
CENG328
Operating Systems

Laboratory VII
Processes III & CPU Scheduling



2Cankaya University
Department of Computer Engineering

2011

1. Processes – Signals & Signal Handling

● Signal; code28.c

● Signals are mechanisms for communicating with and manipulating processes.

● A signal is a special message sent to a process. Signals are asynchronous; when a process 
receives a signal, it processes the signal immediately, without finishing the current 
function or even the current line of code.

● Each signal type is specified by its signal number, but in programs, you usually refer to a 
signal by its name.

● How to terminate the program? Break with CTRL + Z, you will get

[1]+ Stopped code28

● then kill the stopped process with kill %1.

● To view a list of all available signals, use man kill.

http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code28.c


3Cankaya University
Department of Computer Engineering

2011

1. Processes – Signals & Signal Handling

● Signal Handling; - code29.c

● Even assigning a value to a global variable can be dangerous because the assignment 
may actually be carried out in two or more machine instructions, and a second signal may 
occur between them, leaving the variable in a corrupted state.

● If you use a global variable to flag a signal from a signal-handler function, it should be of 
the special type sig_atomic_t.

● Assignments to variables of this type are performed in a single instruction and therefore 
cannot be interrupted midway.

● This program uses a signal-handler function to count the number of times that the 
program receives SIGUSR1, one of the signals reserved for application use.

● Exercise: Write a C program which controls the POSIX interrupt signal (SIGINT).

● Your program should continuously increase an integer value.

● With each interrupt request (CTRL + C), your program should;

– Display the current value of counter.

– Toggle whether the counter should continue increasing, or stop.

http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code29.c


4Cankaya University
Department of Computer Engineering

2011

2. CPU Scheduling Simulation

● Download the simulator from link: 
ProcessCPUScheduling.tar.gz.

● Unpack the simulator with the following 
command:

cd Downloads
tar zxvf ProcessCPUScheduling.tar.gz

● Run the simulator with the following 
command:

cd ProcessCPUScheduling
chmod +x runps
./runps

● First of all, read the psdoc.html file 
carefully. This file contains detailed 
information about running and modifying 
the parameters of the simulation.

http://siber.cankaya.edu.tr/OperatingSystems/week6l/ProcessCPUScheduling.tar.gz


5Cankaya University
Department of Computer Engineering

2011

2. CPU Scheduling Simulation

● Each time you want to modify simulation parameters such as first arrival or CPU burst, you 
have to edit the myrun.run file and restart the simulator. The contents of myrun.run file look 
like this:

name         myrun
comment      This is a sample experimental run file
algorithm    SJF
numprocs     5
firstarrival 0.0
interarrival constant 0.0
duration     constant 25.0
cpuburst     constant 5.0
ioburst      constant 1.0
basepriority 1.0

● Each line in this file hold various parameters related to the simulation such as the algorithm 
used for the simulation, number of processes, CPU burst time, etc.

● After starting the simulator, click on the Run Experiment button. This will start the 
simulation.

● When the simulation is completed, click on the Draw Gannt Chart button. A new window will 
appear with a gannt chart representing how the processes were scheduled.



6Cankaya University
Department of Computer Engineering

2011

2. CPU Scheduling Simulation

● In this graph, each horizontal line 
represent processes. Green parts 
represent READY state (waiting for its 
turn), red parts represent RUNNING state.

● Change the simulation parameters many 
times and observe how each change affect 
the simulation itself.

● Exercise: Create a sample run with;

● First-Come/First-Served algorithm,
● 10 processes,
● Interarrival varying between 5 and 10,
● Duration varying between 5 and 60,
● CPU burst as 5,
● IO burst as 1.

Then, change the algorithm to Shortest 
Job First and compare the results.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

