
Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.1

Lecture 4
Programming Using the
Message-Passing Paradigm I
Principles of Message-Passing Programming

Ceng471 Parallel Computing at November 4, 2010

Dr. Cem Özdoğan
Computer Engineering Department

Çankaya University



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.2

Contents

1 Programming Using the Message-Passing Paradigm
Principles of Message-Passing Programming
Structure of Message-Passing Programs
The Building Blocks: Send and Receive Operations

Blocking Message Passing Operations
Non-Blocking Message Passing Operations



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.3

Programming Using the Message-Passing Paradigm

• A message passing architecture uses a set of primitives
that allows processes to communicate with each other.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.3

Programming Using the Message-Passing Paradigm

• A message passing architecture uses a set of primitives
that allows processes to communicate with each other.

• i.e., send, receive, broadcast, and barrier.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.3

Programming Using the Message-Passing Paradigm

• A message passing architecture uses a set of primitives
that allows processes to communicate with each other.

• i.e., send, receive, broadcast, and barrier.
• Numerous programming languages and libraries have

been developed for explicit parallel programming.These
differ in



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.3

Programming Using the Message-Passing Paradigm

• A message passing architecture uses a set of primitives
that allows processes to communicate with each other.

• i.e., send, receive, broadcast, and barrier.
• Numerous programming languages and libraries have

been developed for explicit parallel programming.These
differ in

• their view of the address space that they make available to
the programmer,



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.3

Programming Using the Message-Passing Paradigm

• A message passing architecture uses a set of primitives
that allows processes to communicate with each other.

• i.e., send, receive, broadcast, and barrier.
• Numerous programming languages and libraries have

been developed for explicit parallel programming.These
differ in

• their view of the address space that they make available to
the programmer,

• the degree of synchronization imposed on concurrent
activities, and the multiplicity of programs.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.3

Programming Using the Message-Passing Paradigm

• A message passing architecture uses a set of primitives
that allows processes to communicate with each other.

• i.e., send, receive, broadcast, and barrier.
• Numerous programming languages and libraries have

been developed for explicit parallel programming.These
differ in

• their view of the address space that they make available to
the programmer,

• the degree of synchronization imposed on concurrent
activities, and the multiplicity of programs.

• Some links; Scientific Applications on Linux,
Parallel Programming Laboratory.

http://sal.jyu.fi/index.shtml
http://charm.cs.uiuc.edu/


Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.4

Principles of Message-Passing Programming I
There are two key attributes that characterize the
message-passing programming paradigm.

1 the first is that it assumes a partitioned address space,



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.4

Principles of Message-Passing Programming I
There are two key attributes that characterize the
message-passing programming paradigm.

1 the first is that it assumes a partitioned address space,

2 the second is that it supports only explicit parallelization.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.4

Principles of Message-Passing Programming I
There are two key attributes that characterize the
message-passing programming paradigm.

1 the first is that it assumes a partitioned address space,

2 the second is that it supports only explicit parallelization.

• Each data element must belong to one of the partitions
of the space;



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.4

Principles of Message-Passing Programming I
There are two key attributes that characterize the
message-passing programming paradigm.

1 the first is that it assumes a partitioned address space,

2 the second is that it supports only explicit parallelization.

• Each data element must belong to one of the partitions
of the space;

• hence, data must be explicitly partitioned and placed.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.4

Principles of Message-Passing Programming I
There are two key attributes that characterize the
message-passing programming paradigm.

1 the first is that it assumes a partitioned address space,

2 the second is that it supports only explicit parallelization.

• Each data element must belong to one of the partitions
of the space;

• hence, data must be explicitly partitioned and placed.
• Adds complexity, encourages data locality, NUMA

architecture.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.4

Principles of Message-Passing Programming I
There are two key attributes that characterize the
message-passing programming paradigm.

1 the first is that it assumes a partitioned address space,

2 the second is that it supports only explicit parallelization.

• Each data element must belong to one of the partitions
of the space;

• hence, data must be explicitly partitioned and placed.
• Adds complexity, encourages data locality, NUMA

architecture.

• All interactions (read-only or read/write) require
cooperation of two processes (the process that has the
data and the process that wants to access the data).



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.4

Principles of Message-Passing Programming I
There are two key attributes that characterize the
message-passing programming paradigm.

1 the first is that it assumes a partitioned address space,

2 the second is that it supports only explicit parallelization.

• Each data element must belong to one of the partitions
of the space;

• hence, data must be explicitly partitioned and placed.
• Adds complexity, encourages data locality, NUMA

architecture.

• All interactions (read-only or read/write) require
cooperation of two processes (the process that has the
data and the process that wants to access the data).

• process that has the data must participate in the interaction,



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.4

Principles of Message-Passing Programming I
There are two key attributes that characterize the
message-passing programming paradigm.

1 the first is that it assumes a partitioned address space,

2 the second is that it supports only explicit parallelization.

• Each data element must belong to one of the partitions
of the space;

• hence, data must be explicitly partitioned and placed.
• Adds complexity, encourages data locality, NUMA

architecture.

• All interactions (read-only or read/write) require
cooperation of two processes (the process that has the
data and the process that wants to access the data).

• process that has the data must participate in the interaction,
• for dynamic and/or unstructured interactions, the complexity

of the code can be very high,



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.4

Principles of Message-Passing Programming I
There are two key attributes that characterize the
message-passing programming paradigm.

1 the first is that it assumes a partitioned address space,

2 the second is that it supports only explicit parallelization.

• Each data element must belong to one of the partitions
of the space;

• hence, data must be explicitly partitioned and placed.
• Adds complexity, encourages data locality, NUMA

architecture.

• All interactions (read-only or read/write) require
cooperation of two processes (the process that has the
data and the process that wants to access the data).

• process that has the data must participate in the interaction,
• for dynamic and/or unstructured interactions, the complexity

of the code can be very high,
• primary advantage of explicit two-way interactions is that the

programmer is fully aware of all the costs of non-local
interactions



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.4

Principles of Message-Passing Programming I
There are two key attributes that characterize the
message-passing programming paradigm.

1 the first is that it assumes a partitioned address space,

2 the second is that it supports only explicit parallelization.

• Each data element must belong to one of the partitions
of the space;

• hence, data must be explicitly partitioned and placed.
• Adds complexity, encourages data locality, NUMA

architecture.

• All interactions (read-only or read/write) require
cooperation of two processes (the process that has the
data and the process that wants to access the data).

• process that has the data must participate in the interaction,
• for dynamic and/or unstructured interactions, the complexity

of the code can be very high,
• primary advantage of explicit two-way interactions is that the

programmer is fully aware of all the costs of non-local
interactions

• more likely to think about algorithms (and mappings) that
minimize interactions.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.5

Principles of Message-Passing Programming II

• The programmer is responsible for analyzing the
underlying serial algorithm/application.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.5

Principles of Message-Passing Programming II

• The programmer is responsible for analyzing the
underlying serial algorithm/application.

• Identifying ways by which he or she can decompose the
computations and extract concurrency.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.5

Principles of Message-Passing Programming II

• The programmer is responsible for analyzing the
underlying serial algorithm/application.

• Identifying ways by which he or she can decompose the
computations and extract concurrency.

• As a result, programming using the message-passing
paradigm tends to be hard and intellectually demanding.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.5

Principles of Message-Passing Programming II

• The programmer is responsible for analyzing the
underlying serial algorithm/application.

• Identifying ways by which he or she can decompose the
computations and extract concurrency.

• As a result, programming using the message-passing
paradigm tends to be hard and intellectually demanding.

• However, on the other hand, properly written
message-passing programs can often achieve very high
performance and scale to a very large number of
processes.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.6

Structure of Message-Passing Programs I

• Message-passing programs are often written using the
asynchronous or loosely synchronous paradigms.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.6

Structure of Message-Passing Programs I

• Message-passing programs are often written using the
asynchronous or loosely synchronous paradigms.

• In the asynchronous paradigm, all concurrent tasks
execute asynchronously.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.6

Structure of Message-Passing Programs I

• Message-passing programs are often written using the
asynchronous or loosely synchronous paradigms.

• In the asynchronous paradigm, all concurrent tasks
execute asynchronously.

• However, such programs can be harder and can have
non-deterministic behavior due to race conditions.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.6

Structure of Message-Passing Programs I

• Message-passing programs are often written using the
asynchronous or loosely synchronous paradigms.

• In the asynchronous paradigm, all concurrent tasks
execute asynchronously.

• However, such programs can be harder and can have
non-deterministic behavior due to race conditions.

• Loosely synchronous programs are a good compromise
between two extremes.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.6

Structure of Message-Passing Programs I

• Message-passing programs are often written using the
asynchronous or loosely synchronous paradigms.

• In the asynchronous paradigm, all concurrent tasks
execute asynchronously.

• However, such programs can be harder and can have
non-deterministic behavior due to race conditions.

• Loosely synchronous programs are a good compromise
between two extremes.

• In such programs, tasks or subsets of tasks synchronize to
perform interactions.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.6

Structure of Message-Passing Programs I

• Message-passing programs are often written using the
asynchronous or loosely synchronous paradigms.

• In the asynchronous paradigm, all concurrent tasks
execute asynchronously.

• However, such programs can be harder and can have
non-deterministic behavior due to race conditions.

• Loosely synchronous programs are a good compromise
between two extremes.

• In such programs, tasks or subsets of tasks synchronize to
perform interactions.

• However, between these interactions, tasks execute
completely asynchronously.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.6

Structure of Message-Passing Programs I

• Message-passing programs are often written using the
asynchronous or loosely synchronous paradigms.

• In the asynchronous paradigm, all concurrent tasks
execute asynchronously.

• However, such programs can be harder and can have
non-deterministic behavior due to race conditions.

• Loosely synchronous programs are a good compromise
between two extremes.

• In such programs, tasks or subsets of tasks synchronize to
perform interactions.

• However, between these interactions, tasks execute
completely asynchronously.

• In its most general form, the message-passing paradigm
supports execution of a different program on each of the p
processes.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.6

Structure of Message-Passing Programs I

• Message-passing programs are often written using the
asynchronous or loosely synchronous paradigms.

• In the asynchronous paradigm, all concurrent tasks
execute asynchronously.

• However, such programs can be harder and can have
non-deterministic behavior due to race conditions.

• Loosely synchronous programs are a good compromise
between two extremes.

• In such programs, tasks or subsets of tasks synchronize to
perform interactions.

• However, between these interactions, tasks execute
completely asynchronously.

• In its most general form, the message-passing paradigm
supports execution of a different program on each of the p
processes.

• This provides the ultimate flexibility in parallel
programming, but makes the job of writing parallel
programs effectively unscalable.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.7

Structure of Message-Passing Programs II

• For this reason, most message-passing programs are
written using the single program multiple data (SPMD).



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.7

Structure of Message-Passing Programs II

• For this reason, most message-passing programs are
written using the single program multiple data (SPMD).

• In SPMD programs the code executed by different
processes is identical except for a small number of
processes (e.g., the "root" process).



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.7

Structure of Message-Passing Programs II

• For this reason, most message-passing programs are
written using the single program multiple data (SPMD).

• In SPMD programs the code executed by different
processes is identical except for a small number of
processes (e.g., the "root" process).

• In an extreme case, even in an SPMD program,
each process could execute a different code (many case
statements).



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.7

Structure of Message-Passing Programs II

• For this reason, most message-passing programs are
written using the single program multiple data (SPMD).

• In SPMD programs the code executed by different
processes is identical except for a small number of
processes (e.g., the "root" process).

• In an extreme case, even in an SPMD program,
each process could execute a different code (many case
statements).

• But except for this degenerate case, most processes
execute the same code.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.7

Structure of Message-Passing Programs II

• For this reason, most message-passing programs are
written using the single program multiple data (SPMD).

• In SPMD programs the code executed by different
processes is identical except for a small number of
processes (e.g., the "root" process).

• In an extreme case, even in an SPMD program,
each process could execute a different code (many case
statements).

• But except for this degenerate case, most processes
execute the same code.

• SPMD programs can be loosely synchronous or
completely asynchronous.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.8

The Building Blocks: Send and Receive Operations I

• Since interactions are accomplished by sending and
receiving messages, the basic operations in the
message-passing programming paradigm are send and
receive .



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.8

The Building Blocks: Send and Receive Operations I

• Since interactions are accomplished by sending and
receiving messages, the basic operations in the
message-passing programming paradigm are send and
receive .

• In their simplest form, the prototypes of these operations
are defined as follows:



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.8

The Building Blocks: Send and Receive Operations I

• Since interactions are accomplished by sending and
receiving messages, the basic operations in the
message-passing programming paradigm are send and
receive .

• In their simplest form, the prototypes of these operations
are defined as follows:

• sendbuf points to a buffer that stores the data to be sent,



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.8

The Building Blocks: Send and Receive Operations I

• Since interactions are accomplished by sending and
receiving messages, the basic operations in the
message-passing programming paradigm are send and
receive .

• In their simplest form, the prototypes of these operations
are defined as follows:

• sendbuf points to a buffer that stores the data to be sent,
• recvbuf points to a buffer that

stores the data to be received,



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.8

The Building Blocks: Send and Receive Operations I

• Since interactions are accomplished by sending and
receiving messages, the basic operations in the
message-passing programming paradigm are send and
receive .

• In their simplest form, the prototypes of these operations
are defined as follows:

• sendbuf points to a buffer that stores the data to be sent,
• recvbuf points to a buffer that

stores the data to be received,
• nelems is the number of data units to be sent and received,



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.8

The Building Blocks: Send and Receive Operations I

• Since interactions are accomplished by sending and
receiving messages, the basic operations in the
message-passing programming paradigm are send and
receive .

• In their simplest form, the prototypes of these operations
are defined as follows:

• sendbuf points to a buffer that stores the data to be sent,
• recvbuf points to a buffer that

stores the data to be received,
• nelems is the number of data units to be sent and received,
• dest is the identifier of the process that receives the data,



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.8

The Building Blocks: Send and Receive Operations I

• Since interactions are accomplished by sending and
receiving messages, the basic operations in the
message-passing programming paradigm are send and
receive .

• In their simplest form, the prototypes of these operations
are defined as follows:

• sendbuf points to a buffer that stores the data to be sent,
• recvbuf points to a buffer that

stores the data to be received,
• nelems is the number of data units to be sent and received,
• dest is the identifier of the process that receives the data,
• source is the identifier of the process that sends the data.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.9

The Building Blocks: Send and Receive Operations II

• Process P0 sends a message to process P1 which
receives and prints the message.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.9

The Building Blocks: Send and Receive Operations II

• Process P0 sends a message to process P1 which
receives and prints the message.

• The important thing to note is that process P0 changes the
value of a to 0 immediately following the send.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.9

The Building Blocks: Send and Receive Operations II

• Process P0 sends a message to process P1 which
receives and prints the message.

• The important thing to note is that process P0 changes the
value of a to 0 immediately following the send.

• The semantics of the send operation require that the value
received by process P1 must be 100 (not 0).



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.9

The Building Blocks: Send and Receive Operations II

• Process P0 sends a message to process P1 which
receives and prints the message.

• The important thing to note is that process P0 changes the
value of a to 0 immediately following the send.

• The semantics of the send operation require that the value
received by process P1 must be 100 (not 0).

• That is, the value of a at the time of the send operation
must be the value that is received by process P1.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.9

The Building Blocks: Send and Receive Operations II

• Process P0 sends a message to process P1 which
receives and prints the message.

• The important thing to note is that process P0 changes the
value of a to 0 immediately following the send.

• The semantics of the send operation require that the value
received by process P1 must be 100 (not 0).

• That is, the value of a at the time of the send operation
must be the value that is received by process P1.

• It may seem that it is quite straightforward to ensure the
semantics of the send and receive operations.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.9

The Building Blocks: Send and Receive Operations II

• Process P0 sends a message to process P1 which
receives and prints the message.

• The important thing to note is that process P0 changes the
value of a to 0 immediately following the send.

• The semantics of the send operation require that the value
received by process P1 must be 100 (not 0).

• That is, the value of a at the time of the send operation
must be the value that is received by process P1.

• It may seem that it is quite straightforward to ensure the
semantics of the send and receive operations.

• However, based on how the send and receive operations
are implemented this may not be the case.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.10

The Building Blocks: Send and Receive Operations III

• Most message passing platforms have additional
hardware support for sending and receiving messages.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.10

The Building Blocks: Send and Receive Operations III

• Most message passing platforms have additional
hardware support for sending and receiving messages.

• They may support DMA (direct memory access) and
asynchronous message transfer using network interface
hardware.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.10

The Building Blocks: Send and Receive Operations III

• Most message passing platforms have additional
hardware support for sending and receiving messages.

• They may support DMA (direct memory access) and
asynchronous message transfer using network interface
hardware.

• Network interfaces allow the transfer of messages from
buffer memory to desired location without CPU
intervention.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.10

The Building Blocks: Send and Receive Operations III

• Most message passing platforms have additional
hardware support for sending and receiving messages.

• They may support DMA (direct memory access) and
asynchronous message transfer using network interface
hardware.

• Network interfaces allow the transfer of messages from
buffer memory to desired location without CPU
intervention.

• Similarly, DMA allows copying of data from one memory
location to another (e.g., communication buffers) without
CPU support (once they have been programmed).



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.10

The Building Blocks: Send and Receive Operations III

• Most message passing platforms have additional
hardware support for sending and receiving messages.

• They may support DMA (direct memory access) and
asynchronous message transfer using network interface
hardware.

• Network interfaces allow the transfer of messages from
buffer memory to desired location without CPU
intervention.

• Similarly, DMA allows copying of data from one memory
location to another (e.g., communication buffers) without
CPU support (once they have been programmed).

• As a result, if the send operation programs the
communication hardware and returns before the
communication operation has been accomplished,
process P1 might receive the value 0 in a instead of 100!



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.11

Blocking Message Passing Operations I

• A simple solution to the dilemma presented in the code
fragment above is for the send operation to return only
when it is semantically safe to do so.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.11

Blocking Message Passing Operations I

• A simple solution to the dilemma presented in the code
fragment above is for the send operation to return only
when it is semantically safe to do so.

• Note that this is not the same as saying that the send
operation returns only after the receiver has received the
data.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.11

Blocking Message Passing Operations I

• A simple solution to the dilemma presented in the code
fragment above is for the send operation to return only
when it is semantically safe to do so.

• Note that this is not the same as saying that the send
operation returns only after the receiver has received the
data.

• It simply means that the sending operation blocks until it
can guarantee that the semantics will not be violated on
return irrespective of what happens in the program
subsequently.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.11

Blocking Message Passing Operations I

• A simple solution to the dilemma presented in the code
fragment above is for the send operation to return only
when it is semantically safe to do so.

• Note that this is not the same as saying that the send
operation returns only after the receiver has received the
data.

• It simply means that the sending operation blocks until it
can guarantee that the semantics will not be violated on
return irrespective of what happens in the program
subsequently.

• There are two mechanisms by which this can be achieved.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.11

Blocking Message Passing Operations I

• A simple solution to the dilemma presented in the code
fragment above is for the send operation to return only
when it is semantically safe to do so.

• Note that this is not the same as saying that the send
operation returns only after the receiver has received the
data.

• It simply means that the sending operation blocks until it
can guarantee that the semantics will not be violated on
return irrespective of what happens in the program
subsequently.

• There are two mechanisms by which this can be achieved.

1 Blocking Non-Buffered Send/Receive



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.11

Blocking Message Passing Operations I

• A simple solution to the dilemma presented in the code
fragment above is for the send operation to return only
when it is semantically safe to do so.

• Note that this is not the same as saying that the send
operation returns only after the receiver has received the
data.

• It simply means that the sending operation blocks until it
can guarantee that the semantics will not be violated on
return irrespective of what happens in the program
subsequently.

• There are two mechanisms by which this can be achieved.

1 Blocking Non-Buffered Send/Receive
2 Blocking Buffered Send/Receive



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.12

Blocking Message Passing Operations II
1 Blocking Non-Buffered Send/Receive



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.12

Blocking Message Passing Operations II
1 Blocking Non-Buffered Send/Receive

• The send operation does not return until the matching receive
has been encountered at the receiving process.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.12

Blocking Message Passing Operations II
1 Blocking Non-Buffered Send/Receive

• The send operation does not return until the matching receive
has been encountered at the receiving process.

• When this happens, the message is sent and the send
operation returns upon completion of the communication
operation.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.12

Blocking Message Passing Operations II
1 Blocking Non-Buffered Send/Receive

• The send operation does not return until the matching receive
has been encountered at the receiving process.

• When this happens, the message is sent and the send
operation returns upon completion of the communication
operation.

• Typically, this process involves a handshake between the
sending and receiving processes (see Fig. 1).

Figure: Handshake for a blocking non-buffered send/receive
operation.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.13

Blocking Message Passing Operations III

• The sending process sends a request to communicate to
the receiving process.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.13

Blocking Message Passing Operations III

• The sending process sends a request to communicate to
the receiving process.

• When the receiving process encounters the target receive,
it responds to the request.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.13

Blocking Message Passing Operations III

• The sending process sends a request to communicate to
the receiving process.

• When the receiving process encounters the target receive,
it responds to the request.

• The sending process upon receiving this response initiates
a transfer operation.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.13

Blocking Message Passing Operations III

• The sending process sends a request to communicate to
the receiving process.

• When the receiving process encounters the target receive,
it responds to the request.

• The sending process upon receiving this response initiates
a transfer operation.

• Since there are no buffers used at either sending or
receiving ends, this is also referred to as a non-buffered
blocking operation.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.13

Blocking Message Passing Operations III

• The sending process sends a request to communicate to
the receiving process.

• When the receiving process encounters the target receive,
it responds to the request.

• The sending process upon receiving this response initiates
a transfer operation.

• Since there are no buffers used at either sending or
receiving ends, this is also referred to as a non-buffered
blocking operation.

• Idling Overheads in Blocking Non-Buffered Operations: It
is clear from the figure that a blocking non-buffered
protocol is suitable when the send and receive are posted
at roughly the same time (middle in the figure).



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.13

Blocking Message Passing Operations III

• The sending process sends a request to communicate to
the receiving process.

• When the receiving process encounters the target receive,
it responds to the request.

• The sending process upon receiving this response initiates
a transfer operation.

• Since there are no buffers used at either sending or
receiving ends, this is also referred to as a non-buffered
blocking operation.

• Idling Overheads in Blocking Non-Buffered Operations: It
is clear from the figure that a blocking non-buffered
protocol is suitable when the send and receive are posted
at roughly the same time (middle in the figure).

• However, in an asynchronous environment, this may be
impossible to predict.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.13

Blocking Message Passing Operations III

• The sending process sends a request to communicate to
the receiving process.

• When the receiving process encounters the target receive,
it responds to the request.

• The sending process upon receiving this response initiates
a transfer operation.

• Since there are no buffers used at either sending or
receiving ends, this is also referred to as a non-buffered
blocking operation.

• Idling Overheads in Blocking Non-Buffered Operations: It
is clear from the figure that a blocking non-buffered
protocol is suitable when the send and receive are posted
at roughly the same time (middle in the figure).

• However, in an asynchronous environment, this may be
impossible to predict.

• This idling overhead is one of the major drawbacks of this
protocol.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.14

Blocking Message Passing Operations IV

• Deadlocks in Blocking Non-Buffered Operations: Consider
the following simple exchange of messages that can lead
to a deadlock:

• The code fragment makes the values of a available to both
processes P0 and P1.

• However, if the send and receive operations are
implemented using a blocking non-buffered protocol,

• the send at P0 waits for the matching receive at P1

• whereas the send at process P1 waits for the corresponding
receive at P0,

• resulting in an infinite wait.

• Deadlocks are very easy in blocking protocols and care
must be taken to break cyclic waits.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.15

Blocking Message Passing Operations V

2 Blocking Buffered Send/Receive



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.15

Blocking Message Passing Operations V

2 Blocking Buffered Send/Receive
• A simple solution to the idling and deadlocking problems

outlined above is to rely on buffers at the sending and
receiving ends.

Figure: Blocking buffered transfer protocols: Left: in the
presence of communication hardware with buffers at send and
receive ends; and Right: in the absence of communication
hardware, sender interrupts receiver and deposits data in
buffer at receiver end.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.16

Blocking Message Passing Operations VI
Figure 2Left

• On a send operation, the sender simply copies the data
into the designated buffer and returns after the copy
operation has been completed.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.16

Blocking Message Passing Operations VI
Figure 2Left

• On a send operation, the sender simply copies the data
into the designated buffer and returns after the copy
operation has been completed.

• The sender process can now continue with the program
knowing that any changes to the data will not impact
program semantics.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.16

Blocking Message Passing Operations VI
Figure 2Left

• On a send operation, the sender simply copies the data
into the designated buffer and returns after the copy
operation has been completed.

• The sender process can now continue with the program
knowing that any changes to the data will not impact
program semantics.

• If the hardware supports asynchronous communication
(independent of the CPU), then a network transfer can be
initiated after the message has been copied into the buffer.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.16

Blocking Message Passing Operations VI
Figure 2Left

• On a send operation, the sender simply copies the data
into the designated buffer and returns after the copy
operation has been completed.

• The sender process can now continue with the program
knowing that any changes to the data will not impact
program semantics.

• If the hardware supports asynchronous communication
(independent of the CPU), then a network transfer can be
initiated after the message has been copied into the buffer.

• Note that at the receiving end, the data cannot be stored
directly at the target location since this would violate
program semantics.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.16

Blocking Message Passing Operations VI
Figure 2Left

• On a send operation, the sender simply copies the data
into the designated buffer and returns after the copy
operation has been completed.

• The sender process can now continue with the program
knowing that any changes to the data will not impact
program semantics.

• If the hardware supports asynchronous communication
(independent of the CPU), then a network transfer can be
initiated after the message has been copied into the buffer.

• Note that at the receiving end, the data cannot be stored
directly at the target location since this would violate
program semantics.

• Instead, the data is copied into a buffer at the receiver as
well.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.16

Blocking Message Passing Operations VI
Figure 2Left

• On a send operation, the sender simply copies the data
into the designated buffer and returns after the copy
operation has been completed.

• The sender process can now continue with the program
knowing that any changes to the data will not impact
program semantics.

• If the hardware supports asynchronous communication
(independent of the CPU), then a network transfer can be
initiated after the message has been copied into the buffer.

• Note that at the receiving end, the data cannot be stored
directly at the target location since this would violate
program semantics.

• Instead, the data is copied into a buffer at the receiver as
well.

• When the receiving process encounters a receive
operation, it checks to see if the message is available in its
receive buffer. If so, the data is copied into the target
location.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.17

Blocking Message Passing Operations VII
Figure 2Right

• In Fig. 2Left, buffers are used at both sender and receiver
and communication is handled by dedicated hardware.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.17

Blocking Message Passing Operations VII
Figure 2Right

• In Fig. 2Left, buffers are used at both sender and receiver
and communication is handled by dedicated hardware.

• Sometimes machines do not have such communication
hardware.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.17

Blocking Message Passing Operations VII
Figure 2Right

• In Fig. 2Left, buffers are used at both sender and receiver
and communication is handled by dedicated hardware.

• Sometimes machines do not have such communication
hardware.

• In this case, some of the overhead can be saved by
buffering only on one side.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.17

Blocking Message Passing Operations VII
Figure 2Right

• In Fig. 2Left, buffers are used at both sender and receiver
and communication is handled by dedicated hardware.

• Sometimes machines do not have such communication
hardware.

• In this case, some of the overhead can be saved by
buffering only on one side.

• For example, on encountering a send operation, the
sender interrupts the receiver, both processes participate
in a communication operation and the message is
deposited in a buffer at the receiver end.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.17

Blocking Message Passing Operations VII
Figure 2Right

• In Fig. 2Left, buffers are used at both sender and receiver
and communication is handled by dedicated hardware.

• Sometimes machines do not have such communication
hardware.

• In this case, some of the overhead can be saved by
buffering only on one side.

• For example, on encountering a send operation, the
sender interrupts the receiver, both processes participate
in a communication operation and the message is
deposited in a buffer at the receiver end.

• When the receiver eventually encounters a receive
operation, the message is copied from the buffer into the
target location.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.17

Blocking Message Passing Operations VII
Figure 2Right

• In Fig. 2Left, buffers are used at both sender and receiver
and communication is handled by dedicated hardware.

• Sometimes machines do not have such communication
hardware.

• In this case, some of the overhead can be saved by
buffering only on one side.

• For example, on encountering a send operation, the
sender interrupts the receiver, both processes participate
in a communication operation and the message is
deposited in a buffer at the receiver end.

• When the receiver eventually encounters a receive
operation, the message is copied from the buffer into the
target location.

• In general, if the parallel program is highly synchronous,
non-buffered sends may perform better than buffered
sends.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.17

Blocking Message Passing Operations VII
Figure 2Right

• In Fig. 2Left, buffers are used at both sender and receiver
and communication is handled by dedicated hardware.

• Sometimes machines do not have such communication
hardware.

• In this case, some of the overhead can be saved by
buffering only on one side.

• For example, on encountering a send operation, the
sender interrupts the receiver, both processes participate
in a communication operation and the message is
deposited in a buffer at the receiver end.

• When the receiver eventually encounters a receive
operation, the message is copied from the buffer into the
target location.

• In general, if the parallel program is highly synchronous,
non-buffered sends may perform better than buffered
sends.

• However, generally, this is not the case and buffered sends
are desirable unless buffer capacity becomes an issue.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.18

Blocking Message Passing Operations VIII
• Impact of finite buffers in message passing; consider the

following code fragment:



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.18

Blocking Message Passing Operations VIII
• Impact of finite buffers in message passing; consider the

following code fragment:

• In this code fragment, process P0 produces 1000 data
items and process P1 consumes them.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.18

Blocking Message Passing Operations VIII
• Impact of finite buffers in message passing; consider the

following code fragment:

• In this code fragment, process P0 produces 1000 data
items and process P1 consumes them.

• However, if process P1 was slow getting to this loop,
process P0 might have sent all of its data.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.18

Blocking Message Passing Operations VIII
• Impact of finite buffers in message passing; consider the

following code fragment:

• In this code fragment, process P0 produces 1000 data
items and process P1 consumes them.

• However, if process P1 was slow getting to this loop,
process P0 might have sent all of its data.

• If there is enough buffer space, then both processes can
proceed;



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.18

Blocking Message Passing Operations VIII
• Impact of finite buffers in message passing; consider the

following code fragment:

• In this code fragment, process P0 produces 1000 data
items and process P1 consumes them.

• However, if process P1 was slow getting to this loop,
process P0 might have sent all of its data.

• If there is enough buffer space, then both processes can
proceed;

• however, if the buffer is not sufficient (i.e., buffer overflow),
the sender would have to be blocked until some of the
corresponding receive operations had been posted, thus
freeing up buffer space.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.18

Blocking Message Passing Operations VIII
• Impact of finite buffers in message passing; consider the

following code fragment:

• In this code fragment, process P0 produces 1000 data
items and process P1 consumes them.

• However, if process P1 was slow getting to this loop,
process P0 might have sent all of its data.

• If there is enough buffer space, then both processes can
proceed;

• however, if the buffer is not sufficient (i.e., buffer overflow),
the sender would have to be blocked until some of the
corresponding receive operations had been posted, thus
freeing up buffer space.

• This can often lead to unforeseen overheads and
performance degradation.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.18

Blocking Message Passing Operations VIII
• Impact of finite buffers in message passing; consider the

following code fragment:

• In this code fragment, process P0 produces 1000 data
items and process P1 consumes them.

• However, if process P1 was slow getting to this loop,
process P0 might have sent all of its data.

• If there is enough buffer space, then both processes can
proceed;

• however, if the buffer is not sufficient (i.e., buffer overflow),
the sender would have to be blocked until some of the
corresponding receive operations had been posted, thus
freeing up buffer space.

• This can often lead to unforeseen overheads and
performance degradation.

• In general, it is a good idea to write programs that have
bounded buffer requirements.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.19

Blocking Message Passing Operations IX

• Deadlocks in Buffered Send and Receive Operations:



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.19

Blocking Message Passing Operations IX

• Deadlocks in Buffered Send and Receive Operations:

• While buffering relieves many of the deadlock situations, it
is still possible to write code that deadlocks.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.19

Blocking Message Passing Operations IX

• Deadlocks in Buffered Send and Receive Operations:

• While buffering relieves many of the deadlock situations, it
is still possible to write code that deadlocks.

• This is due to the fact that as in the non-buffered case,
receive calls are always blocking (to ensure semantic
consistency ).



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.19

Blocking Message Passing Operations IX

• Deadlocks in Buffered Send and Receive Operations:

• While buffering relieves many of the deadlock situations, it
is still possible to write code that deadlocks.

• This is due to the fact that as in the non-buffered case,
receive calls are always blocking (to ensure semantic
consistency ).

• Thus, a simple code fragment such as the following
deadlocks since both processes wait to receive data but
nobody sends it.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.19

Blocking Message Passing Operations IX

• Deadlocks in Buffered Send and Receive Operations:

• While buffering relieves many of the deadlock situations, it
is still possible to write code that deadlocks.

• This is due to the fact that as in the non-buffered case,
receive calls are always blocking (to ensure semantic
consistency ).

• Thus, a simple code fragment such as the following
deadlocks since both processes wait to receive data but
nobody sends it.

• Once again, such circular waits have to be broken.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.19

Blocking Message Passing Operations IX

• Deadlocks in Buffered Send and Receive Operations:

• While buffering relieves many of the deadlock situations, it
is still possible to write code that deadlocks.

• This is due to the fact that as in the non-buffered case,
receive calls are always blocking (to ensure semantic
consistency ).

• Thus, a simple code fragment such as the following
deadlocks since both processes wait to receive data but
nobody sends it.

• Once again, such circular waits have to be broken.

• However, deadlocks are caused only by waits on receive
operations in this case.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.20

Non-Blocking Message Passing Operations I

• In blocking protocols, the overhead of guaranteeing
semantic correctness was paid in the form of idling
(non-buffered) or buffer management (buffered).



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.20

Non-Blocking Message Passing Operations I

• In blocking protocols, the overhead of guaranteeing
semantic correctness was paid in the form of idling
(non-buffered) or buffer management (buffered).

• It is possible to require the programmer



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.20

Non-Blocking Message Passing Operations I

• In blocking protocols, the overhead of guaranteeing
semantic correctness was paid in the form of idling
(non-buffered) or buffer management (buffered).

• It is possible to require the programmer
• to ensure semantic correctness,



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.20

Non-Blocking Message Passing Operations I

• In blocking protocols, the overhead of guaranteeing
semantic correctness was paid in the form of idling
(non-buffered) or buffer management (buffered).

• It is possible to require the programmer
• to ensure semantic correctness,
• to provide a fast send/receive operation that incurs little

overhead.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.20

Non-Blocking Message Passing Operations I

• In blocking protocols, the overhead of guaranteeing
semantic correctness was paid in the form of idling
(non-buffered) or buffer management (buffered).

• It is possible to require the programmer
• to ensure semantic correctness,
• to provide a fast send/receive operation that incurs little

overhead.

• This class of non-blocking protocols returns from the
send or receive operation before it is semantically safe to
do so.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.20

Non-Blocking Message Passing Operations I

• In blocking protocols, the overhead of guaranteeing
semantic correctness was paid in the form of idling
(non-buffered) or buffer management (buffered).

• It is possible to require the programmer
• to ensure semantic correctness,
• to provide a fast send/receive operation that incurs little

overhead.

• This class of non-blocking protocols returns from the
send or receive operation before it is semantically safe to
do so.

• Consequently, the user must be careful not to alter data
that may be potentially participating in communication.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.21

Non-Blocking Message Passing Operations II

• Non-blocking operations are generally accompanied by a
check-status operation,



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.21

Non-Blocking Message Passing Operations II

• Non-blocking operations are generally accompanied by a
check-status operation,

• which indicates whether the semantics of a previously
initiated transfer may be violated or not.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.21

Non-Blocking Message Passing Operations II

• Non-blocking operations are generally accompanied by a
check-status operation,

• which indicates whether the semantics of a previously
initiated transfer may be violated or not.

• Upon return from a non-blocking operation, the process is
free to perform any computation that does not depend
upon the completion of the operation.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.21

Non-Blocking Message Passing Operations II

• Non-blocking operations are generally accompanied by a
check-status operation,

• which indicates whether the semantics of a previously
initiated transfer may be violated or not.

• Upon return from a non-blocking operation, the process is
free to perform any computation that does not depend
upon the completion of the operation.

• Later in the program, the process can check whether or
not the non-blocking operation has completed,



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.21

Non-Blocking Message Passing Operations II

• Non-blocking operations are generally accompanied by a
check-status operation,

• which indicates whether the semantics of a previously
initiated transfer may be violated or not.

• Upon return from a non-blocking operation, the process is
free to perform any computation that does not depend
upon the completion of the operation.

• Later in the program, the process can check whether or
not the non-blocking operation has completed,

• and, if necessary, wait for its completion.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.21

Non-Blocking Message Passing Operations II

• Non-blocking operations are generally accompanied by a
check-status operation,

• which indicates whether the semantics of a previously
initiated transfer may be violated or not.

• Upon return from a non-blocking operation, the process is
free to perform any computation that does not depend
upon the completion of the operation.

• Later in the program, the process can check whether or
not the non-blocking operation has completed,

• and, if necessary, wait for its completion.

• Non-blocking operations can be buffered or non-buffered.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.22

Non-Blocking Message Passing Operations III

• In the non-buffered case, a process wishing to send data
to another simply posts a pending message and returns to
the user program.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.22

Non-Blocking Message Passing Operations III

• In the non-buffered case, a process wishing to send data
to another simply posts a pending message and returns to
the user program.

• The program can then do other useful work.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.22

Non-Blocking Message Passing Operations III

• In the non-buffered case, a process wishing to send data
to another simply posts a pending message and returns to
the user program.

• The program can then do other useful work.

• At some point in the future, when the corresponding
receive is posted, the communication operation is initiated.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.22

Non-Blocking Message Passing Operations III

• In the non-buffered case, a process wishing to send data
to another simply posts a pending message and returns to
the user program.

• The program can then do other useful work.

• At some point in the future, when the corresponding
receive is posted, the communication operation is initiated.

• When this operation is completed, the check-status
operation indicates that it is safe to touch this data.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.22

Non-Blocking Message Passing Operations III

• In the non-buffered case, a process wishing to send data
to another simply posts a pending message and returns to
the user program.

• The program can then do other useful work.

• At some point in the future, when the corresponding
receive is posted, the communication operation is initiated.

• When this operation is completed, the check-status
operation indicates that it is safe to touch this data.

• This transfer is indicated in Fig. 3Left.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.22

Non-Blocking Message Passing Operations III

• In the non-buffered case, a process wishing to send data
to another simply posts a pending message and returns to
the user program.

• The program can then do other useful work.

• At some point in the future, when the corresponding
receive is posted, the communication operation is initiated.

• When this operation is completed, the check-status
operation indicates that it is safe to touch this data.

• This transfer is indicated in Fig. 3Left.

• The benefits of non-blocking operations are further
enhanced by the presence of dedicated communication
hardware.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.22

Non-Blocking Message Passing Operations III

• In the non-buffered case, a process wishing to send data
to another simply posts a pending message and returns to
the user program.

• The program can then do other useful work.

• At some point in the future, when the corresponding
receive is posted, the communication operation is initiated.

• When this operation is completed, the check-status
operation indicates that it is safe to touch this data.

• This transfer is indicated in Fig. 3Left.

• The benefits of non-blocking operations are further
enhanced by the presence of dedicated communication
hardware.

• In this case, the communication overhead can be almost
entirely masked by non-blocking operations.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.22

Non-Blocking Message Passing Operations III

• In the non-buffered case, a process wishing to send data
to another simply posts a pending message and returns to
the user program.

• The program can then do other useful work.

• At some point in the future, when the corresponding
receive is posted, the communication operation is initiated.

• When this operation is completed, the check-status
operation indicates that it is safe to touch this data.

• This transfer is indicated in Fig. 3Left.

• The benefits of non-blocking operations are further
enhanced by the presence of dedicated communication
hardware.

• In this case, the communication overhead can be almost
entirely masked by non-blocking operations.

• However, the data being received is unsafe for the duration
of the receive operation.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.22

Non-Blocking Message Passing Operations III

• In the non-buffered case, a process wishing to send data
to another simply posts a pending message and returns to
the user program.

• The program can then do other useful work.

• At some point in the future, when the corresponding
receive is posted, the communication operation is initiated.

• When this operation is completed, the check-status
operation indicates that it is safe to touch this data.

• This transfer is indicated in Fig. 3Left.

• The benefits of non-blocking operations are further
enhanced by the presence of dedicated communication
hardware.

• In this case, the communication overhead can be almost
entirely masked by non-blocking operations.

• However, the data being received is unsafe for the duration
of the receive operation.

• This is illustrated in Fig. 3Right.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.23

Non-Blocking Message Passing Operations IV

Figure: Non-blocking non-buffered send and receive operations Left:
in absence of communication hardware; Right: in presence of
communication hardware.

• Comparing Figures 3Left and 1a, it is easy to see that the
idling time when the process is waiting for the
corresponding receive in a blocking operation can now be
utilized for computation (provided it does not update the
data being sent).



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.23

Non-Blocking Message Passing Operations IV

Figure: Non-blocking non-buffered send and receive operations Left:
in absence of communication hardware; Right: in presence of
communication hardware.

• Comparing Figures 3Left and 1a, it is easy to see that the
idling time when the process is waiting for the
corresponding receive in a blocking operation can now be
utilized for computation (provided it does not update the
data being sent).

• This removes the major bottleneck associated with the
former at the expense of some program restructuring.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.24

Non-Blocking Message Passing Operations V

• Typical message-passing libraries such as Message
Passing Interface (MPI) and Parallel Virtual Machine
(PVM) implement both blocking and non-blocking
operations.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.24

Non-Blocking Message Passing Operations V

• Typical message-passing libraries such as Message
Passing Interface (MPI) and Parallel Virtual Machine
(PVM) implement both blocking and non-blocking
operations.

• Blocking operations facilitate safe and easier
programming.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.24

Non-Blocking Message Passing Operations V

• Typical message-passing libraries such as Message
Passing Interface (MPI) and Parallel Virtual Machine
(PVM) implement both blocking and non-blocking
operations.

• Blocking operations facilitate safe and easier
programming.

• Non-blocking operations are useful for performance
optimization by masking communication overhead.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.24

Non-Blocking Message Passing Operations V

• Typical message-passing libraries such as Message
Passing Interface (MPI) and Parallel Virtual Machine
(PVM) implement both blocking and non-blocking
operations.

• Blocking operations facilitate safe and easier
programming.

• Non-blocking operations are useful for performance
optimization by masking communication overhead.

• One must, however, be careful using non-blocking
protocols since errors can result from unsafe access to
data that is in the process of being communicated.



Programming Using the
Message-Passing

Paradigm I

Dr. Cem Özdo ğan

Programming Using
the Message-Passing
Paradigm
Principles of
Message-Passing
Programming

Structure of
Message-Passing
Programs

The Building Blocks: Send
and Receive Operations

Blocking Message Passing
Operations

Non-Blocking Message
Passing Operations

4.25

Non-Blocking Message Passing Operations VI

Figure: Space of possible protocols for send and receive operations.


	Programming Using the Message-Passing Paradigm
	Principles of Message-Passing Programming
	Structure of Message-Passing Programs
	The Building Blocks: Send and Receive Operations


