
CENG328
Operating Systems

Laboratory IV
Processes I

2Cankaya University
Department of Computer Engineering

2011

1. Examples

Initial process

fork()

Original
process

continues

New
process

Returns a
new PID

Returns
zero

Compile and run all of the codes.
Analyze the codes and their outputs.

● Creating a child process; fork – code14.c.

#include <stdio.h>
main()
{
 puts("Begin fork test.");
 fork();
 puts("End fork test.");
}

● What is the output? Why?

http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code14.c

3Cankaya University
Department of Computer Engineering

2011

1. Examples

● Parent and child process; getpid - code15.c.

● Execute this code several times. You should observe that the order for the print
messages of the parent and child processes change. Why?

● Fork at the beginning and error analysis; perror – code16.c.

● Find out that the function perror is included by which library.

– Why the value −1 is checked?

● Fork is executed at the beginning of the program. So that the rest of the code will be
duplicated, now belonging to both parent and child processes.

● Execute several times and examine the order in the output. Is there any specific order
that which one will be executed first?

● What is the function of the type definition pid_t?

http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code15.c
http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code16.c

4Cankaya University
Department of Computer Engineering

2011

1. Examples

● Signaling; sleep, getppid – code17.c.

● What is the function of sleep?

● Who is the parent of the PARENT? Find it out by the command
ps aux | grep <Put the ParentPID you see here>

● Why CHILD process prints out the PID of its parent as 1? (see next example)

● Synchronizing; wait - code18.c.

● What is meant by synchronization?

● wait and sleep are system calls. What is the function of wait?

● Why CHILD process prints out the PID of its parent correctly now?

http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code17.c
http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code18.c

5Cankaya University
Department of Computer Engineering

2011

1. Examples

● Zombie processes - code19.c.

● When a child process terminates, an association with its parent survives until the parent
in turn either terminates normally or calls wait.

● The child process entry in the process table is therefore not freed up immediately.

● Although no longer active, the child process is still in the system because its exit code
needs to be stored in case the parent subsequently calls wait. It becomes what is known
as defunct, or a zombie process.

● Call the ps -ux program in another shell after the child has finished but before the
parent has finished, we’ll see a <defunct> phrase in the line. Some systems may say
<zombie> rather than <defunct>.

● If the parent then terminates abnormally, the child process automatically gets the
process with PID 1 (init) as parent.

● The child process is now a zombie that is no longer running but has been inherited by init
because of the abnormal termination of the parent process.

● Understanding system - code20.c .

● Try to recognize your "code20" and corresponding PID from the output.

http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code19.c
http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code20.c

6Cankaya University
Department of Computer Engineering

2011

2. Shared Memory

● An Example: POSIX Shared Memory;

● Several IPC mechanisms are available for POSIX systems, including shared memory and
message passing. Here, we explore the POSIX API for shared memory.

● The program code55.c illustrates the POSIX shared-memory API.

● This program creates a 4,096-byte shared-memory segment. Once the region of shared
memory is attached, the process writes the message Hi There! to shared memory. After
outputting the contents of the updated memory, it detaches and removes the shared
memory region.

http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code55.c

7Cankaya University
Department of Computer Engineering

2011

3. Exercises

● Write a program that creates a zombie
process and then call system to execute
the ps command to verify that the process
is zombie.

● Write a program to create 5 processes
where the first process is the parent of the
second and third ones and the third
process is the parent of the fourth and
fifth ones. Your program should be capable
of;

● checking if the processes are forked
with success,

● printing the pid and parent pid of
each process,

● printing the parent pid of the first
process.

#1

#2 #3

#4 #5

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

