
• These Systems 
– Multiple connected CPUs working 
together 
– A collection of independent 
computers that appears to its users 
as a single coherent system 

Examples: parallel machines 

Definition



Transparency 
– Location transparency: The users cannot tell 

where resources are located 
– Migration transparency: Resources can move at 

will without changing their names. 
– Replication transparency: The users cannot tell 

how many copies exist. 
– Concurrency transparency: Multiple users can 

share resources automatically. 
– Parallelism transparency: Activities can happen 

in parallel without users knowing



OS Issue 
• Manages resources in a parallel or 

distributed system 
– Seamlessly and transparently to the user 

• Looks to the user like a centralized OS 
– But operates on multiple independent CPUs 

• Provides transparency 
– Location, migration... 

• Presents users with a virtual uniprocessor



Types



Multiprocessor Operating Systems 

• Like a uniprocessor operating system 
• Manages multiple CPUs transparently 

to the user 
• Each processor has its own hardware 

cache



Multicomputer Operating 
Systems



Network Operating System



Network Operating System 
• Employs a client-server model 

– Config I: All stand-alone workstation each with its own 
CPU, memory, hard disk, and OS, and connect by a LAN 

– Config II: System like the above but with some 
dedicated servers -- file servers, application servers, 
ftp server, mail server, name server, PPP server



Middleware-based Systems



Comparison



Design Issues 
• Transparency 
• Flexibility 

– Monolithic kernel vs. Microkernel 
– Microkernel -- keep it small, use user-level servers for 

system services 
• An interprocess communication mechanism 
• Some memory management 
• A small amount of low-level process management and 

scheduling 
• Low-level input / output 

– Monolithic kernel 
• provide the file system and directory system 
• full process management, and much system call handling



• Reliability 
– Fault tolerance 

• Performance 
– Fine-grained parallelism 
– Coarse-grained parallelism 

• Scalability 
– Potential bottle-necks in very large distributed systems 

• Centralized components: A single mail server for all users 
• Centralized algorithms: Doing routing based on complete 

information 
– Use decentralized algorithms: 

• No machine has complete information about the system 
state 

• Machines make decisions based only on local information 
• Failure of one machine does not ruin the algorithm 
• There is no implicit assumption that a global clock exists



Communication 
• Multicasting: It is possible to create a special network 

address (for example, indicated by setting one of the high- 
order bits to 1), to which multiple machines can listen. When 
a packet is sent to one of these addresses, it is 
automatically delivered to all machines listening to the 
address. Implementation is easy, just assign each group a 
different multicast address 

• Broadcasting: Packet contains a certain address (e.g. 0) are 
delivered to all machines. Broadcasting can also be used to 
implement group, but it is less efficient. Each machine 
receives each broadcast, so its software must check to see 
if the packet is intended for it. If not, the packet is 
discarded. The above two methods still takes only one 
packet to reach all the members of the group. 

• Unicasting: Group communication is implemented by having 
the sender transmit separate packets to each of the 
members of the group. For a group of n members, n packets 
are required. If most groups are small, this implementation 
is still workable.



Scheduling 
• Each processor does its own local 

scheduling (assuming that it has multiple 
processes running on it), without regard to 
what the other processors are doing. 

• However, when a group of related, heavily 
interacting processes are all running on 
different processors, independent 
scheduling is not always the most efficient 
way.



• Although it is difficult to determine dynamically 
the inter-process communication patterns, in 
many cases, a group of related processes will be 
started off together. 

• We can further assume that a sufficiently large 
number of processors is available to handle the 
largest group, and that each processor is multi- 
programmed with N process slots



Parallel Sorting 
Sorting an array which consists of 1000000 random 

numbers 

• Linear Quick Sort: 0.390000 secs 
• Parallel Quick Sort 2 procs:0.250000 secs 
• Parallel Quick Sort 3 procs: 0.210000 secs 
• Parallel Quick Sort 4 procs: 0.190000 secs



References 
• http://lass.cs.umass.edu/~shenoy 
• http://www.comp.hkbu.edu.hk/~jng 
• http://www.sci.hkbu.edu.hk/hpccc/

http://lass.cs.umass.edu/~shenoy
http://www.comp.hkbu.edu.hk/~jng
http://www.sci.hkbu.edu.hk/hpccc/

