
Process 0 Process 1

A:

B:

Send Recv

Figure 1: MPI messages.

1 MPI Hands-On - Sending and Receiving

Messages I

Questions:

• To whom is data sent?

• What is sent?

• How does the receiver identify it?

1.1 Current Message-Passing

Message = data + envelope

Figure 2: Data+Envelope.

• MPI Data; Arguments

– startbuf (starting location of data)

– count (number of elements)

1

∗ receive count ≥ send count

– datatype (basic or derived)

∗ receiver datatype = send datatype (unless MPI PACKED)

∗ Elementary (all C and FORTRAN types). Specifications of
elementary datatypes allows heterogeneous communication.

∗ MPI basic datatypes for C:

Figure 3: MPI basic datatypes for C.

• MPI Envelope; Arguments

– destination or source

∗ rank in a communicator

∗ receive = sender or MPI ANY SOURCE

– tag

∗ integer chosen by programmer

∗ receive = sender or MPI ANY TAG (wild cards allowed)

– communicator

∗ defines communication ”space”

∗ group + context

∗ receive = send

– Collective operations typically operated on all processes.

2

– All communication (not just collective operations) takes place in
groups.

– A context partitions the communication space. A message sent in
one context cannot be received in another context. Contexts are
managed by the system.

– A group and a context are combined in a communicator.

– Source/destination in send/receive operations refer to rank in group
associated with a given communicator.

1.2 The Buffer

Sending and receiving only a contiguous array of bytes. Specified in MPI by
starting address , datatype, and count

• hides the real data structure from hardware which might be able to
handle it directly.

• requires pre-packing dispersed data

– rows of a matrix stored columnwise.

– general collections of structures.

• prevents communications between machines with different representa-
tions (even lengths) for same data type

1.3 MPI Basic Send/Receive

Thus the basic send (blocking!!) has become:

MPI_Send(start, count, datatype, dest, tag, comm)

and the receive (blocking!!):

MPI_Recv(start, count, datatype, source, tag, comm, status)

The source, tag, and count of the message actually received can be retrieved
from status.

MPI_Status status;

MPI_Recv(..., &status);

... status.MPI_TAG; ... status.MPI_SOURCE;

MPI_Get_count(&status, datatype, &count);

MPI Get count may be used to determine how much data of a particular
type was received.

3

Two simple collective operations (just to introduce!):

MPI_Bcast(start, count, datatype, root, comm)

MPI_Reduce(start, result, count, datatype,

operation, root, comm)

1.4 Exercises/Examples

1. An example for communication world code1.

#include <stdio.h>

#include <mpi.h>

int main(int argc, char **argv)

{

int my_rank, numprocs;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&id);

/*printf("Hello! It is processor %d.\n", id);*/

if (my_rank == 0)

{

printf("Hello! It is processor 0. There are %d processors in this

communication world.\n", numprocs);

printf ("I am process %i out of %i: Hello world!\n",my_rank, size);

}

else

{

printf("I am process %i out of %i: Hello world!\n", my_rank, size);

}

MPI_Finalize();

return 0;

}

2. Write a program to send/receive and print out your name and age to
each processors. Hints:

char* my_name = "Cem Ozdogan";

MPI_Send(&my_name, 11, MPI_CHAR, dest, 2, MPI_COMM_WORLD);

MPI_Recv(&recv_my_name, 11, MPI_CHAR, 0, 2, MPI_COMM_WORLD, &status);

4

http://siber.cankaya.edu.tr/ozdogan/ParallelComputing/cfiles/code1.c

	MPI Hands-On - Sending and Receiving messages
	Current Message-Passing
	The Buffer
	MPI Basic Send/Receive
	Exercises/Examples

