

1.7 Virtual Machines

• The layered approach described in Section 1.6.2 is taken to its logical
conclusion in the concept of a virtual machine. The fundamental
idea behind a virtual machine is to abstract the hardware of a single
computer (the CPU, memory, disk drives, network interface cards, and
so forth) into several different execution environments, thereby creating
the illusion that each separate execution environment is running its own
private computer.

• By using CPU scheduling and virtual-memory techniques, an OS can
create the illusion that a process has its own processor with its own
(virtual) memory. Normally, a process has additional features, such
as system calls and a file system, that are not provided by the bare
hardware.

• The virtual-machine approach does not provide any such additional
functionality but rather provides an interface that is identical to the
underlying bare hardware. Each process is provided with a (virtual)
copy of the underlying computer (see Fig. 16).

• There are several reasons for creating a virtual machine, all of which
are fundamentally related to being able to share the same hardware yet
run several different execution environments (that is, different OSs)
concurrently.

21



Figure 16: System models. (a) Nonvirtual machine. (b) Virtual machine.

• Despite the advantages of virtual machines, they received little atten-
tion for a number of years after they were first developed. Today,
however, virtual machines are coming back into fashion as a means of
solving system compatibility problems.

1.7.1 Examples - VMware

• VMware is a popular commercial application that abstracts Intel 80X86
hardware into isolated virtual machines. VMware runs as an applica-
tion on a host OS such as Windows or Linux and allows this host sys-
tem to concurrently run several different guest OSs as independent
virtual machines.

• The architecture of such a system is shown in Fig. 17. In this scenario,
Linux is running as the host OS; FreeBSD, Windows NT, and Windows
XP are running as guest OSs.

• The virtualization layer is the heart of VMware, as it abstracts the
physical hardware into isolated virtual machines running as guest OSs.
Each virtual machine has its own virtual CPU, memory, disk drives,
network interfaces, and so forth.

1.7.2 Examples - The Java Virtual Machine

• Java is a popular object-oriented programming language introduced by
Sun Microsystems in 1995. In addition to a language specification and
a large API library, Java also provides a specification for a Java virtual
machine or JVM.

22



Figure 17: VMware architecture.

• Java objects are specified with the class construct; a Java program con-
sists of one or more classes. For each Java class, the compiler produces
an architecture-neutral bytecode output (.class) file that will run on
any implementation of the JVM.

• The JVM is a specification for an abstract computer. It consists of
a class loader and a Java interpreter that executes the architecture-
neutral bytecodes, as diagrammed in Fig. 18.

Figure 18: The Java virtual machine.

• The JVM also automatically manages memory by performing garbage
collection - the practice of reclaiming memory from objects no longer
in use and returning it to the system. Much research focuses on garbage
collection algorithms for increasing the performance of Java programs
in the virtual machine.

23


	Operating-System Structures
	Operating-System Services
	User Operating-System Interface
	Command Interpreter
	Graphical User Interfaces

	System Calls
	Types of System Calls
	Example of Standard C Library
	Process Control
	File Management
	Device Management
	Information Maintenance
	Communication

	Operating-System Design and Implementation
	Design Goals
	Mechanisms and Policies
	Implementation

	Operating-System Structure
	Simple Structure
	Layered Approach
	Microkernels
	Modules

	Virtual Machines
	Examples - VMware
	Examples - The Java Virtual Machine



