
1 Performance Analysis

• Analysis of the performance measures of parallel programs.

• Two computational models;

1. the equal duration processes

2. parallel computation with serial sections.

• Two measures;

1. speed-up factor

2. efficiency.

• The impact of the communication overhead on the overall speed per-
formance of multiprocessors.

• The scalability of parallel systems.

1.1 Computational Models

1.1.1 Equal Duration Model

Assume that a given computation can be divided into concurrent

tasks for execution on the multiprocessor.

• In this model (ts: execution time of the whole task using a single pro-
cessor),

– a given task can be divided into n equal subtasks,

– each of which can be executed by one processor,

– the time taken by each processor to execute its subtask is

tp =
ts
n

– since all processors are executing their subtasks simultaneously,
then the time taken to execute the whole task is

tp =
ts
n

• The speed-up factor of a parallel system can be defined as

1



– the ratio between the time taken by a single processor to solve a
given problem

– to the time taken by a parallel system consisting of n processors
to solve the same problem.

• Speed Up;

S(n) =
ts
tp

=
ts

ts/n
= n (1)

• This equation indicates that, according to the equal duration model,
the speed-up factor resulting from using n processors is equal to the
number of processors used (n).

• One important factor has been ignored in the above derivation.

• This factor is the communication overhead, tc, which results from the
time needed for processors to communicate and possibly exchange data
while executing their subtasks.

• Then the actual time taken by each processor to execute its subtask is
given by

S(n) =
ts
tp

=
ts

ts/n+ tc
=

n

1 + n ∗ tc/ts
(2)

• This equation indicates that the relative values of ts and tc affect

the achieved speed-up factor.

• A number of cases can then be studied:

1. if tc ≪ ts then the potential speed-up factor is approximately n

2. if tc ≫ ts then the potential speed-up factor is ts/tc ≪ 1

3. if tc = ts then the potential speed-up factor is n/n + 1 ∼= 1, for
n ≫ 1.

• In order to scale the speed-up factor to a value between 0 and 1, we
divide it by the number of processors, n.

• The resulting measure is called the efficiency, E.

• The efficiency is a measure of the speed-up achieved per processor.

• According to the simple equal duration model, the efficiency E is equal
to 1, if the communication overhead is ignored.

2



• However if the communication overhead is taken into consideration, the
efficiency can be expressed as

E =
1

1 + n ∗ tc/ts
(3)

• Although simple, the equal duration model is however unrealistic.

• This is because it is based on the assumption that a given task can be
divided into a number of equal subtasks.

• However, real algorithms contain some (serial) parts that cannot be
divided among processors.

• These (serial) parts must be executed on a single processor.

Figure 1: Example program segments.

• In Fig. 1 program segments, we assume that we start with a value from
each of the two arrays (vectors) a and b stored in a processor of the
available n processors.

– The first program block can be done in parallel; that is, each
processor can compute an element from the array (vector) c. The
elements of array c are now distributed among processors, and
each processor has an element.

– The next program segment cannot be executed in parallel. This
block will require that the elements of array c be communicated
to one processor and are added up there.

– The last program segment can be done in parallel. Each processor
can update its elements of a and b.

3



1.1.2 Parallel Computation with Serial Sections Model

• It is assumed (or known) that a fraction f of the given task (compu-
tation) is not dividable into concurrent subtasks.

• The remaining part (1− f) is assumed to be dividable into concurrent
subtasks.

• The time required to execute the task on n processors is

tp = ts ∗ f + (1− f) ∗ (ts/n)

• The speed-up factor is therefore given by

S(n) =
ts

ts ∗ f + (1− f) ∗ (ts/n)
=

n

1 + (n− 1) ∗ f
(4)

• According to this equation, the potential speed-up due to the use of n
processors is determined primarily by the fraction of code that cannot
be divided.

• If the task (program) is completely serial, that is, f = 1, then no
speed-up can be achieved regardless of the number of processors used.

• This principle is known as Amdahl’s law.

• It is interesting to note that according to this law, the maximum speed-up
factor is given by

limn→∞S(n) =
1

f

• Therefore, the improvement in performance (speed) of a parallel algo-
rithm over a sequential one is

– limited not by the number of processors employed

– but rather by the fraction of the algorithm that cannot be parallelized.

• According to Amdahl’s law, researchers were led to believe that a sub-
stantial increase in speed-up factor would not be possible by using
parallel architectures.

• NOT parallelizable;

– communication overhead,

4



– a sequential fraction, f

• The maximum speed-up factor under such conditions is given by

S(n) =
ts

ts ∗ f + (1− f) ∗ (ts/n) + tc
=

n

(n − 1) ∗ f + 1 + n ∗ (tc/ts)
(5)

limn→∞S(n) = limn→∞

n

(n − 1) ∗ f + 1 + n ∗ (tc/ts)
=

1

f + (tc/ts)

• The above formula indicates that the maximum speed-up factor is de-
termined not by the number of parallel processors employed but by the

fraction of the computation that is not parallelized and the communi-

cation overhead.

• Recall that the efficiency is defined as the ratio between the speed-up
factor and the number of processors, n.

• The efficiency can be computed as:

E(no communication overhead) = 1
1+(n−1)∗f

E(with communication overhead) = 1
(n−1)∗f+1+n∗(tc/ts)

(6)

• As the number of processors increases, it may become difficult to use
those processors efficiently.

1.2 Skeptic Postulates For Parallel Architectures

1.2.1 Grosch’s Law

A number of postulates were introduced by some well-known computer ar-
chitects expressing about the usefulness of parallel architectures.

Figure 2: Power-cost relationship according to Grosch’s law.

• It was as early as the late 1940s that H. Grosch studied the relationship
between the power of a computer system, P , and its cost, C.

5



• He postulated that P = K ∗Cs, where s and K are positive constants.
Grosch postulated further that the value of s would be close to 2.

• Simply stated, Grosch’s law implies that the power of a computer sys-
tem increases in proportion to the square of its cost (see Fig. 6).

• Alternatively, one can express the cost of a system as C = sqrt(P/K)
assuming that s = 2.

• According to Grosch’s law, in order to sell a computer for twice as
much, it must be four times as fast.

• Alternatively, to do a computation twice as cheaply, one has to do it
four times slower.

• With the advances in computing, it is easy to see that Grosch’s law
is overturned, and it is possible to build faster and less expensive com-
puters over time.

1.2.2 Amdahl’s Law

• Similar to Grosch’s law, Amdahl’s law made it so pessimistic to build
parallel computer systems.

• Due to the intrinsic limit set on the performance improvement (speed)
regardless of the number of processors used.

• An interesting observation to make here is that according to Amdahl’s
law, f is fixed and does not scale with the problem size, n.

• However, it has been practically observed that some real parallel al-

gorithms have a fraction that is a function of n.

• Let us assume that f is a function of n such that limn→∞f(n) = 0

limn→∞S(n) = limn→∞

n

1 + (n− 1) ∗ f(n)
= n (7)

• This is clearly in contradiction to Amdahl’s law.

• It is therefore possible to achieve a linear speed-up factor for
large-sized problems, given that

limn→∞f(n) = 0

a condition that has been practically observed.

6



• For example, researchers at the Sandia National Laboratories have
shown that using a 1024-processor hypercube multiprocessor system
for a number of engineering problems, a linear speed-up factor can be
achieved.

• Consider, for example, the well-known engineering problem of multi-
plying a large square matrix A(m×m) by a vector X(m) to obtain a
vector, that is, C(m).

• Assume further that the solution of such a problem is performed on a
binary tree architecture consisting of n nodes (processors).

• Initially, the root node stores the vectorX(m) and the matrix A(m×m)
is distributed row-wise among the n processors such that the maximum
number of rows in any processor is m/n + 1.

A simple algorithm to perform such computation consists of the following
three steps:

1. The root node sends the vector X(m) to all processors in the order of
O(m ∗ logn)

2. All processors perform the product Ci =
∑m

j=1 aij ∗ xj in

O(m ∗ (m/n + 1)) = O(m) +O(
m2

n
)

3. All processors send their Ci values to the root node in O(m ∗ logn).

• According to the above algorithm, the amount of computation needed
is

O(m ∗ logn) +O(m) +O(
m2

n
) +O(m ∗ logn) = O(m2)

• The indivisible part of the computation is equal to

O(m) +O(m ∗ logn)

• Therefore, the fraction of computation that is indivisible

f(m) =
(O(m) +O(m ∗ logn))

O(m2)
= O(

(1 + logn)

m
)

• Notice that limm→∞f(m) = 0.

7



• Hence, contrary to Amdahl’s law, a linear speed-up can be achieved for
such a large-sized problem.

• It should be noted that in presenting the above scenario for solving
the matrix vector multiplication problem, we have assumed that the
memory size of each processor is large enough to store the maximum
number of rows expected.

• This assumption amounts to us saying that with n processors, the
memory is n times larger.

• Naturally, this argument is more applicable to message passing parallel
architectures than it is to shared memory ones.

• The Gustafson-Barsis law makes use of this argument.

1.2.3 Gustafson-Barsis’s Law

• In 1988, Gustafson and Barsis at Sandia Laboratories studied the para-
dox created by Amdahl’s law.

• Then It is the fact that parallel architectures comprised of hundreds
of processors were built with substantial improvement in perfor-

mance.

• In introducing their law, Gustafson recognised that the fraction of in-
divisible tasks in a given algorithm might not be known a priori.

• They argued that in practice, the problem size scales with the number
of processors, n.

• Recall that Amdahl’s law assumes that the amount of time spent on the
parts of the program that can be done in parallel, (1−f), is independent
of the number of processors, n.

• Gustafson and Brasis postulated that when using a more powerful pro-
cessor, the problem tends to make use of the increased resources.

• They found that to a first approximation the parallel part of the pro-
gram, not the serial part, scales up with the problem size.

• They postulated that if s and p represent respectively the serial and
the parallel time spent on a parallel system,

8



• Then s + p ∗ n represents the time needed by a serial processor to
perform the computation.

• They therefore, introduced a new factor, called the scaled speed-up
factor, SS(n), which can be computed as:

SS(n) =
s+ p ∗ n

s+ p
= s+ p ∗ n = s+ (1− s) ∗ n = n+ (1− n) ∗ s (8)

• This equation shows that the resulting function is a straight line with
a slope = (1− n).

• This shows clearly that it is possible, even easier, to achieve efficient parallel
performance than is implied by Amdahl’s speed-up formula.

• Speed-up should be measured by scaling the problem to the number of
processors, not by fixing the problem size.

9


	Performance Analysis
	Computational Models
	Equal Duration Model
	Parallel Computation with Serial Sections Model

	Skeptic Postulates For Parallel Architectures
	Grosch's Law
	Amdahl's Law
	Gustafson-Barsis's Law



