
0.1 Peterson’s Solution (Software approach)

• A classic software-based solution to the critical-section problem known as
Peterson’s solution.

• Does not require strict alternation.

• Peterson’s solution is restricted to two processes that alternate execution
between their CSs and remainder sections. The processes are numbered
P0 and P1.

• Peterson’s solution requires two data items to be shared between the
two processes:

int turn;

boolean flag[2];

– The variable turn indicates whose turn it is to enter its CS. That
is, if turn == i, then process Pi is allowed to execute in its CS.

– The flag array is used to indicate if a process is ready to enter
its CS. For example, if flag[i] is true, this value indicates that Pi

is ready to enter its CS.

• The algorithm for Peterson’s solution is seen in Fig. 1.

Figure 1: The structure of process Pi in Peterson’s solution.

– To enter the CS, process Pi first sets flag[i] to be true and then
sets turn to the value j, thereby asserting that if the other process
wishes to enter the CS, it can do so.

1

– If both processes try to enter at the same time, turn will be set
to both i and j at roughly the same time. Only one of these
assignments will last; the other will occur but will be overwritten
immediately.

– The eventual value of turn decides which of the two processes is
allowed to enter its CS first.

• Mutual exclusion is preserved.

– Each Pi enters its CS only if either flag[j] == false or turn == i.

– Also note that, if both processes can be executing in their CSs
at the same time, then flag[0] == flag[1] == true. These two
observations imply that P0 and Pi could not have successfully
executed their while statements at about the same time, since the
value of turn can be either 0 or 1 but cannot be both.

– Hence, one of the processes -say Pj -must have successfully exe-
cuted the while statement, whereas Pi had to execute at least one
additional statement (”turn == j”).

– However, since, at that time, flag[j] == true, and turn == j,
and this condition will persist as long as Pj is in its CS, the result
follows: Mutual exclusion is preserved.

• The progress requirement is satisfied & The bounded-waiting
requirement is met.

– A process Pi can be prevented from entering the CS only if it is
stuck in the while loop with the condition flag[j] == true and
turn == j; this loop is the only one possible.

– If Pj is not ready to enter the CS, then flag[j] == false, and Pi

can enter its CS.

– If Pj has set flag[j] to true and is also executing in its while
statement, then either turn == i or turn == j.

– If turn == i, then Pi will enter the CS. If turn == j, then Pj will
enter the CS.

– However, once Pi exits its CS, it will reset flag[j] to false, allowing
Pi to enter its CS.

– If Pj resets flag[j] to true, it must also set turn to i.

– Thus, since Pi does not change the value of the variable turn while
executing the while statement, Pi will enter the CS (progress) after
at most one entry by Pj (bounded waiting).

2

• Burns CPU cycles (requires busy waiting, can be extended to work for
n processes, but overhead, cannot be extended to work for an unknown
number of processes, unexpected effects).

Figure 2: Peterson’s solution for achieving mutual exclusion.

• Sleep and wakeup. Peterson’s solution has not only the defect of
requiring busy waiting but it can also have unexpected effects;

– Consider a computer with two processes, H, with high priority
and L, with low priority.

– The scheduling rules are such that H is run whenever it is in ready
state.

– At a certain moment, with L in its critical region, H becomes
ready to run (e.g., an I/O operation completes).

– H now begins busy waiting, but since L is never scheduled while
H is running, L never gets the chance to leave its critical region,
so H loops forever.

– This situation is sometimes referred to as the priority inversion

problem.

3

• IPC primitive that blocks instead of wasting CPU time (while loop)
when they are not allowed to enter their CRs.One of the simplest is the
pair sleep and wakeup.

– Sleep is a system call that causes the caller to block, that is, be
suspended until another process wakes it up.

– The wakeup call has one parameter, the process to be awakened.

0.2 Semaphores

• A synchronization tool called semaphore.Semaphores are variables
that are used to signal the status of shared resources to processes.

• Dijkstra (1965) suggested using an integer variable to count the number
of wakeups saved for future use. In his proposal, a new variable type,
called a semaphore, was introduced.

• A semaphore S is an integer variable that, apart from initialization, is
accessed only through two standard atomic operations: wait() (sleep)
and signal() (wakeup).

• A semaphore could have the value 0, indicating that no wakeups were
saved, or some positive value if one or more wakeups were pending.

• Two operations, down and up (generalizations of sleep and wakeup,
respectively);

• The definition of wait() is as follows:

wait (S) {

while S <= 0

;// no-op

S--;

}

• The definition of signal() is as follows:

signal (S) {

S++;

}

• All the modifications to the integer value of the semaphore in the wait()
and signal() operations must be executed indivisibly.

4

• That is, when one process modifies the semaphore value, no other process
can simultaneously modify that same semaphore value.

• In addition, in the case of wait(S), the testing of the integer value of S

(S ≤ 0), and its possible modification (S −−), must also be executed
without interruption.

0.2.1 Usage

• Counting and binary semaphores. The value of a counting semaphore
can range over an unrestricted domain.

• The value of a binary semaphore can range only between 0 and 1. On
some systems, binary semaphores are known as mutex locks, as they
are locks that provide mutual exclusion.

• We can use binary semaphores to deal with the critical-section problem
for multiple processes. The n processes share a semaphore, mutex,
initialized to 1. Each process Pi is organized as shown in Fig. 3.

Figure 3: Mutual-exclusion implementation with semaphores.

• Counting semaphores can be used to control access to a given resource
consisting of a finite number of instances. The semaphore is initialized
to the number of resources available.

• Each process that wishes to use a resource performs a wait() operation
on the semaphore (thereby decrementing the count). When a process
releases a resource, it performs a signal() operation (incrementing the
count).

5

• When the count for the semaphore goes to 0, all resources are being
used. After that, processes that wish to use a resource will block until the
count becomes greater than O.

0.2.2 Implementation

• The main disadvantage of the semaphore definition given here is that
it requires busy waiting.

– While a process is in its CS, any other process that tries to enter
its CS must loop continuously in the entry code.

– Busy waiting wastes CPU cycles that some other process might
be able to use productively.

• This type of semaphore is also called a spinlock because the process
“spins” while waiting for the lock. (Spinlocks do have an advantage in
that no context switch is required when a process must wait on a lock,
and a context switch may take considerable time. Thus, when locks
are expected to be held for short times, spinlocks are useful.)

• To overcome the need for busy waiting, we can modify the definition
of the wait() and signal() semaphore operations.

– When a process executes the wait() operation and finds that the
semaphore value is not positive, it must wait.

– However, rather than engaging in busy waiting, the process can
block itself.

– The block operation places a process into a waiting queue associ-
ated with the semaphore, and the state of the process is switched
to the waiting state.

– Then control is transferred to the CPU scheduler, which selects
another process to execute.

• A process that is blocked, waiting on a semaphore S, should be restarted
when some other process executes a signal() operation.

• The process is restarted by a wakeup() operation, which changes the
process from the waiting state to the ready state. The process is then
placed in the ready queue. (The CPU may or may not be switched
from the running process to the newly ready process, depending on the
CPU-scheduling algorithm.)

6

• The list of waiting processes can be easily implemented by a link field in
each process control block (PCB). Each semaphore contains an integer
value and a pointer to a list of PCBs.

• The critical aspect of semaphores is that they be executed atomi-
cally. We must guarantee that no two processes can execute wait()
and signal() operations on the same semaphore at the same time.

0.2.3 Deadlocks and Starvation

• The implementation of a semaphore with a waiting queue may result
in a situation where two or more processes are waiting indefinitely for
an event that can be caused only by one of the waiting processes.

• The event in question is the execution of a signal() operation. When
such a state is reached, these processes are said to be deadlocked.

• To illustrate this, we consider a system consisting of two processes, P0

and P1, each accessing two semaphores, S and Q, set to the value 1:

– Suppose that P0 executes wait(S) and then P1 executes wait(Q).

– When P0 executes wait(Q), it must wait until P1 executes signal(0).

– Similarly, when P1 executes wait(S), it must wait until P0 executes
signal(S).

– Since these signal() operations cannot be executed, P0 and P1 are
deadlocked.

• We say that a set of processes is in a deadlock state when every process
in the set is waiting for an event that can be caused only by another
process in the set.

7

• Another problem related to deadlocks is indefinite blocking, or star-
vation, a situation in which processes wait indefinitely within the
semaphore.

• Indefinite blocking may occur if we add and remove processes from the
list associated with a semaphore in LIFO (last-in, first-out) order.

0.2.4 Mutexes

• When the semaphore’s ability to count is not needed, a simplified ver-
sion of the semaphore, called a mutex, is sometimes used.

• A mutex is a variable that can be in one of two states: unlocked or
locked. Two procedures are used with mutexes.

– When a thread (or process) needs access to a critical region, it
calls mutex lock.

– If the mutex is current unlocked (meaning that the critical region
is available), the call succeeds and the calling thread is free to
enter the critical region.

Figure 4: Some of the Pthreads calls relating to the mutexes.

• On the other hand, if the mutex is already locked, the calling thread
is blocked until the thread in the critical region is finished and calls
mutex unlock.

• If multiple threads are blocked on the mutex, one of them is chosen at
random and allowed to acquire the lock.

• With threads, there is no clock that stops threads that have run too
long. Consequently, a thread that tries to acquire a lock by busy waiting
will loop forever and never acquire the lock because it never allows any
other thread to run and release the lock.

8

Figure 5: Using threads to solve the producer-consumer problem.

• That is where the difference between enter region and mutex lock

comes in. When the later fails to acquire a lock, it calls thread yield

to give up the CPU to another thread.

• Consequently there is no busy waiting. When the thread runs the next
time, it tests the lock again.

0.3 Classic Problems of Synchronization

We present a number of synchronization problems as examples of a large
class of concurrency-control problems. These problems are used for testing
nearly every newly proposed synchronization scheme.

9

0.3.1 The Bounded-Buffer Problem

• We assume that the pool consists of n buffers, each capable of holding
one item. The mutex semaphore provides mutual exclusion for accesses
to the buffer pool and is initialized to the value 1.

• The empty and full semaphores count the number of empty and full
buffers.

– The semaphore empty is initialized to the value n.

– The semaphore full is initialized to the value 0.

• The code for the producer process is shown in Fig. 6;

Figure 6: The structure of the producer process.

• The code for the consumer process is shown in Fig. 7;

0.3.2 The Readers-Writers Problem

• A database is to be shared among several concurrent processes.

• Some of these processes may want only to read the database (readers),
whereas others may want to update (that is, to read and write) the
database (writers).

• If two readers access the shared data simultaneously, no adverse affects
will result. However, if a writer and some other thread (either a reader

10

Figure 7: The structure of the consumer process.

or a writer) access the database simultaneously, there could be some
synchronization issues.

• To ensure that these difficulties do not arise, we require that the writers
have exclusive access to the shared database. This synchronization
problem is referred to as the readers-writers problem.

• The readers-writers problem has several variations, all involving prior-
ities.

– The simplest one, referred to as the first readers-writers problem,
requires that no reader will be kept waiting unless a writer has
already obtained permission to use the shared object. In other
words, no reader should wait for other readers to finish simply
because a writer is waiting.

– The second readers-writers problem requires that, once a writer is
ready, that writer performs its write as soon as possible. In other
words, if a writer is waiting to access the object, no new readers
may start reading.

• A solution to either problem may result in starvation.

– In the first case, writers may starve.

– In the second case, readers may starve.

11

Figure 8: The producer-consumer problem using semaphores.

• In the solution to the first readers-writers problem, the reader processes
share the following data structures:

semaphore mutex, wrt;

int readcount;

• The code for a writer process is shown in Fig. 9;

• The code for a reader process is shown in Fig. 10;

– The semaphores mutex and wrt are initialized to 1; readcount is
initialized to O.

12

Figure 9: The structure of a writer process.

Figure 10: The structure of a reader process.

– The semaphore wrt is common to both reader and writer pro-
cesses.

– The mutex semaphore is used to ensure mutual exclusion when
the variable readcount is updated.

– The readcount variable keeps track of how many processes are
currently reading the object.

– The semaphore wrt functions as a mutual-exclusion semaphore for
the writers. It is also used by the first or last reader that enters
or exits the CS. It is not used by readers who enter or exit while
other readers are in their CSs.

13

• Note that, if a writer is in the CS and n readers are waiting, then one
reader is queued on wrt, and n − 1 readers are queued on mutex.

• Also observe that, when a writer executes signal(wrt), we may resume
the execution of either the waiting readers or a single waiting writer.
The selection is made by the scheduler.

0.3.3 The Dining-Philosophers Problem

• The dining philosophers problem is useful for modeling processes that
are competing for exclusive access to a limited number of resources,
such as I/O devices.

• Consider five philosophers who spend their lives thinking and eating.

• The philosophers share a circular table surrounded by five chairs, each
belonging to one philosopher. In the center of the table is a bowl of
rice, and the table is laid with five single chopsticks (see Fig. 11).

Figure 11: The situation of the dining philosophers.

– When a philosopher thinks, she does not interact with her col-
leagues.

– From time to time, a philosopher gets hungry and tries to pick up
the two chopsticks that are closest to her (the chopsticks that are
between her and her left and right neighbors).

– A philosopher may pick up only one chopstick at a time. Obvi-
ously, she cannot pick up a chopstick that is already in the hand
of a neighbor.

14

– When a hungry philosopher has both her chopsticks at the same
time, she eats without releasing her chopsticks.

– When she is finished eating, she puts down both of her chopsticks
and starts thinking again.

• The dining-philosophers problem is an example of a large class of
concurrency-control problems. It is a simple representation of the need
to allocate several resources among several processes in a deadlock-free
and starvation-free manner.

• One simple solution is to represent each chopstick with a semaphore.

– A philosopher tries to grab a chopstick by executing a wait() oper-
ation on that semaphore; she releases her chopsticks by executing
the signal() operation on the appropriate semaphores.

– Thus, the shared data are

semaphore chopstick[5] ;

where all the elements of chopstick are initialized to 1.

– The structure of philosopher i is shown in Fig. 12.

Figure 12: The structure of philosopher i.

– Although this solution guarantees that no two neighbors are eating
simultaneously, it nevertheless must be rejected because it could
create a deadlock.

15

– Suppose that all five philosophers become hungry simultaneously
and each grabs her left chopstick. All the elements of chopstick
will now be equal to O. When each philosopher tries to grab her
right chopstick, she will be delayed forever.

• One improvement to Fig. 12 that has no deadlock and no starvation
is to protect the five statements following the call to think by a binary
semaphore.

– Before starting to acquire forks, a philosopher would do a down
on mutex

– After replacing the forks, she would do an up on mutex

• It has a performance bug: only one philosopher can be eating at any
instant. With five forks available, we should be able to allow two
philosophers to eat at the same time.

• Any satisfactory solution to the dining-philosophers problem must guard
against the possibility that one of the philosophers will starve to death.
A deadlock-free solution does not necessarily eliminate the possibility
of starvation.

• The solution presented in Fig. 13 is deadlock-free and allows the max-
imum parallelism for an arbitrary number of philosophers. It uses an
array, state, to keep track of whether a philosopher is eating, thinking,
or hungry (trying to acquire forks).

• A philosopher may move only into eating state if neither neighbor
(LEFT and RIGHT) is eating .

• The solution is deadlock–free and allows the maximum parallelism for
any number of philosophers

0.4 Monitors

• Although semaphores provide a convenient and effective mechanism for
process synchronization, using them incorrectly can result in timing
errors that are difficult to detect, since these errors happen only if
some particular execution sequences take place and these sequences do
not always occur.

• The semaphore solution to the CS problem.

16

Figure 13: A solution to the dining philosophers problem.

– All processes share a semaphore variable mutex, which is initial-
ized to 1.

– Each process must execute wait(mutex) before entering the CS
and signal(mutex) afterward.

– If this sequence is not observed,two processes may be in their CSs
simultaneously.

• Suppose that a process interchanges the order in which the wait() and
signal() operations on the semaphore mutex are executed, resulting in
the following execution:

17

signal(mutex);

...

critical section

...

wait(mutex);

– In this situation, several processes maybe executing in their CSs
simultaneously, violating the mutual-exclusion requirement.

– This error may be discovered only if several processes are simul-
taneously active in their CSs. Note that this situation may not
always be reproducible.

• Suppose that a process replaces signal(mutex) with wait(mutex). That
is, it executes

wait(mutex);

...

critical section

...

wait(mutex);

In this case, a deadlock will occur.

• Suppose that a process omits the wait(mutex), or the signal(mutex),
or both. In this case, either mutual exclusion is violated or a deadlock
will occur.

• These examples illustrate that various types of errors can be generated
easily when programmers use semaphores incorrectly to solve the CS
problem.

• You must be careful when using semaphores. It is like programming
in assembly language, only worse, because the errors are race condi-
tions, deadlocks, and other forms of unpredictable and irreproducible
behavior.

• Semaphores require programmer to think of every timing issue; easy to
miss something, difficult to debug. Let the compiler handle the details.
Programmer only has to say what to protect.

• Researchers have developed high-level language constructs - mon-
itor.

18

– A monitor is a collection of procedures, variables, and data struc-
tures that are all grouped together in a special kind of module or
package.

– Processes may call the procedures in a monitor whenever they
want to, but they cannot directly access the monitor’s internal
data structures from procedures declared outside the monitor.

• Monitors have an important property that makes them useful for achiev-
ing mutual exclusion: only one process can be active in a monitor at
any instant.

• Monitors are a programming language construct, so the compiler knows
they are special and can handle calls to monitor procedures differently
from other procedure calls.

• Compiler actually does the protection (compiler will use semaphores to
do protection).

• Main problem: provides less control.

• Some real programming languages also support monitors. One such
language is Java.

• Java is an object-oriented language that supports user-level threads and
also allows methods (procedures) to be grouped together into classes.

• By adding the keyword synchronized to a method declaration, Java
guarantees that once any thread has started executing that method, no
other thread will be allowed to start executing any other synchronized
method in that class.

0.4.1 Usage

• A type, or abstract data type, encapsulates private data with pub-
lic methods to operate on that data. A monitor type presents a set
of programmer-defined operations that are provided mutual exclusion
within the monitor.

• The monitor type also contains the declaration of variables whose values
define the state of an instance of that type, along with the bodies of
procedures or functions that operate on those variables. The syntax of
a monitor is shown in Fig. 14.

19

Figure 14: Syntax of a monitor.

• The representation of a monitor type cannot be used directly by the
various processes. Thus, a procedure defined within a monitor can
access only those variables declared locally within the monitor and its
formal parameters.

• Similarly, the local variables of a monitor can be accessed by only the
local procedures.

20

• The monitor construct ensures that only one process at a time can be
active within the monitor. Consequently, the programmer does not
need to code this synchronization constraint explicitly (see Fig. 15).

Figure 15: Schematic view of a monitor.

• A solution to the producer-consumer problem using monitors in Java
is given in Fig. 16.

21

Figure 16: An outline of the producer-consumer problem with Java.

22

	Peterson's Solution (Software approach)
	Semaphores
	Usage
	Implementation
	Deadlocks and Starvation
	Mutexes

	Classic Problems of Synchronization
	The Bounded-Buffer Problem
	The Readers-Writers Problem
	The Dining-Philosophers Problem

	Monitors
	Usage

