
1 Deadlocks

• In a multiprogramming environment, several processes may compete for
a finite number of resources.

• A process requests resources; and if the resources are not available at
that time, the process enters a waiting state. Sometimes, a waiting
process is never again able to change state, because the resources it
has requested are held by other waiting processes.

• Deadlock is defined as the permanent blocking of a set of processes
that compete for system resources.

1.1 System Model

• A system consists of a finite number of resources to be distributed among
a number of competing processes.

• The resources are partitioned into several types, each consisting of some
number of identical instances.

• Reusable: something that can be safely used by one process at a time
and is not consumed by that use. Processes obtain resources that they
later release for reuse by others (processors, memory, files, devices,
databases, and semaphores).

• Consumable: these can be created and destroyed. When a resource is
acquired by a process, the resource ceases to exist (interrupts, signals,
messages, and information in I/O buffers).

• A preemptable resource is one that can be taken away from the
process owning it with no ill effects. Memory (also CPU) is an example
of a preemptable resource.

• A nonpreemptable resource, in contrast, is one that cannot be taken
away from its current owner without causing the computation to fail
(printer, CD-R(W)floppy disk).

• In general, deadlocks occur when sharing reusable and nonpreempt-

able resources. Potential deadlocks that involve preemptable resources
can usually be resolved by reallocating resources from one process to
another.

1

• A process must request a resource before using it and must release the
resource after using it.

– A process may request as many resources as it requires to carry
out its designated task.

– Obviously, the number of resources requested may not exceed the
total number of resources available in the system.

• Under the normal mode of operation, a process may utilize a resource
in only the following sequence:

1. Request. If the request cannot be granted immediately, then the
requesting process must wait until it can acquire the resource.

2. Use. The process can operate on the resource.

3. Release. The process releases the resource.

• The request and release of resources are system calls. Examples are the
request() and release() device, open() and close() file, and allocate()
and free() memory system calls.

• Request and release of resources that are not managed by the OS
can be accomplished through the wait() and signal() operations on
semaphores or through acquisition and release of a mutex lock.

• A system table records whether each resource is free or allocated; for
each resource that is allocated, the table also records the process to
which it is allocated.

• If a process requests a resource that is currently allocated to another
process, it can be added to a queue of processes waiting for this re-
source.

• A process whose resource request has just been denied will normally
sit in a tight loop requesting the resource, then sleeping, then trying
again.

• One possible way of allowing user management of resources is to as-
sociate a semaphore with each resource. Mutexes can be used equally
well.

• The three steps listed above are then implemented as a down on the
semaphore to acquire the resource, using the resource, and finally an
up on the resource to release it. These steps are shown in Fig. 1.

2

Figure 1: Using a semaphore to protect resources. (a) One resource. (b)
Two resources.

• A set of processes is in a deadlock state when every process in the set
is waiting for an event that can be caused only by another process in
the set.

– Because all the processes are waiting, none of them will ever cause
any of the events that could wake up any of the other members of
the set, and all the processes continue to wait forever.

– None of the processes can run, none of them can release any re-
sources, and none of them can be awakened.

– This result holds for any kind of resource, including both hardware
and software.

• To illustrate a deadlock state, consider a system with three CD RW
drives.

– Suppose each of three processes holds one of these CD RW drives.

– If each process now requests another drive, the three processes
will be in a deadlock state.

– Each is waiting for the event ”CD RW is released,” which can be
caused only by one of the other waiting processes.

• Deadlocks can occur in a variety of situations besides requesting dedi-
cated I/O devices. In a database system, for example, a program may
have to lock several records it is using, to avoid race conditions.

3

– If process A locks record R1 and process B locks record R2, and
then each process tries to lock the other one’s record, we also have
a deadlock (see Fig. 2).

Figure 2: (a) Deadlock-free code. (b) Code with a potential deadlock.

• Deadlocks can occur on hardware resources or on software resources.

• Unlike other problems in multiprogramming systems, there is no effi-

cient solution to the deadlock problem in the general case.

• A programmer who is developing multithreaded applications must pay
particular attention to this problem. Multithreaded programs are good
candidates for deadlock because multiple threads can compete for shared
resources.

1.2 Deadlock Characterization

1.2.1 Necessary Conditions

• A deadlock situation can arise if the following four conditions hold
simultaneously in a system:

4

Figure 3: An example to Deadlock.

– Mutual exclusion. At least one resource must be held in a
nonsharable mode;

∗ That is, only one process at a time can use the resource.

∗ If another process requests that resource, the requesting pro-
cess must be delayed until the resource has been released.

– Hold and wait. A process must be holding at least one resource
and waiting to acquire additional resources that are currently be-
ing held by other processes.

– No preemption. Resources cannot be preempted; that is, a re-
source can be released only voluntarily by the process holding it,
after that process has completed its task.

– Circular wait. A set {P0, P1, . . . , Pn} of waiting processes must
exist such that

∗ P0 is waiting for a resource held by P1,

∗ P1 is waiting for a resource held by P2 ,

∗
...

∗ Pn−1 is waiting for a resource held by Pn,

∗ Pn is waiting for a resource held by P0.

There must be a circular chain of two or more processes, each of
which is waiting for a resource held by the next member of the
chain.

5

• We emphasise that all four conditions must hold for a deadlock

to occur.

1.2.2 Resource-Allocation Graph

• Deadlocks can be described more precisely in terms of a directed graph
called a system resource-allocation graph.

• This graph consists of a set of vertices V and a set of edges E.

– The set of vertices V is partitioned into two different types of
nodes: Pis and Ris.

– A directed edge from process Pi to resource type Rj is denoted by
Pi → Rj; it signifies that process Pi has requested an instance
of resource type Rj and is currently waiting for that resource
(request edge).

– A directed edge from resource type Rj to process Pi is denoted by
Rj → Pi; it signifies that an instance of resource type Rj has been
allocated to process Pi (assignment edge).

• Pictorially, each process Pi is represented as a circle and each resource
type Rj as a rectangle.

(a) (b) (c)

T U

D

C

S

B

A

R

Figure 4: Resource allocation graphs. (a) Holding a resource. (b) Requesting
a resource. (c) Deadlock.

• An arc from a resource node (square) to a process node (circle) means
that the resource has previously been requested by, granted to, and is
currently held by that process (see Fig. 4).

• Since resource type Rj may have more than one instance, each such
instance is represented as a dot within the rectangle.

• The resource-allocation graph shown in Fig. 5left depicts the following
situation. The sets P , R, and E:

6

Figure 5: Left: Resource-allocation graph. Middle: Resource-allocation
graph with a deadlock. Right: Resource-allocation graph with a cycle but
no deadlock

– P = {P1, P2, P3}

– P = {R1, R2, R3, R4}

– E = {P1 → R1, P2 → R3, R1 → P2, R2 → P2, R2 → P1, R3 → P3}

• Given the definition of a resource-allocation graph, it can be shown
that, if the graph contains no cycles, then no process in the system
is deadlocked. If the graph does contain a cycle, then a deadlock
may exist.

• A cycle in the graph is a necessary but not a sufficient condition for the
existence of deadlock with resource types of several instances. A knot

must exist; a cycle with no non-cycle outgoing path from any involved
node

• Suppose that process P3 requests an instance of resource type R2. Since
no resource instance is currently available, a request edge P3 → R2 is
is added to the graph (see Fig. 5middle).

• At this point, two minimal cycles exist in the system.

• Now consider the resource-allocation graph in Fig. 5right.

– In this case, we also have a cycle. However, there is no deadlock.

– Observe that process P4 may release its instance of resource type
R2.

7

– That resource can then be allocated to P3 , breaking the cycle.

• In summary, if a resource-allocation graph does not have a cycle, then
the system is not in a deadlocked state. If there is a cycle, then the
system may or may not be in a deadlocked state.

• An example of resource allocation graphs (see Fig. 6);

Figure 6: Resource Allocation Graphs. Lower; either P2 or P4 could relin-
quish (release) a resource allowing P1 or P3 (which are currently blocked) to
continue.

• Another example of how resource graphs can be used; three processes,
A, B, and C, and three resources R, S, and T (see Fig. 7);.

8

(j)

 A
Request R
Request S
Release R
Release S

 B
Request S
Request T
Release S
Release T

 C
Request T
Request R
Release T
Release R

1. A requests R
2. B requests S
3. C requests T
4. A requests S
5. B requests T
6. C requests R
 deadlock

1. A requests R
2. C requests T
3. A requests S
4. C requests R
5. A releases R
6. A releases S
 no deadlock

A

R

B

S

C

T

(i)

A

R

B

S

C

T

(h)

A

R

B

S

C

T

(g)

A

R

B

S

C

T

(f)

A

R

B

S

C

T

(e)(d)

(c)(b)(a)

A

R

B

S

C

T

(q)

A

R

B

S

C

T

(p)

A

R

B

S

C

T

(o)

A

R

B

S

C

T

(n)

A

R

B

S

C

T

(m)

A

R

B

S

C

T

(l)(k)

A

R

B

S

C

T

Figure 7: An example of how deadlock occurs and how it can be avoided.

1.3 Methods for Handling Deadlocks

Generally speaking, we can deal with the deadlock problem in one of three
ways:

1. We can use a protocol to prevent or avoid deadlocks, ensuring that
the system will never enter a deadlock state.

• To ensure that deadlocks never occur, the system can use either
a deadlock-prevention or a deadlock-avoidance scheme.

• Deadlock prevention provides a set of methods for ensuring that at
least one of the necessary conditions (Section 1.2.1) cannot hold.

9

• Design a system in such a way that the possibility of deadlock is
excluded a priori (compile-time/statically, by design).

• Deadlock avoidance requires that the OS be given in advance
additional information concerning which resources a process will
request and use during its lifetime. With this additional knowl-
edge, it can decide for each request whether or not the process
should wait.

• Make a decision dynamically checking whether the request will, if
granted, potentially lead to a deadlock or not. (run-time/dynamically,
before it happens).

2. We can allow the system to enter a deadlock state, detect it, and
recover.

• If a system does not employ either a deadlock-prevention or a
deadlock-avoidance algorithm, then a deadlock situation may arise.

• In this environment, the system can provide an algorithm that ex-
amines the state of the system to determine whether a deadlock
has occurred and an algorithm to recover from the deadlock.

• Let deadlocks occur, detect them, and take action (run-time/dynamically,
after it happens)

3. We can ignore (The Ostrich Algorithm; maybe if you ignore it, it will
ignore you) the problem altogether and pretend that deadlocks never
occur in the system.

• If a system neither ensures that a deadlock will never occur nor
provides a mechanism for deadlock detection and recovery, then
we may arrive at a situation where the system is in a deadlocked
state yet has no way of recognizing what has happened.

• Eventually, the system will stop functioning and will need to be
restarted manually.

• In many systems, deadlocks occur infrequently (say, once per
year); thus, this method is cheaper than the prevention, avoidance,
or detection and recovery methods.

• Most OSs potentially suffer from deadlocks that are not even detected.
Process table slots are finite resources. If a fork fails because the table
is full, a reasonable approach for the program doing the fork is to wait
a random time and try again.

10

• The maximum number of open files is similarly restricted by the size
of the i-node table, so a similar problem occurs when it fills up. Swap
space on the disk is another limited resource. In fact, almost every
table in the OS represents a finite resource.

• The third solution is the one used by most OSs, including UNIX and
Windows; it is then up to the application developer to write programs
that handle deadlocks.

• If deadlocks could be eliminated for free, there would not be much
discussion. The problem is that the price is high, mostly in terms of
putting inconvenient restrictions on processes.

• Thus we are faced with an unpleasant trade-off between convenience
and correctness. Under these conditions, general solutions are hard to
find.

1.4 Deadlock Prevention

• Having seen that deadlock avoidance is essentially impossible, because
it requires information about future requests, which is not known, how
do real systems avoid deadlock?

• If we can ensure that at least one of the four following conditions is
never satisfied, then deadlocks will be structurally impossible.

• The various approaches to deadlock prevention are summarized in Fig.
8.

Figure 8: Summary of approaches, to deadlock prevention.

11

1.4.1 Mutual Exclusion

• Attacking the Mutual Exclusion Condition; Can a given resource
be assigned to more than one process at once? Systems with only
simultaneously shared resources cannot deadlock!

• The mutual-exclusion condition must hold for nonsharable resources
(i.e., a printer).

• Shareable resources, in contrast, do not require mutually exclusive ac-
cess and thus cannot be involved in a deadlock (i.e.,read-only files). A
process never needs to wait for a shareable resource.

• In general, however, we cannot prevent deadlocks by denying the mutual-
exclusion condition, because some resources are intrinsically nonsharable.

1.4.2 Hold and Wait

• Attacking the Hold and Wait Condition; Can a process hold a
resource and ask for another? Can we require processes to request all
resources at once? Most processes do not statically know about the
resources they need.

• To ensure that the hold-and-wait condition never occurs in the system,
we must guarantee that, whenever a process requests a resource, it does
not hold any other resources.

• One protocol that can be used requires each process to request and be
allocated all its resources before it begins execution.

• An alternative protocol allows a process to request resources only when
it has none. A process may request some resources and use them.
Before it can request any additional resources, however, it must release
all the resources that it is currently allocated.

• To illustrate the difference between these two protocols, we consider a
process that copies data from a DVD drive to a file on disk, sorts the
file, and then prints the results to a printer.

• Both these protocols have two main disadvantages.

– First, resource utilization may be low, since resources may be
allocated but unused for a long period.

12

– Second, starvation is possible. A process that needs several pop-
ular resources may have to wait indefinitely, because at least one
of the resources that it needs is always allocated to some other
process.

1.4.3 No Preemption

• Attacking the No Preemption Condition; Can resources be pre-
empted? If a process’ requests (holding certain resources) is denied,
that process must release its unused resources and request them again,
together with the additional resource.

• The third necessary condition for deadlocks is that there be no pre-
emption of resources that have already been allocated.

• To ensure that this condition does not hold, we can use the following
protocol.

– If a process is holding some resources and requests another re-
source that cannot be immediately allocated to it (that is, the
process must wait), then all resources currently being held are
preempted.

– The preempted resources are added to the list of resources for
which the process is waiting. The process will be restarted only
when it can regain its old resources, as well as the new ones that
it is requesting.

1.4.4 Circular Wait

• Attacking the Circular Wait Condition; Can circular waits ex-
ist? Order resources by an index:R1, R2, . . .; requires that resources are
always requested in order.

• One way to ensure that this condition never holds is to impose a total
ordering of all resource types and to require that each process requests
resources in an increasing order of enumeration.

• Assign to each resource type a unique integer number, which allows
us to compare two resources and to determine whether one precedes
another in our ordering.

• Each process can request resources only in an increasing order of enu-

meration.

13

• If these two protocols are used, then the circular-wait condition cannot
hold.

1.5 Deadlock Avoidance

• Deadlock-prevention algorithms ensure that at least one of the neces-
sary conditions for deadlock cannot occur and hence that deadlocks
cannot hold.

• Possible side effects of preventing deadlocks are low device utilization
and reduced system throughput.

• An alternative method for avoiding deadlocks is to require additional
information about how resources are to be requested.

– For example, in a system with one tape drive and one printer, the
system might need to know that process P will request first the
tape drive and then the printer before releasing both resources,
whereas process Q will request first the printer and then the tape
drive.

– With this knowledge of the complete sequence of requests and
releases for each process, the system can decide for each request
whether or not the process should wait in order to avoid a possible
future deadlock.

• Each request requires that in making this decision the system consider

– the resources currently available,

– the resources currently allocated to each process,

– the future requests and releases of each process.

• The simplest and most useful model requires that each process declare
the maximum number of resources of each type that it may need.

• Given this a priori information, it is possible to construct an algorithm
that ensures that the system will never enter a deadlocked state.

• A deadlock-avoidance algorithm dynamically examines the resource-
allocation state to ensure that a circular-wait condition can never exist.

• The resource-allocation state is defined by the number of available and
allocated resources and the maximum demands of the processes.

14

1.5.1 Safe State

• A state is safe if the system can allocate resources to each process (up
to its maximum) in some order and still avoid a deadlock.

• More formally, a system is in a safe state only if there exists a safe

sequence.

– A sequence of processes < P1, P2, . . . , Pn > is a safe sequence for
the current allocation state if, for each Pi the resource requests
that Pi can still make can be satisfied by the currently available
resources plus the resources held by all Pj, with j < i.

– In this situation, if the resources that Pi needs are not immediately
available, then Pi can wait until all Pj have finished.

– When they have finished, Pi can obtain all of its needed resources,
complete its designated task, return its allocated resources, and
terminate.

– When Pi terminates, Pi+1 can obtain its needed resources, and so
on.

– If no such sequence exists, then the system state is said to be
unsafe.

• A safe state is not a deadlocked state. Conversely, a deadlocked state
is an unsafe state. Not all unsafe states are deadlocks, however (see
Fig. 9).

Figure 9: Safe, unsafe, and deadlock state spaces.

• An unsafe state may lead to a deadlock.

15

– As long as the state is safe, the OS can avoid unsafe (and dead-
locked) states.

– In an unsafe state, the OS cannot prevent processes from request-
ing resources such that a deadlock occurs: The behavior of the
processes controls unsafe states.

– The difference between a safe state and an unsafe state is that
from a safe state the system can guarantee that all processes will
finish; from an unsafe state, no such guarantee can be given.

• To illustrate, we consider a system with 12 magnetic tape drives and
three processes: P0, P1, and P2 .

– Process P0 requires 10 tape drives, and holds 5 tape drives

– Process P1 may need as many as 4 tape drives, and holds 2 tape
drive

– Process P2 may need up to 9 tape drives, and holds 2 tape drives

– Thus, there are 3 free tape drives.

Pi Maximum Needs Current Needs
P0 10 5
P1 4 2
P2 9 2

• At time t0, the system is in a safe state. The sequence < P1, P0, P2 >

satisfies the safety condition.

• A system can go from a safe state to an unsafe state. Suppose that, at
time t1, process P2 requests and is allocated one more tape drive. The
system is no longer in a safe state.

– At this point, only process P1 can be allocated all its tape drives.

– When it returns them, the system will have only 4 available tape
drives.

– Since process P0 is allocated 5 tape drives but has a maximum of
10, it may request 5 more tape drives. Since they are unavailable,
process P0 must wait.

– Similarly, process P2 may request an additional 6 tape drives and
have to wait, resulting in a deadlock.

16

• Our mistake was in granting the request from process P2 for one more
tape drive.

• In Fig. 10 we have a state in which

– A total of 10 instances of the resource exist, so with 7 resources
already allocated, there are 3 still free.

– A has 3 instances of the resource but may need as many as 9
eventually.

– B currently has 2 and may need 4 altogether, later.

– Similarly, C also has 2 but may need an additional 5.

– The state of Fig. 10upper is safe because there exists a sequence
of allocations that allows all processes to complete. By careful
scheduling, can avoid deadlock.

– Now suppose, this time A requests and gets another resource,
giving Fig. 10lower. Eventually, B completes. At this point we
are stuck.

– We only have four instances of the resource free, and each of the
active processes needs five. There is no sequence that guarantees

completion. A’s request should not have been granted.

– But, an unsafe state is not a deadlocked state. It is possible that
A might release a resource before asking for any more, allowing C

to complete and avoiding deadlock altogether.

A

B

C

3

2

2

9

4

7

Free: 3
(a)

A

B

C

3

4

2

9

4

7

Free: 1
(b)

A

B

C

3

0 ––

2

9

7

Free: 5
(c)

A

B

C

3

0

7

9

7

Free: 0
(d)

–

A

B

C

3

0

0

9

–

Free: 7
(e)

Has Max Has Max Has Max Has Max Has Max

A

B

C

3

2

2

9

4

7

Free: 3
(a)

A

B

C

4

2

2

9

4

7

Free: 2
(b)

A

B

C

4

4 —4

2

9

7

Free: 0
(c)

A

B

C

4

—

2

9

7

Free: 4
(d)

Has Max Has Max Has Max Has Max

Figure 10: Demonstration that the state in is safe (Upper), is not safe
(Lower).

17

• Given the concept of a safe state, we can define avoidance algorithms
that ensure that the system will never deadlock.

– The idea is simply to ensure that the system will always remain
in a safe state.

– Initially, the system is in a safe state.

– Whenever a process requests a resource that is currently available,
the system must decide whether the resource can be allocated
immediately or whether the process must wait.

– The request is granted only if the allocation leaves the system in
a safe state.

• In this scheme, if a process requests a resource that is currently avail-
able, it may still have to wait. Thus, resource utilization may be lower
than it would otherwise be.

1.6 Deadlock Detection

• If a system does not employ either a deadlock-prevention or a deadlock-
avoidance algorithm then a deadlock situation may occur.

• In this environment, the system must provide:

– An algorithm that examines the state of the system to determine
whether a deadlock has occurred.

– An algorithm to recover from the deadlock.

1.6.1 Single Instance of Each Resource Type

• If all resources have only a single instance, then we can define a deadlock-
detection algorithm that uses a variant of the resource-allocation graph,
called a wait-for graph.

• This graph is obtained from the resource-allocation graph by removing
the resource nodes and collapsing the appropriate edges.

• More precisely, an edge from Pi to Pj in a wait-for graph implies that
process Pi is waiting for process Pj to release a resource that Pi needs.

• For example, in Fig. 11, a resource-allocation graph and the corre-
sponding wait-for graph are presented.

18

Figure 11: (a) Resource-allocation graph. (b) Corresponding wait-for graph.

• As before, a deadlock exists in the system if and only if the wait-for
graph contains a cycle.

• To detect deadlocks, the system needs to maintain the wait-for graph
and periodically invoke an algorithm that searches for a cycle in the
graph.

• If this graph contains one or more cycles (knots), a deadlock exists.
Any process that is part of a cycle is deadlocked. If no cycles exist, the
system is not deadlocked.

R

S T T

U V U V

W

C D E D E

GG

A

F

B

(a) (b)

Figure 12: (a) A resource graph. (b) A cycle extracted from (a).

• Consider a system with seven processes, A though G, and six resources,
R through W . The state of which resources are known and the the
resource graph is given in Fig. 12. The question is: “Is this system
deadlocked, and if so, which processes are involved?”

19

• From this cycle, we can see that processes D, E, and G are all dead-
locked. Processes A, C, and F are not deadlocked because S can be
allocated to any one of them, which then finishes and returns it. Then
the other two can take it in turn and also complete.

1.6.2 Several Instances of a Resource Type

• The wait-for graph scheme is not applicable to a resource-allocation
system with multiple instances of each resource type.

• We turn now to a deadlock-detection algorithm that is applicable to
such a system. The algorithm employs several time-varying data struc-
tures:

– Available. A vector of length m indicates the number of available
resources of each type.

– Allocation. An n×m matrix defines the number of resources of
each type currently allocated to each process.

– Request. An n×m matrix indicates the current request of each
process.

∗ If Request[i][j] equals k, then process Pi is requesting k more
instances of resource type Rj .

• The detection. algorithm described here simply investigates every pos-
sible allocation sequence for the processes that remain to be completed.

1. Let Work and Finish be vectors of length m and n, respec-
tively. Initialize Work = Available. For i = 0, 1, . . . , n − 1, if
Allocationi 6= 0, then Finish[i] = false; otherwise, Finish[i] =
true.

2. Find an index i such that both

a. Finish[i] == false

b. Requesti ≤ Work

If no such i exists, go to step 4.

3. Work = Work + Allocation

F inish[i] = true

Go to step 2.

4. If Finish[i] == false, for some i, 0 ≤ i ≤ n, then the system
is in a deadlocked state. Moreover, if Finish[i] == false, then
process Pi is deadlocked.

20

• Consider a system with five processes P0 through P4 and three resource
types A, B, and C.

– Resource type A has seven instances,

– Resource type B has two instances,

– Resource type C has six instances.

• Suppose that, at time T0, we have the following resource-allocation
state:

Allocation Request Available
Pi ABC ABC ABC

P0 010 000 000
P1 200 202
P2 303 000
P3 211 100
P4 002 002

• If the algorithm is executed, it will be found that the sequence <

P0, P2, P3, P1, P4 > results in Finish[i] == true for all i.

• Suppose now that process P2 makes one additional request for an in-
stance of type C.

• Although we can reclaim the resources held by process P0, the number
of available resources is not sufficient to fulfill the requests of the other
processes. Thus, a deadlock exists, consisting of processes P1, P2, P3,
and P4.

1.6.3 Detection-Algorithm Usage

• When should we invoke the detection algorithm? The answer depends
on two factors:

– How often is a deadlock likely to occur?

– How many processes will be affected by deadlock when it happens?

• If deadlocks occur frequently, then the detection algorithm should be
invoked frequently. Resources allocated to deadlocked processes will be
idle until the deadlock can be broken.

21

• In the extreme, we can invoke the deadlock-detection algorithm every
time a request for allocation cannot be granted immediately (consider-
able overhead).

• A less expensive alternative is simply to invoke the algorithm at less
frequent intervals -for example, once per hour or whenever CPU uti-
lization drops below 40 percent.

1.7 Recovery From Deadlock

• When a detection algorithm determines that a deadlock exists, several
alternatives are available.

• One possibility is to inform the operator that a deadlock has occurred
and to let the operator deal with the deadlock manually.

• Another possibility is to let the system recover from the deadlock au-
tomatically.

• There are two options for breaking a deadlock.

– One is simply to abort one or more processes to break the circular
wait.

– The other is to preempt some resources from one or more of the
deadlocked processes.

1.7.1 Process Termination

• Abort all deadlocked processes. The deadlocked processes may
have computed for a long time, and the results of these partial com-
putations must be discarded and probably will have to be recomputed
later.

• Abort one process at a time until the deadlock cycle is elim-

inated. This method incurs considerable overhead, since, after each
process is aborted, a deadlock-detection algorithm must be invoked to
determine whether any processes are still deadlocked.

• Aborting a process may not be easy. If the process was in the midst of
updating a file, terminating it will leave that file in an incorrect state.
Irrecoverable losses or erroneous results may occur, even if this is the
least important process.

22

• If the partial termination method is used, then we must determine
which deadlocked process (or processes) should be terminated. We
should abort those processes whose termination will incur the minimum
cost.

1.7.2 Resource Preemption

• To eliminate deadlocks using resource preemption, we successively pre-
empt some resources from processes and give these resources to other
processes until the deadlock cycle is broken.

• In some cases it may be possible to temporarily take a resource away
from its current owner and give it to another process. Highly dependent
on the nature of the resource. Recovering this way is frequently difficult
or impossible.

1. Selecting a victim. Which resources and which processes are to
be preempted? As in process termination, we must determine the
order of preemption to minimize cost.

2. Rollback. If we preempt a resource from a process, what should
be done with that process? Clearly, it cannot continue with its
normal execution; it is missing some needed resource.

– Checkpointing ; means that its state is written to a file so that
it can be restarted later.

– The checkpoint contains not only the memory image, but also
the resource state, that is, which resources are currently as-
signed to the process.

– When a deadlock is detected, it is easy to see which resources
are needed. To do the recovery, a process that owns a needed
resource is rolled back to a point in time before it acquired
some other resource by starting one of its earlier checkpoints.

– Since, in general, it is difficult to determine what a safe state
is, the simplest solution is a total rollback: Abort the process
and then restart it.

– Although it is more effective to roll back the process only as
far as necessary to break the deadlock, this method requires
the system to keep more information about the state of all
running processes.

3. Starvation. How do we ensure that starvation will not occur?
That is, how can we guarantee that resources will not always be
preempted from the same process?

23

2 Main memory

• Programs expand to fill the memory available to hold them. Conse-
quently, most computers have a memory hierarchy, with a small amount
of very fast, expensive, volatile cache memory, tens of megabytes of
medium-speed, medium-price, volatile main memory (RAM), and tens
or hundreds of gigabytes of slow, cheap, nonvolatile disk storage.

• It is the job of the OS to coordinate how these memories are used.

• Various ways to manage memory. The memory-management algo-
rithms vary from a primitive bare-machine approach to paging and
segmentation strategies.

• Each approach has its own advantages and disadvantages. Selection of
a memory-management method for a specific system depends on many
factors, especially on the hardware design of the system.

2.1 Background

• Memory is central to the operation of a modern computer system.

• The part of the OS that manages the memory hierarchy is called the
memory manager.

– to keep track of which parts of memory are in use and which parts
are not in use,

– to allocate memory to processes when they need it and deallocate
it when they are done,

– to manage swapping between main memory and disk when main
memory is too small to hold all the processes.

• Memory consists of a large array of words or bytes, each with its own
address.

– malloc library call

∗ used to allocate memory,

∗ finds sufficient contiguous memory,

∗ reserves that memory,

∗ returns the address of the first byte of the memory.

– free library call

24

∗ give address of the first byte of memory to free,

∗ memory becomes available for reallocation.

– Both malloc and free are implemented using the brk system call.

• The CPU fetches instructions from memory according to the value of
the program counter. These instructions may cause additional loading
from and storing to specific memory addresses.

• The memory unit sees only a stream of memory addresses; it does not
know how they are generated (by the instruction counter, indexing, in-
direction, literal addresses, and so on) or what they are for (instructions
or data).

• Accordingly, we can ignore how a program generates a memory address.
We are interested only in the sequence of memory addresses generated
by the running program.

• Memory management systems can be divided into two classes:

1. Those that move processes back and forth between main mem-
ory and disk during execution (swapping and paging), (Memory
Abstraction)

2. Those that do not. Simpler. (No Memory Abstraction)

2.1.1 Basic Hardware

• Main memory and the registers built into the processor itself are the
only storage that the CPU can access directly. There are machine
instructions that take memory addresses as arguments, but none that
take disk addresses.

• Therefore, any instructions in execution, and any data being used by
the instructions, must be in one of these direct-access storage devices.

• Registers that are built into the CPU are generally accessible within
one cycle of the CPU clock. Most CPUs can decode instructions and
perform simple operations on register contents at the rate of one or
more operations per clock tick.

• The same cannot be said of main memory, which is accessed via a
transaction on the memory bus. Memory access may take many cycles
of the CPU clock to complete (processor stalls).

25

• The remedy is to add fast memory between the CPU and main memory
(cache memory).

• Not only we are concerned with the relative speed of accessing phys-
ical memory, but we also must ensure correct operation has to pro-

tect the OS from access by user processes and, in addition, to protect

user processes from one another.

Figure 13: A base and a limit register define a logical address space.

• This protection must be provided by the hardware. We first need to
make sure that each process has a separate memory space.

• We can provide this protection by using two registers, usually a base

and a limit, as illustrated in Fig. 13.

– The base register holds the smallest legal physical memory ad-
dress;

– The limit register specifies the size of the range.

– For example, if the base register holds 300040 and limit register
is 120900, then the program can legally access all addresses from
300040 through 420940 (inclusive).

• Protection of memory space is accomplished by having the CPU hard-
ware compare every address generated in user mode with the registers.

26

• Any attempt by a program executing in user mode to access operating-
system memory or other users’ memory results in a trap to the OS,
which treats the attempt as a fatal error (see Fig. 14).

• This scheme prevents a user program from (accidentally or deliberately)
modifying the code or data structures of either the OS or other users.

Figure 14: Hardware address protection with base and limit registers.

27

	Deadlocks
	System Model
	Deadlock Characterization
	Necessary Conditions
	Resource-Allocation Graph

	Methods for Handling Deadlocks
	Deadlock Prevention
	Mutual Exclusion
	Hold and Wait
	No Preemption
	Circular Wait

	Deadlock Avoidance
	Safe State

	Deadlock Detection
	Single Instance of Each Resource Type
	Several Instances of a Resource Type
	Detection-Algorithm Usage

	Recovery From Deadlock
	Process Termination
	Resource Preemption

	Main memory
	Background
	Basic Hardware
	Address Binding
	Logical Versus Physical Address Space
	Dynamic Loading
	Dynamic Linking and Shared Libraries

