
Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.1

Lecture 4
Processes
Lecture Information

Ceng328 Operating Systems at March 9, 2010

Dr. Cem Özdoğan
Computer Engineering Department

Çankaya University



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.2

Contents

1 Process Management
Process Concept

The Process
Process State
Process Control Block

Process Scheduling
Scheduling Queues
Schedulers
Context Switch
Modelling Multiprogramming

Operations on Processes
Process Creation
Process Termination

Interprocess Communication
Shared-Memory Systems



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.3

Process Management

• What is a process? The most central concept in any OS is
the process : an abstraction of a running program.

• A process can be thought of as a program in execution. A
unit of execution characterized by a single, sequential
thread of execution.

• The resources are allocated to the process
either when it is created or while it is executing.

• The OS is responsible for the following activities in
connection with process and thread management:

• the creation and deletion of both user and system
processes;

• the scheduling of processes;
• the provision of mechanisms for synchronization,

communication, and deadlock handling for processes.



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.4

The Process I

• A process is more than the program code, which is
sometimes known as the text section .

• It also includes the current activity, as represented by the
value of the program counter and the contents of the
processor’s registers.

A

B

C

D

D

C

B

A

Process
switch

One program counter
Four program counters

P
ro

ce
ss

Time

B C DA

(a) (b) (c)

Figure: (a) Multiprogramming of four programs. (b) Conceptual
model of four independent, sequential processes. (c) Only one
program is active at once.



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.5

The Process II

• A process generally also includes
• a data section , which contains global variables,
• the process stack , which contains temporary data (such as

function parameters, return addresses, and local variables),
• a heap , which is memory that is dynamically allocated

during process run time.

• The structure of a process in memory is shown in Fig. 2.

Figure: Process in memory.



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.6

The Process III

• A program becomes a process when an executable file is
loaded into memory.

• Although two processes may be associated with the same
program, they are nevertheless considered
two separate execution sequences.

• For instance, several users may be running different copies
of the mail program,

• or the same user may invoke many copies of the web
browser program.

• Each of these is a separate process; and although the text
sections are equivalent, the data, heap, and stack sections
vary.



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.7

Process State I
• As a process executes, it changes state .
• The state of a process is defined in part by the

current activity of that process.
• Each process may be in one of the following states:

• New. The process is being created.
• Running . Instructions are being executed.
• Waiting . The process is waiting for some event to occur

(such as an I/O completion or reception of a signal).
• Ready . The process is waiting to be assigned to a

processor.
• Terminated . The process has finished execution.

• The state diagram corresponding to these states is
presented in Fig. 3.

Figure: Diagram of process state.



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.8

Process State II

• Instead of thinking about interrupts,
• we can think about user processes, disk processes,

terminal processes, and so on, which block when they are
waiting for something to happen.

• When the disk has been read or the character typed, the
process waiting for it is unblocked and is eligible to run
again.

• This view gives rise to the model shown in Fig. 4.

0 1 n – 2 n – 1

Scheduler

Processes

Figure: The lowest layer of a process-structured OS handles
interrupts and scheduling. Above that layer are sequential
processes.



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.9

Process Control Block I

• The OS must know specific information about processes
in order to manage, control them and also to implement
the process model.

• The OS maintains a table (an array of structures), called
the process table , with one entry per process.

• These entries are called process control blocks (PCB) -
also called a task control block. Keeps the information;
everything about the process.

Figure: Process control block (PCB).



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.10

Process Control Block II

• Such information is usually grouped into two categories:
Process State Information and Process Control
Information. Including these:

• Process state .
• Program counter .
• CPU registers .
• CPU-scheduling information .
• Memory-management information .
• Accounting information .
• I/O status information .



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.11

Process Control Block III

• Figure 6 shows some of the more important fields in a
typical system.

Figure: Some of the fields of a typical process table entry.

• The fields in the first column relate to process
management. The other two columns relate to memory
management and file management, respectively.



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.12

Process Control Block IV

• Along with the program counter, this state information
must be saved when an interrupt occurs, to allow the
process to be continued correctly afterward (see Fig. 7).

Figure: Diagram showing CPU switch from process to process.



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.13

Process Scheduling

• The objective of multiprogramming is to have some
process running at all times, to maximize CPU utilization.

• With the CPU switching back and forth among the
processes, the rate at which a process performs its
computation will not be uniform and probably
not even reproducible if the same processes are run again.

• The objective of time sharing is to switch the CPU among
processes so frequently that users can interact with each
program while it is running.

• To meet these objectives, the process scheduler selects
an available process (possibly from a set of several
available processes) for program execution on the CPU.

• For a single-processor system, there will never be more
than one running process.

• If there are more processes, the rest will have to wait until
the CPU is free and can be rescheduled.



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.14

Scheduling Queues I

• As processes enter the system, they are put into a job
queue , which consists of all processes in the system.

• The processes that are residing in main memory and are
ready and waiting to execute are kept on a list called the
ready queue .

• This queue is generally stored as a linked list.

• A ready-queue header contains pointers to the first and
final PCBs in the list. Each PCB includes a pointer field
that points to the next PCB in the ready queue.

• Suppose the process makes an I/O request to a shared
device, such as a disk.

• Since there are many processes in the system, the disk
may be busy with the I/O request of some other process.



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.15

Scheduling Queues II

• The process therefore may have to wait for the disk. The
list of processes waiting for a particular I/O device is called
a device queue. Each device has its own device queue
(see Fig. 8).

Figure: The ready queue and various I/O device queues.



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.16

Scheduling Queues III

• A common representation for a discussion of process
scheduling is a queuing diagram, such as that in Fig. 9.

Figure: Queueing-diagram representation of process scheduling.

• Each rectangular box represents a queue. Two types of
queues are present: the ready queue and a set of device
queues.

• The circles represent the resources that serve the queues,
and the arrows indicate the flow of processes in the system.



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.17

Scheduling Queues IV

• A new process is initially put in the ready queue. It waits
there until it is selected for execution, or is dispatched .

• Once the process is allocated the CPU and is executing,
one of several events could occur:

• The process could issue an I/O request and then be placed
in an I/O queue.

• The process could create a new subprocess and wait for the
subprocess’s termination.

• The process could be removed forcibly from the CPU, as a
result of an interrupt, and be put back in the ready queue.

• A process continues this cycle until it terminates, at which
time it is removed from all queues and has its PCB and
resources deallocated.



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.18

Schedulers I

• A process migrates among the various scheduling queues
throughout its lifetime.

• The OS must select, for scheduling purposes, processes
from these queues in some fashion. The selection process
is carried out by the appropriate scheduler .

• The long-term scheduler , or job scheduler , selects
processes from this pool and loads them into memory for
execution.

• The short-term scheduler , or CPU scheduler , selects
from among the processes that are ready to execute and
allocates the CPU to one of them.

• The long-term scheduler controls the degree of
multiprogramming (the number of processes in memory).



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.19

Schedulers II

• If the degree of multiprogramming is stable, then the
average rate of process creation must be equal to the
average departure rate of processes leaving the system.

• Thus, the long-term scheduler may need to be invoked
only when a process leaves the system.

• It is important that the long-term scheduler make a careful
selection. In general, most processes can be described as
either I/O bound or CPU bound.

• An I/O-bound process is one that spends more of its time
doing I/O than it spends doing computations.

• A CPU-bound process, in contrast, generates I/O requests
infrequently, using more of its time doing computations.

• It is important that the long-term scheduler select a good
process mix of I/O-bound and CPU-bound processes.

• On some systems, the long-term scheduler may be absent
or minimal.

• For example, time-sharing systems such as UNIX and
Microsoft Windows systems often have no long-term
scheduler but simply put every new process in memory for
the short-term scheduler.



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.20

Schedulers III
• Some OSs, such as time-sharing systems, may introduce

an additional, intermediate level of scheduling. This
medium-term scheduler is diagrammed in Fig. 10.

Figure: Addition of medium-term scheduling to the queuing diagram.

• The key idea behind a medium-term scheduler is that
sometimes it can be advantageous to remove processes
from memory (and from active contention for the CPU) and
thus reduce the degree of multiprogramming.

• Later, the process can be reintroduced into memory, and
its execution can be continued where it left off. This
scheme is called swapping .



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.21

Context Switch

• When an interrupt occurs, the system needs to save the
current context of the process currently running on the
CPU.

• So that it can restore that context when its processing is
done, essentially suspending the process and then
resuming it.

• Switching the CPU to another process requires performing
a state save of the current process and a state restore of a
different process.

• This task is known as a context switch . When a context
switch occurs, the kernel saves the context of the old
process in its PCB and loads the saved context of the new
process scheduled to run.

• process table keeps track of processes,
• context information stored in PCB,
• process suspended: register contents stored in PCB,
• process resumed: PCB contents loaded into registers

• Context-switch time is pure overhead, because the system
does no useful work while switching.

• Context switching can be critical to performance.



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.22

Modelling Multiprogramming I

• When multiprogramming is used, the CPU utilization can
be improved. Crudely put, if the average process
computes only 20% of the time it is sitting in memory at
once, the CPU should be busy all the time.

• Unrealistically optimistic, assumes that all five processes
will never be waiting for I/O at the same time.

• Suppose that a process spend a fraction p of its time
waiting for I/O to complete. With n processes in memory at
once, the probability that all n processes are waiting for I/O
is pn. The CPU utilization is then given by the formula:

CPU utilization = 1 − pn



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.23

Modelling Multiprogramming II
• Fig. 11 shows the CPU utilization as a function of n, which

is called the degree of multiprogramming .

50% I/O wait

80% I/O wait

20% I/O wait
100

80

60

40

20

1 2 3 4 5 6 7 8 9 100

Degree of multiprogramming

C
P

U
 u

til
iz

at
io

n 
(in

 p
er

ce
nt

)

Figure: CPU utilization as a function of the number of processes
in memory.

• For the sake of complete accuracy, it should be pointed
out that the probabilistic model is only an approximation.
Context switching overhead is ignored.



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.24

Process Creation I

• There are four principal events that cause processes to be
created:

1 System initialization.
2 Execution of a process creation system call by a running

process.
3 A user request to create a new process.
4 Initiation of a batch job.

• In all these cases, a new process is created by having an
existing process execute a process creation system call (in
UNIX,fork()).

• The creating process is called a parent process , and the
new processes are called the children of that process.

• Each of these new processes may in turn create other
processes, forming a tree of processes.

• Most OSs (including UNIX and the Windows family of
OSs) identify processes according to a unique process
identifier (or pid), which is typically an integer number.



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.25

Process Creation II

• When a process creates a subprocess, that subprocess
may be able to obtain its resources directly from the OS,

• or it may be constrained to a subset of the resources of
the parent process.

• The parent may have to partition its resources among its
children,

• or it may be able to share some resources (such as memory
or files) among several of its children.

• Restricting a child process to a subset of the parent’s
resources prevents any process from overloading
the system by creating too many subprocesses.



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.26

Process Creation III

• When a process creates a new process, two possibilities
exist in terms of execution:

1 The parent continues to execute concurrently with its
children, competing equally for the CPU.

2 The parent waits until some or all of its children have
terminated (on UNIX, see the man pages for {wait, waitpid,
wait4, wait3}.).

• There are also two possibilities in terms of the address
space of the new process:

1 The child process is a duplicate of the parent process (it has
the same program and data as the parent, an exact clone).
The two processes, the parent and the child, have the same
memory image, the same environment strings, and the
same open files.

2 The child process has a new program loaded into it.



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.27

Process Creation IV

The C program shown below illustrates the UNIX system calls.

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>
int main ()
{
pid_t pid;
/* fork a child process */
pid = fork();
if (pid < 0) {/* error occurred */
fprintf (stderr,"Fork Failed");
exit(-1);

}
else if (pid == 0) {/* child process * /
execlp("/bin/ls","ls",NULL);

}
else {/* parent process */
/* parent will wait for the child to complete */
wait (NULL);
printf ("Child Complete");
exit(O);

}
}



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.28

Process Creation V

We now have two different processes running a copy of the
same program. This is also illustrated in Fig. 12.

Figure: Process creation.



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.29

Process Termination I

• Normal exit (voluntary): A process terminates when it
finishes executing its final statement and asks the OS to
delete it by using the exit() system call.

• At that point, the process may return a status value (typically
an integer) to its parent process (via the wait() system call).

• Releasing all the resources.

• Abnormal termination: programming errors, run time
errors, I/O, user intervention.

• Error exit (voluntary): An error caused by the process, often
due to a program bug (executing an illegal instruction,
referencing non-existent memory, or dividing by zero).

• Fatal error (involuntary): i.e.; no such file exists during the
compilation.

• Killed by another process (involuntary): A process can
cause the termination of another process via an appropriate
system call (for example, TerminateProcess() in Win32).



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.30

Process Termination II

• A parent may terminate the execution of one of its children
for a variety of reasons, such as these:

• The child has exceeded its usage of some of the resources
that it has been allocated.

• The task assigned to the child is no longer required.
• The parent is exiting, and the OS does not allow a child to

continue if its parent terminates (cascading termination).

• To illustrate process execution and termination, consider
that, in UNIX, we can terminate a process by using the
exit() system call.

• The wait() system call returns the process identifier of a
terminated child so that the parent can tell which of its
possibly many children has terminated.

• If the parent terminates, then the child will become a
zombie process and may be listed as such in the process
status list!.

• This is not always true since all its children could have
been assigned as their new parent the init process.



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.31

Interprocess Communication I

• Processes executing concurrently in the OS may be either
independent processes or cooperating processes.

• A process is independent if it cannot affect or be affected by
the other processes executing in the system. Any process
that does not share data with any other process is
independent.

• A process is cooperating if it can affect or be affected by the
other processes executing in the system. Clearly, any
process that shares data with other processes is a
cooperating process.

• There are several reasons for providing an environment
that allows process cooperation:

• Information sharing .
• Computation speedup .
• Modularity .
• Convenience .



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.32

Interprocess Communication II

• Cooperating processes require an interprocess
communication (IPC) mechanism that will allow them to
exchange data and information.

• There are two fundamental models of interprocess
communication:

• Shared Memory .
• Message Passing .

• Message passing is useful for exchanging smaller
amounts of data, because no conflicts need be avoided.

• Message passing is also easier to implement than is
shared memory for intercomputer communication.

• Shared memory allows maximum speed and convenience
of communication, as it can be done at memory speeds
when within a computer.

• In shared-memory systems, system calls are required only
to establish shared-memory regions (no assistance from
the kernel).



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.33

Interprocess Communication III

The two communications models are contrasted in Fig. 13.

Figure: Communications models. (a) Message passing. (b) Shared
memory.



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.34

Shared-Memory Systems I

• Typically, a shared-memory region resides in the address
space of the process creating the shared-memory
segment.

• Other processes that wish to communicate using this
shared-memory segment must attach it to their address
space.

• Recall that, normally, the OS tries to prevent one process
from accessing another process’s memory.

• Shared memory requires that two or more processes
agree to remove this restriction.

• The form of the data and the location are determined by
these processes and are not under the OS’s control.

• The processes are also responsible for ensuring that they
are not writing to the same location simultaneously.



Processes

Dr. Cem Özdo ğan

Process Management
Process Concept

The Process

Process State

Process Control Block

Process Scheduling

Scheduling Queues

Schedulers

Context Switch

Modelling
Multiprogramming

Operations on Processes

Process Creation

Process Termination

Interprocess
Communication

Shared-Memory Systems

4.35

Shared-Memory Systems II

• To illustrate the concept of cooperating processes, let’s
consider the producer-consumer problem .

• One solution to the producer-consumer problem uses
shared memory.

• To allow producer and consumer processes to run
concurrently, we must have available a buffer of items that
can be filled by the producer and emptied by the
consumer.

• This buffer will reside in a region of memory that is shared
by the producer and consumer processes.

• The producer and consumer must be synchronized .
• Two types of buffers can be used.

1 The unbounded buffer places no practical limit on the size
of the buffer. The consumer may have to wait for new items,
but the producer can always produce new items.

2 The bounded buffer assumes a fixed buffer size. In this
case, the consumer must wait if the buffer is empty, and the
producer must wait if the buffer is full.


	Process Management
	Process Concept
	Process Scheduling
	Operations on Processes
	Interprocess Communication


