
Fundamentals of Grid Computing

Burhan Eyimaya
200311021

ÇANKAYA UNIVERSITY
DEPARTMENT OF COMPUTER ENGINEERING

• Grid computing, most simply stated, is distributed computing
taken to the next evolutionary level.

• The goal is to create the illusion of a simple yet large and
powerful self managing virtual computer out of a large collection
of connected heterogeneous systems sharing various
combinations of resources.

• The following major topics will be introduced to the readers:
– � What grid computing can do
– � Grid concepts and components
– � What the grid cannot do
– � The present and the future

Motivation

• In most organizations, there are large amounts of
underutilized computing resources.

• Most desktop machines are busy less than 5% of the
time.

• In some organizations, even the server machines can
often be relatively idle.

• Grid computing provides a framework for exploiting
these underutilized resources and thus has the
possibility of substantially increasing the efficiency of
resource usage.

Exploiting underutilized resources

• The potential for massive parallel CPU capacity is one of
the most attractive features of a grid.

• In addition to pure scientific needs, such computing
power is driving a new evolution in industries such as the
bio-medical field, financial modeling, oil exploration,
motion picture animation, and many others.

• The common attribute among such uses is that the
applications have been written to use algorithms that can
be partitioned into independently running parts. To the
extent that these subjobs do not need to communicate
with each other, the more “scalable” the application
becomes.

Parallel CPU capacity

• There are many factors to consider in grid-enabling an
application.

• One must understand that not all applications can be
transformed to run in parallel on a grid and achieve
scalability.

• There are some practical tools that skilled application
designers can use to write a parallel grid application.
However, automatic transformation of applications is a
science in its infancy.

• This can be a difficult job and often requires top
mathematics and programming talents, if it is even
possible in a given situation.

Applications

Virtual resources and virtual organizations for collaboration

• Another important grid computing contribution is to
enable and simplify collaboration among a wider
audience.
• In the past, distributed computing promised this
collaboration and achieved it to some extent.
• Grid computing takes these capabilities to an even
wider audience, while offering important standards that
enable very heterogeneous systems to work together to
form the image of a large virtual computing system
offering a variety of virtual resources, as illustrated in
Figure 1.

The Grid virtualizes heterogeneous and geographically disperse
resources for each virtual organization presenting a simpler view

Figure 1

• Some machines on the grid may have special devices.
Most of us have used remote printers, perhaps with
advanced color capabilities or faster speeds.

• Similarly, a grid can be used to make use of other
special equipment.

• For example, a machine may have a high speed, self
feeding, DVD writer that could be used to publish a
quantity of data faster. Some machines on the grid may
be connected to scanning electron microscopes that can
be operated remotely.

Access to additional resources

• For applications that are grid enabled, the grid can offer
a resource balancing effect by scheduling grid jobs on
machines with low utilization, as illustrated in Figure 2.

• This feature can prove invaluable for handling occasional
peak loads of activity in parts of an larger organization.
This can happen in two ways:
– An unexpected peak can be routed to relatively idle machines

in the grid.
– If the grid is already fully utilized, the lowest priority work being

performed on the grid can be temporarily suspended or even
cancelled and performed again later to make room for the higher
priority work.

Resource balancing

Jobs are migrated to less busy parts of the grid to balance resource
loads and absorb unexpected peaks of activity in a part of an
organization

Figure 2

• High-end conventional computing systems use expensive
hardware to increase reliability.

• They are built using chips with redundant circuits that vote on
results, and contain much logic to achieve graceful recovery from
an assortment of hardware failures. Power supplies and cooling
systems are duplicated.

• All of this builds a reliable system, but at a great cost, due to the
duplication of high-reliability components.

• In the future, we will see an alternate approach to reliability that
relies more on software technology than expensive hardware. A
grid is just the beginning of such technology.

• The systems in a grid can be relatively inexpensive and
geographically dispersed. Thus, if there is a power or other kind of
failure at one location, the other parts of the grid are not likely to
be affected. Grid management software can automatically
resubmit jobs to other machines on the grid when a failure is
detected. This is illustrated in Figure 3

Reliability

Figure 3

Redundant grid configuration and redundant job submission used
to achieve high reliability

• The grid offers management of priorities among different
projects.

• In the past, each project may have been responsible for
its own IT resource hardware and the expenses
associated with it.

• Often this hardware might be underutilized while another
project finds itself in trouble, needing more resources
due to unexpected events.

• With the larger view a grid can offer, it becomes easier to
control and manage such situations. As illustrated in
Figure 4

Management

Figure 4

Administrators can adjust policies to better allocate resources

• Computation
• Storage
• Communications
• Software and licenses
• Special equipment, capacities, architectures, and

policies
• Jobs and applications
• Scheduling, reservation, and scavenging

Grid concepts and components

• The most common resource is computing cycles provided
by the processors of the machines on the grid.

• The processors can vary in speed, architecture, software
platform, memory, storage, and connectivity.

• There are three primary ways to exploit the computation
resources of a grid.

• The first is to use it to run an existing application on an
available machine on the grid rather than locally.

• The second is to use an application designed to split its
work in a way that the separate parts can execute in parallel
on different processors.

• The third is to run an application that needs to be executed
many times on many different machines in the grid

Computation

Storage

• The second most common resource used in a grid is
data storage.
• A grid providing an integrated view of data storage is
sometimes called a “data grid.”
• Each machine on the grid usually provides some
quantity of storage for grid use, even if temporary
• Capacity can be increased by using the storage on
multiple machines with a unifying file system.
• Any individual file or data base can span several
storage devices and machines, eliminating maximum size
restrictions often imposed by file systems shipped with
operating systems.

• The rapid growth in communication capacity among
machines today makes grid computing practical,
compared to the limited bandwidth available when
distributed computing was first emerging.

• Communications within the grid are important for sending
jobs and their required data to points within the grid.

• Some jobs require a large amount of data to be processed
and it may not always reside on the machine running the
job.

• The bandwidth available for such communications can
often be a critical resource that can limit utilization of the
grid.

Communications

Software and licenses

• The grid may have software installed that may be too
expensive to install on every grid machine.
• Using a grid, the jobs requiring this software are sent to
the particular machines on which this software happens
to be installed.
• When the licensing fees are significant, this approach
can save significant expenses for an organization.

Special equipment, capacities, architectures, and policies

• Platforms on the grid will often have different
architectures, operating systems, devices, capacities, and
equipment.
• Each of these items represents a different kind of
resource that the grid can use as criteria for assigning
jobs to machines.
• While some software may be available on several
architectures, for example, PowerPC and x86, such
software is often designed to run only on a particular type
of hardware and operating system.
• Such attributes must be considered when assigning
jobs to resources in the grid.

• Jobs are programs that are executed at an appropriate
point on the grid.

• They may compute something, execute one or more
system commands, move or collect data, or operate
machinery.

• A grid application that is organized as a collection of jobs
is usually designed to have these jobs execute in parallel
on different machines in the grid.

• Applications may be broken down into any number of
individual jobs, as illustrated in Figure 5.

Jobs and applications

Figure 5

An application is one or more jobs that are scheduled to run on machines in
the grid; the results are collected and assembled to produce the answer

• The grid system is responsible for sending a job to a given
machine to be executed.

• In the simplest of grid systems, the user may select a
machine suitable for running his job and then execute a
grid command that sends the job to the selected machine.

• More advanced grid systems would include a job
“scheduler” of some kind that automatically finds the most
appropriate machine on which to run any given job that is
waiting to be executed.

• Schedulers react to current availability of resources on the
grid.

Scheduling, reservation, and scavenging

• Grids can be built in all sizes, ranging from just a few
machines in a department to groups of machines
organized as a hierarchy spanning the world.

• As presented in Figure 7, the simplest grid consists of
just a few machines

• This kind of grid uses homogeneous systems
• The machines are usually in one department of an

organization, and their use as a grid may not require any
special policies or security concerns.

• Some people would call this a “cluster” implementation
rather than a “grid.”

Clusters

Figure 6

A simple grid

• The next progression would be to include
heterogeneous machines.
• In this configuration, more types of resources are
available.
• The grid system is likely to include some scheduling
components. File sharing may still be accomplished using
networked file systems.
• Machines participating in the grid may include ones
from multiple departments but within the same
organization. Such a grid is also referred to as an
“Intragrid.”

Intragrids

• Over time, as illustrated in Figure 7, a grid may grow to
cross organization boundaries, and may be used to
collaborate on projects of common interest.
• This is known as an “Intergrid.” The highest levels of
security are usually required in this configuration to
prevent possible attacks and spying.
• The Intergrid offers the prospect for trading or brokering
resources over a much wider audience.

Intergrids

A more complex Intergrid

Figure 7

• The grid is not a silver bullet that can take any application and run it
a 1000 times faster without the need for buying any more machines
or software.
• Not every application is suitable or enabled for running on a grid.
Some kinds of applications simply cannot be parallelized.
• For others, it can take a large amount of work to modify them to
achieve faster throughput. The configuration of a grid can greatly
affect the performance, reliability, and security of an organization’s
computing infrastructure.
• For all of these reasons, it is important for the us to understand
how far the grid has evolved today and which features are coming
tomorrow or in the distant future.

What the grid cannot do

• Today, grid systems are still at the early stages of
providing a reliable, well performing, and automatically
recoverable virtual data sharing and storage.
• We will see products that take on this task in a grid
setting, federating data of all kinds, and achieving better
performance, integration with scheduling, reliability, and
capacity.
• As Grids gain momentum and are more widely accepted
across multiple vertical market segments worldwide it will
be a very feasible solution to big projects that need huge
amount of resources.

The present and the future

speed up efficency

1.00000 1

0.849579716 0.424789858

0.845094599 0.2816982

0.426904934 0.106726234

Num of
Procs

320 x 240 800 x 600 1024 x 768

1 0.11078 0.71070 1.14766

2 0.13039 0.88405 1.39597

3 0.13108 0.93143 1.52944

4 0.25948 0.97370 1.58707

Edge Detection Time Analysis Tables

0.00000

0.20000

0.40000
0.60000

0.80000

1.00000

1.20000
1.40000

1.60000

1.80000

1 2 3 4

320 x 240
1024 x 768
800 x 600

CPU-Time Chart

• When the number of
processors increases the
process time increases,
this was not the desired
effect.
• This is because of the
problem domain. We are
sending pixels of the
image as the packets of
size 76000 to the
computers. But the
processing of 76000
pixels on one computer
takes less time than
sending and receiving the
data.

0.00000

0.20000

0.40000

0.60000

0.80000

1.00000

1.20000

1 2 3 4

Series1

Speed up

• The speed up is
decreasing as the
number of processors
is inreasing.
• This shows that the
gain we achieve by
parallelizing the
algorithm is very low,
lower than 1.
• So serial processing
is faster than paralel
processing for this
project.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4

Series1

Efficiency

• The efficiency we get by
increasing number of CPU is
decreasing.
• If we compile the code by
only one CPU then we can
get full efficiency, but the
efficiency decrease while
number of CPU increases.
• In other words, efficiency is
not proportional to CPUs
more than a specified number
of CPU.

As a result the speed up and efficiency is decreasing, the process
time increases as the number of processers is increased all this
charts shows that the edge detection is not feasible for parallel
processing.

