
Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.1

Lecture 7
Programming Shared Memory I
Why Threads?

Ceng471 Parallel Computing at December 09, 2010

Dr. Cem Özdoğan
Computer Engineering Department

Çankaya University



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.2

Contents

1 Programming Shared Memory
What is a Thread?
Threads Model
Why Threads?
Thread Basics: Creation and Termination

Thread Creation
Thread Termination



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.3

What is Threads? I

• Technically, a thread is defined as an independent
stream of instructions that can be scheduled to run by
the operating system (OS).



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.3

What is Threads? I

• Technically, a thread is defined as an independent
stream of instructions that can be scheduled to run by
the operating system (OS).

• Suppose that a main program (a.out) that contains a
number of procedures.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.3

What is Threads? I

• Technically, a thread is defined as an independent
stream of instructions that can be scheduled to run by
the operating system (OS).

• Suppose that a main program (a.out) that contains a
number of procedures.

• Then suppose all of these procedures being able to be
scheduled to run simultaneously and/or independently.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.3

What is Threads? I

• Technically, a thread is defined as an independent
stream of instructions that can be scheduled to run by
the operating system (OS).

• Suppose that a main program (a.out) that contains a
number of procedures.

• Then suppose all of these procedures being able to be
scheduled to run simultaneously and/or independently.

• That would describe a “multi-threaded” program.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.3

What is Threads? I

• Technically, a thread is defined as an independent
stream of instructions that can be scheduled to run by
the operating system (OS).

• Suppose that a main program (a.out) that contains a
number of procedures.

• Then suppose all of these procedures being able to be
scheduled to run simultaneously and/or independently.

• That would describe a “multi-threaded” program.

• Before understanding a thread, one first needs to
understand a UNIX process.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.3

What is Threads? I

• Technically, a thread is defined as an independent
stream of instructions that can be scheduled to run by
the operating system (OS).

• Suppose that a main program (a.out) that contains a
number of procedures.

• Then suppose all of these procedures being able to be
scheduled to run simultaneously and/or independently.

• That would describe a “multi-threaded” program.

• Before understanding a thread, one first needs to
understand a UNIX process.

• Processes contain information about program resources
and program execution state.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.4

What is Threads? II

Figure: Left: Unix process. Right: Threads within a Unix process.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.5

What is Threads? III

• Threads use and exist within these process resources,



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.5

What is Threads? III

• Threads use and exist within these process resources,

• To be scheduled by the OS,



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.5

What is Threads? III

• Threads use and exist within these process resources,

• To be scheduled by the OS,

• Run as independent entities.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.5

What is Threads? III

• Threads use and exist within these process resources,

• To be scheduled by the OS,

• Run as independent entities.
• This independent flow of control is accomplished because

a thread maintains its own:



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.5

What is Threads? III

• Threads use and exist within these process resources,

• To be scheduled by the OS,

• Run as independent entities.
• This independent flow of control is accomplished because

a thread maintains its own:
• Stack pointer



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.5

What is Threads? III

• Threads use and exist within these process resources,

• To be scheduled by the OS,

• Run as independent entities.
• This independent flow of control is accomplished because

a thread maintains its own:
• Stack pointer
• Registers



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.5

What is Threads? III

• Threads use and exist within these process resources,

• To be scheduled by the OS,

• Run as independent entities.
• This independent flow of control is accomplished because

a thread maintains its own:
• Stack pointer
• Registers
• Scheduling properties (such as policy or priority)



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.5

What is Threads? III

• Threads use and exist within these process resources,

• To be scheduled by the OS,

• Run as independent entities.
• This independent flow of control is accomplished because

a thread maintains its own:
• Stack pointer
• Registers
• Scheduling properties (such as policy or priority)
• Set of pending and blocked signals



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.5

What is Threads? III

• Threads use and exist within these process resources,

• To be scheduled by the OS,

• Run as independent entities.
• This independent flow of control is accomplished because

a thread maintains its own:
• Stack pointer
• Registers
• Scheduling properties (such as policy or priority)
• Set of pending and blocked signals
• Thread specific data.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.5

What is Threads? III

• Threads use and exist within these process resources,

• To be scheduled by the OS,

• Run as independent entities.
• This independent flow of control is accomplished because

a thread maintains its own:
• Stack pointer
• Registers
• Scheduling properties (such as policy or priority)
• Set of pending and blocked signals
• Thread specific data.

• A thread has its own independent flow of control as long as
its parent process exists (dies if the parent process dies!).



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.5

What is Threads? III

• Threads use and exist within these process resources,

• To be scheduled by the OS,

• Run as independent entities.
• This independent flow of control is accomplished because

a thread maintains its own:
• Stack pointer
• Registers
• Scheduling properties (such as policy or priority)
• Set of pending and blocked signals
• Thread specific data.

• A thread has its own independent flow of control as long as
its parent process exists (dies if the parent process dies!).

• A thread duplicates only the essential resources it needs.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.5

What is Threads? III

• Threads use and exist within these process resources,

• To be scheduled by the OS,

• Run as independent entities.
• This independent flow of control is accomplished because

a thread maintains its own:
• Stack pointer
• Registers
• Scheduling properties (such as policy or priority)
• Set of pending and blocked signals
• Thread specific data.

• A thread has its own independent flow of control as long as
its parent process exists (dies if the parent process dies!).

• A thread duplicates only the essential resources it needs.

• A thread is "lightweight" because most of the overhead
has already been accomplished through the creation of its
process.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.6

Threads Model I

• In shared memory multiprocessor architectures, such as
SMPs, threads can be used to implement parallelism.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.6

Threads Model I

• In shared memory multiprocessor architectures, such as
SMPs, threads can be used to implement parallelism.

• In the threads model of parallel programming, a single
process can have



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.6

Threads Model I

• In shared memory multiprocessor architectures, such as
SMPs, threads can be used to implement parallelism.

• In the threads model of parallel programming, a single
process can have

• multiple concurrent ,



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.6

Threads Model I

• In shared memory multiprocessor architectures, such as
SMPs, threads can be used to implement parallelism.

• In the threads model of parallel programming, a single
process can have

• multiple concurrent ,
• execution paths .



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.6

Threads Model I

• In shared memory multiprocessor architectures, such as
SMPs, threads can be used to implement parallelism.

• In the threads model of parallel programming, a single
process can have

• multiple concurrent ,
• execution paths .

• Most simple analogy for threads is the concept of a single
program that includes a number of subroutines:



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.6

Threads Model I

• In shared memory multiprocessor architectures, such as
SMPs, threads can be used to implement parallelism.

• In the threads model of parallel programming, a single
process can have

• multiple concurrent ,
• execution paths .

• Most simple analogy for threads is the concept of a single
program that includes a number of subroutines:



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.6

Threads Model I

• In shared memory multiprocessor architectures, such as
SMPs, threads can be used to implement parallelism.

• In the threads model of parallel programming, a single
process can have

• multiple concurrent ,
• execution paths .

• Most simple analogy for threads is the concept of a single
program that includes a number of subroutines:

Figure: Threads model.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.6

Threads Model I

• In shared memory multiprocessor architectures, such as
SMPs, threads can be used to implement parallelism.

• In the threads model of parallel programming, a single
process can have

• multiple concurrent ,
• execution paths .

• Most simple analogy for threads is the concept of a single
program that includes a number of subroutines:

Figure: Threads model.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.6

Threads Model I

• In shared memory multiprocessor architectures, such as
SMPs, threads can be used to implement parallelism.

• In the threads model of parallel programming, a single
process can have

• multiple concurrent ,
• execution paths .

• Most simple analogy for threads is the concept of a single
program that includes a number of subroutines:

Figure: Threads model.

• a.out (main program) loads
and acquires all of the
necessary system and user
resources to run.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.6

Threads Model I

• In shared memory multiprocessor architectures, such as
SMPs, threads can be used to implement parallelism.

• In the threads model of parallel programming, a single
process can have

• multiple concurrent ,
• execution paths .

• Most simple analogy for threads is the concept of a single
program that includes a number of subroutines:

Figure: Threads model.

• a.out (main program) loads
and acquires all of the
necessary system and user
resources to run.

• Main program performs
some serial work,



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.6

Threads Model I

• In shared memory multiprocessor architectures, such as
SMPs, threads can be used to implement parallelism.

• In the threads model of parallel programming, a single
process can have

• multiple concurrent ,
• execution paths .

• Most simple analogy for threads is the concept of a single
program that includes a number of subroutines:

Figure: Threads model.

• a.out (main program) loads
and acquires all of the
necessary system and user
resources to run.

• Main program performs
some serial work,

• and then creates a number
of tasks (threads) that can
be scheduled and run by
the OS concurrently.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.7

Threads Model II

• Each thread has local data, but also, shares the entire
resources of main program.

Figure: Thread shared memory model.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.7

Threads Model II

• Each thread has local data, but also, shares the entire
resources of main program.

Figure: Thread shared memory model.

• This saves the overhead associated with replicating a
program’s resources for each thread.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.7

Threads Model II

• Each thread has local data, but also, shares the entire
resources of main program.

Figure: Thread shared memory model.

• This saves the overhead associated with replicating a
program’s resources for each thread.

• Each thread also benefits from a global memory view
because it shares the memory space of program.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.7

Threads Model II

• Each thread has local data, but also, shares the entire
resources of main program.

Figure: Thread shared memory model.

• This saves the overhead associated with replicating a
program’s resources for each thread.

• Each thread also benefits from a global memory view
because it shares the memory space of program.

• Any thread can execute any subroutine at the same time
as other threads.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.8

Threads Model III

• Threads communicate with each other through global
memory (updating address locations).



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.8

Threads Model III

• Threads communicate with each other through global
memory (updating address locations).

• Changes made by one thread to shared system resources
(such as closing a file) will be seen by all other threads.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.8

Threads Model III

• Threads communicate with each other through global
memory (updating address locations).

• Changes made by one thread to shared system resources
(such as closing a file) will be seen by all other threads.

• This requires synchronization constructs to insure that
more than one thread is not updating the same global
address at any time.

Figure: Threads Unsafe! Pointers having the same value point
to the same data.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.9

Threads Model IV

• Threads can come and go, but main program remains
present to provide the necessary shared resources until
the application has completed.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.9

Threads Model IV

• Threads can come and go, but main program remains
present to provide the necessary shared resources until
the application has completed.

• From a programming perspective, threads
implementations commonly comprise:



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.9

Threads Model IV

• Threads can come and go, but main program remains
present to provide the necessary shared resources until
the application has completed.

• From a programming perspective, threads
implementations commonly comprise:

1 A library of subroutines that are called from within parallel
source code



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.9

Threads Model IV

• Threads can come and go, but main program remains
present to provide the necessary shared resources until
the application has completed.

• From a programming perspective, threads
implementations commonly comprise:

1 A library of subroutines that are called from within parallel
source code

2 A set of compiler directives embedded in either serial or
parallel source code



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.9

Threads Model IV

• Threads can come and go, but main program remains
present to provide the necessary shared resources until
the application has completed.

• From a programming perspective, threads
implementations commonly comprise:

1 A library of subroutines that are called from within parallel
source code

2 A set of compiler directives embedded in either serial or
parallel source code

• In both cases, the programmer is responsible for
determining all parallelism.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.10

Why Threads? I

• The primary motivation for using threads is to realize
potential program performance gains.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.10

Why Threads? I

• The primary motivation for using threads is to realize
potential program performance gains.

• When compared to the cost of creating and managing a
process, a thread can be created with much less OS
overhead.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.10

Why Threads? I

• The primary motivation for using threads is to realize
potential program performance gains.

• When compared to the cost of creating and managing a
process, a thread can be created with much less OS
overhead.

• Managing threads requires fewer system resources than
managing processes.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.10

Why Threads? I

• The primary motivation for using threads is to realize
potential program performance gains.

• When compared to the cost of creating and managing a
process, a thread can be created with much less OS
overhead.

• Managing threads requires fewer system resources than
managing processes.

• Threaded programming models offer significant
advantages over message-passing programming models
along with some disadvantages as well.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.11

Why Threads? II

• Software Portability;



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.11

Why Threads? II

• Software Portability;
• Threaded applications can be developed on serial

machines and run on parallel machines without any
changes.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.11

Why Threads? II

• Software Portability;
• Threaded applications can be developed on serial

machines and run on parallel machines without any
changes.

• This ability to migrate programs between diverse
architectural platforms is a very significant advantage of
threaded APIs.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.11

Why Threads? II

• Software Portability;
• Threaded applications can be developed on serial

machines and run on parallel machines without any
changes.

• This ability to migrate programs between diverse
architectural platforms is a very significant advantage of
threaded APIs.

• Latency Hiding;



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.11

Why Threads? II

• Software Portability;
• Threaded applications can be developed on serial

machines and run on parallel machines without any
changes.

• This ability to migrate programs between diverse
architectural platforms is a very significant advantage of
threaded APIs.

• Latency Hiding;
• One of the major overheads in programs (both serial and

parallel) is the access latency for memory access, I/O, and
communication.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.11

Why Threads? II

• Software Portability;
• Threaded applications can be developed on serial

machines and run on parallel machines without any
changes.

• This ability to migrate programs between diverse
architectural platforms is a very significant advantage of
threaded APIs.

• Latency Hiding;
• One of the major overheads in programs (both serial and

parallel) is the access latency for memory access, I/O, and
communication.

• By allowing multiple threads to execute on the same
processor, threaded APIs enable this latency to be hidden.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.11

Why Threads? II

• Software Portability;
• Threaded applications can be developed on serial

machines and run on parallel machines without any
changes.

• This ability to migrate programs between diverse
architectural platforms is a very significant advantage of
threaded APIs.

• Latency Hiding;
• One of the major overheads in programs (both serial and

parallel) is the access latency for memory access, I/O, and
communication.

• By allowing multiple threads to execute on the same
processor, threaded APIs enable this latency to be hidden.

• In effect, while one thread is waiting for a communication
operation, other threads can utilize the CPU, thus masking
associated overhead.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.12

Why Threads? III

• Scheduling and Load Balancing;



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.12

Why Threads? III

• Scheduling and Load Balancing;
• While writing shared address space parallel programs, a

programmer must express concurrency in a way that
minimizes overheads of remote interaction and idling.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.12

Why Threads? III

• Scheduling and Load Balancing;
• While writing shared address space parallel programs, a

programmer must express concurrency in a way that
minimizes overheads of remote interaction and idling.

• While in many structured applications the task of allocating
equal work to processors is easily accomplished,



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.12

Why Threads? III

• Scheduling and Load Balancing;
• While writing shared address space parallel programs, a

programmer must express concurrency in a way that
minimizes overheads of remote interaction and idling.

• While in many structured applications the task of allocating
equal work to processors is easily accomplished,

• In unstructured and dynamic applications (such as game
playing and discrete optimization) this task is more difficult.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.12

Why Threads? III

• Scheduling and Load Balancing;
• While writing shared address space parallel programs, a

programmer must express concurrency in a way that
minimizes overheads of remote interaction and idling.

• While in many structured applications the task of allocating
equal work to processors is easily accomplished,

• In unstructured and dynamic applications (such as game
playing and discrete optimization) this task is more difficult.

• Threaded APIs allow the programmer



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.12

Why Threads? III

• Scheduling and Load Balancing;
• While writing shared address space parallel programs, a

programmer must express concurrency in a way that
minimizes overheads of remote interaction and idling.

• While in many structured applications the task of allocating
equal work to processors is easily accomplished,

• In unstructured and dynamic applications (such as game
playing and discrete optimization) this task is more difficult.

• Threaded APIs allow the programmer
• to specify a large number of concurrent tasks



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.12

Why Threads? III

• Scheduling and Load Balancing;
• While writing shared address space parallel programs, a

programmer must express concurrency in a way that
minimizes overheads of remote interaction and idling.

• While in many structured applications the task of allocating
equal work to processors is easily accomplished,

• In unstructured and dynamic applications (such as game
playing and discrete optimization) this task is more difficult.

• Threaded APIs allow the programmer
• to specify a large number of concurrent tasks
• and support system-level dynamic mapping of tasks to

processors with a view to minimizing idling overheads.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.12

Why Threads? III

• Scheduling and Load Balancing;
• While writing shared address space parallel programs, a

programmer must express concurrency in a way that
minimizes overheads of remote interaction and idling.

• While in many structured applications the task of allocating
equal work to processors is easily accomplished,

• In unstructured and dynamic applications (such as game
playing and discrete optimization) this task is more difficult.

• Threaded APIs allow the programmer
• to specify a large number of concurrent tasks
• and support system-level dynamic mapping of tasks to

processors with a view to minimizing idling overheads.

• Ease of Programming, Widespread Use



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.12

Why Threads? III

• Scheduling and Load Balancing;
• While writing shared address space parallel programs, a

programmer must express concurrency in a way that
minimizes overheads of remote interaction and idling.

• While in many structured applications the task of allocating
equal work to processors is easily accomplished,

• In unstructured and dynamic applications (such as game
playing and discrete optimization) this task is more difficult.

• Threaded APIs allow the programmer
• to specify a large number of concurrent tasks
• and support system-level dynamic mapping of tasks to

processors with a view to minimizing idling overheads.

• Ease of Programming, Widespread Use
• Due to the mentioned advantages, threaded programs are

significantly easier to write (!) than corresponding
programs using message passing APIs.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.12

Why Threads? III

• Scheduling and Load Balancing;
• While writing shared address space parallel programs, a

programmer must express concurrency in a way that
minimizes overheads of remote interaction and idling.

• While in many structured applications the task of allocating
equal work to processors is easily accomplished,

• In unstructured and dynamic applications (such as game
playing and discrete optimization) this task is more difficult.

• Threaded APIs allow the programmer
• to specify a large number of concurrent tasks
• and support system-level dynamic mapping of tasks to

processors with a view to minimizing idling overheads.

• Ease of Programming, Widespread Use
• Due to the mentioned advantages, threaded programs are

significantly easier to write (!) than corresponding
programs using message passing APIs.

• With widespread acceptance of the POSIX thread API,
development tools for POSIX threads are more widely
available and stable.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.13

Why Threads? IV

• Threaded applications offer potential performance gains
and practical advantages over non-threaded applications
in several other ways:



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.13

Why Threads? IV

• Threaded applications offer potential performance gains
and practical advantages over non-threaded applications
in several other ways:

• Overlapping CPU work with I/O: For example, a program
may have sections where it is performing a long I/O
operation. While one thread is waiting for an I/O system
call to complete, CPU intensive work can be performed by
other threads.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.13

Why Threads? IV

• Threaded applications offer potential performance gains
and practical advantages over non-threaded applications
in several other ways:

• Overlapping CPU work with I/O: For example, a program
may have sections where it is performing a long I/O
operation. While one thread is waiting for an I/O system
call to complete, CPU intensive work can be performed by
other threads.

• Priority/real-time scheduling: tasks which are more
important can be scheduled to supersede or interrupt
lower priority tasks.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.13

Why Threads? IV

• Threaded applications offer potential performance gains
and practical advantages over non-threaded applications
in several other ways:

• Overlapping CPU work with I/O: For example, a program
may have sections where it is performing a long I/O
operation. While one thread is waiting for an I/O system
call to complete, CPU intensive work can be performed by
other threads.

• Priority/real-time scheduling: tasks which are more
important can be scheduled to supersede or interrupt
lower priority tasks.

• Asynchronous event handling: tasks which service
events of indeterminate frequency and duration can be
interleaved. For example, a web server can both transfer
data from previous requests and manage the arrival of
new requests.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.14

Why Threads? V

• A number of vendors provide vendor-specific thread APIs.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.14

Why Threads? V

• A number of vendors provide vendor-specific thread APIs.

• Standardization efforts have resulted in two very different
implementations of threads.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.14

Why Threads? V

• A number of vendors provide vendor-specific thread APIs.

• Standardization efforts have resulted in two very different
implementations of threads.

• Microsoft has its own implementation for threads, which is
not related to the UNIX POSIX standard or OpenMP.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.14

Why Threads? V

• A number of vendors provide vendor-specific thread APIs.

• Standardization efforts have resulted in two very different
implementations of threads.

• Microsoft has its own implementation for threads, which is
not related to the UNIX POSIX standard or OpenMP.

1 POSIX Threads . Library based; requires parallel coding.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.14

Why Threads? V

• A number of vendors provide vendor-specific thread APIs.

• Standardization efforts have resulted in two very different
implementations of threads.

• Microsoft has its own implementation for threads, which is
not related to the UNIX POSIX standard or OpenMP.

1 POSIX Threads . Library based; requires parallel coding.
• The IEEE specifies a standard 1003.1c-1995 (latest 1003.1,

2004), POSIX API.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.14

Why Threads? V

• A number of vendors provide vendor-specific thread APIs.

• Standardization efforts have resulted in two very different
implementations of threads.

• Microsoft has its own implementation for threads, which is
not related to the UNIX POSIX standard or OpenMP.

1 POSIX Threads . Library based; requires parallel coding.
• The IEEE specifies a standard 1003.1c-1995 (latest 1003.1,

2004), POSIX API.
• C Language only. Very explicit parallelism; requires

significant programmer attention to detail.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.14

Why Threads? V

• A number of vendors provide vendor-specific thread APIs.

• Standardization efforts have resulted in two very different
implementations of threads.

• Microsoft has its own implementation for threads, which is
not related to the UNIX POSIX standard or OpenMP.

1 POSIX Threads . Library based; requires parallel coding.
• The IEEE specifies a standard 1003.1c-1995 (latest 1003.1,

2004), POSIX API.
• C Language only. Very explicit parallelism; requires

significant programmer attention to detail.
• Commonly referred to as Pthreads.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.14

Why Threads? V

• A number of vendors provide vendor-specific thread APIs.

• Standardization efforts have resulted in two very different
implementations of threads.

• Microsoft has its own implementation for threads, which is
not related to the UNIX POSIX standard or OpenMP.

1 POSIX Threads . Library based; requires parallel coding.
• The IEEE specifies a standard 1003.1c-1995 (latest 1003.1,

2004), POSIX API.
• C Language only. Very explicit parallelism; requires

significant programmer attention to detail.
• Commonly referred to as Pthreads.
• POSIX has emerged as the standard threads API,

supported by most vendors.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.14

Why Threads? V

• A number of vendors provide vendor-specific thread APIs.

• Standardization efforts have resulted in two very different
implementations of threads.

• Microsoft has its own implementation for threads, which is
not related to the UNIX POSIX standard or OpenMP.

1 POSIX Threads . Library based; requires parallel coding.
• The IEEE specifies a standard 1003.1c-1995 (latest 1003.1,

2004), POSIX API.
• C Language only. Very explicit parallelism; requires

significant programmer attention to detail.
• Commonly referred to as Pthreads.
• POSIX has emerged as the standard threads API,

supported by most vendors.
• The concepts themselves are largely independent of the API

and can be used for programming with other thread APIs
(NT threads, Solaris threads, Java threads, etc.) as well.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.15

Why Threads? VI

1 OpenMP . Compiler directive based; can use serial code.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.15

Why Threads? VI

1 OpenMP . Compiler directive based; can use serial code.
• Jointly defined by a group of major computer hardware and

software vendors.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.15

Why Threads? VI

1 OpenMP . Compiler directive based; can use serial code.
• Jointly defined by a group of major computer hardware and

software vendors.
• The OpenMP Fortran API was released October 28, 1997.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.15

Why Threads? VI

1 OpenMP . Compiler directive based; can use serial code.
• Jointly defined by a group of major computer hardware and

software vendors.
• The OpenMP Fortran API was released October 28, 1997.
• The OpenMP C/C++ API was released in late 1998.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.15

Why Threads? VI

1 OpenMP . Compiler directive based; can use serial code.
• Jointly defined by a group of major computer hardware and

software vendors.
• The OpenMP Fortran API was released October 28, 1997.
• The OpenMP C/C++ API was released in late 1998.
• Portable / multi-platform, including Unix and Windows NT

platforms



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.15

Why Threads? VI

1 OpenMP . Compiler directive based; can use serial code.
• Jointly defined by a group of major computer hardware and

software vendors.
• The OpenMP Fortran API was released October 28, 1997.
• The OpenMP C/C++ API was released in late 1998.
• Portable / multi-platform, including Unix and Windows NT

platforms
• Can be very easy and simple to use - provides for

“incremental parallelism“.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.16

Why Threads? VII

• MPI =⇒ on-node communications,



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.16

Why Threads? VII

• MPI =⇒ on-node communications,

• Threads =⇒ on-node data transfer.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.16

Why Threads? VII

• MPI =⇒ on-node communications,

• Threads =⇒ on-node data transfer.

• MPI libraries usually implement on-node task
communication via shared memory , which involves at
least one memory copy operation (process to process).



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.16

Why Threads? VII

• MPI =⇒ on-node communications,

• Threads =⇒ on-node data transfer.

• MPI libraries usually implement on-node task
communication via shared memory , which involves at
least one memory copy operation (process to process).

• For Pthreads there is no intermediate memory copy
required because threads share the same address space
within a single process.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.16

Why Threads? VII

• MPI =⇒ on-node communications,

• Threads =⇒ on-node data transfer.

• MPI libraries usually implement on-node task
communication via shared memory , which involves at
least one memory copy operation (process to process).

• For Pthreads there is no intermediate memory copy
required because threads share the same address space
within a single process.

• There is no data transfer .



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.16

Why Threads? VII

• MPI =⇒ on-node communications,

• Threads =⇒ on-node data transfer.

• MPI libraries usually implement on-node task
communication via shared memory , which involves at
least one memory copy operation (process to process).

• For Pthreads there is no intermediate memory copy
required because threads share the same address space
within a single process.

• There is no data transfer .

• It becomes more of a cache-to-CPU or memory-to-CPU
bandwidth (worst case) situation.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.16

Why Threads? VII

• MPI =⇒ on-node communications,

• Threads =⇒ on-node data transfer.

• MPI libraries usually implement on-node task
communication via shared memory , which involves at
least one memory copy operation (process to process).

• For Pthreads there is no intermediate memory copy
required because threads share the same address space
within a single process.

• There is no data transfer .

• It becomes more of a cache-to-CPU or memory-to-CPU
bandwidth (worst case) situation.

• These speeds are much higher.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.17

Why Threads? VIII

• Programs having the following characteristics may be well
suited for Threads:



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.17

Why Threads? VIII

• Programs having the following characteristics may be well
suited for Threads:

• Work that can be executed, or data that can be operated
on, by multiple tasks simultaneously.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.17

Why Threads? VIII

• Programs having the following characteristics may be well
suited for Threads:

• Work that can be executed, or data that can be operated
on, by multiple tasks simultaneously.

• Block for potentially long I/O waits.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.17

Why Threads? VIII

• Programs having the following characteristics may be well
suited for Threads:

• Work that can be executed, or data that can be operated
on, by multiple tasks simultaneously.

• Block for potentially long I/O waits.

• Use many CPU cycles in some places but not others.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.17

Why Threads? VIII

• Programs having the following characteristics may be well
suited for Threads:

• Work that can be executed, or data that can be operated
on, by multiple tasks simultaneously.

• Block for potentially long I/O waits.

• Use many CPU cycles in some places but not others.

• Must respond to asynchronous events.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.17

Why Threads? VIII

• Programs having the following characteristics may be well
suited for Threads:

• Work that can be executed, or data that can be operated
on, by multiple tasks simultaneously.

• Block for potentially long I/O waits.

• Use many CPU cycles in some places but not others.

• Must respond to asynchronous events.

• Some work is more important than other work (priority
interrupts).



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.18

Why Threads? IX

Common models for thread programming:
• Manager/worker: a single thread, the manager assigns

work to other threads, the workers. Typically, the manager
handles all input and distribute work to the other tasks. At
least two forms of the manager/worker model are
common:



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.18

Why Threads? IX

Common models for thread programming:
• Manager/worker: a single thread, the manager assigns

work to other threads, the workers. Typically, the manager
handles all input and distribute work to the other tasks. At
least two forms of the manager/worker model are
common:

1 static worker pool,



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.18

Why Threads? IX

Common models for thread programming:
• Manager/worker: a single thread, the manager assigns

work to other threads, the workers. Typically, the manager
handles all input and distribute work to the other tasks. At
least two forms of the manager/worker model are
common:

1 static worker pool,
2 dynamic worker pool.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.18

Why Threads? IX

Common models for thread programming:
• Manager/worker: a single thread, the manager assigns

work to other threads, the workers. Typically, the manager
handles all input and distribute work to the other tasks. At
least two forms of the manager/worker model are
common:

1 static worker pool,
2 dynamic worker pool.

• Pipeline: a task is broken into a series of suboperations,
each of which is handled in series, but concurrently, by a
different thread. An automobile assembly line best
describes this model.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.18

Why Threads? IX

Common models for thread programming:
• Manager/worker: a single thread, the manager assigns

work to other threads, the workers. Typically, the manager
handles all input and distribute work to the other tasks. At
least two forms of the manager/worker model are
common:

1 static worker pool,
2 dynamic worker pool.

• Pipeline: a task is broken into a series of suboperations,
each of which is handled in series, but concurrently, by a
different thread. An automobile assembly line best
describes this model.

• Peer: similar to the manager/worker model, but after the
main thread creates other threads, it participates in the
work.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.19

Thread Basics: Creation and Termination I

• The Pthreads API subroutines can be informally grouped
into four major groups:



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.19

Thread Basics: Creation and Termination I

• The Pthreads API subroutines can be informally grouped
into four major groups:

1 Thread management: Routines that work directly on
threads - creating, detaching, joining, set/query thread
attributes (joinable, scheduling etc.), etc.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.19

Thread Basics: Creation and Termination I

• The Pthreads API subroutines can be informally grouped
into four major groups:

1 Thread management: Routines that work directly on
threads - creating, detaching, joining, set/query thread
attributes (joinable, scheduling etc.), etc.

2 Mutexes: Routines that deal with synchronization. Mutex
functions provide for creating, destroying, locking and
unlocking mutexes, setting or modifying attributes
associated with mutexes.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.19

Thread Basics: Creation and Termination I

• The Pthreads API subroutines can be informally grouped
into four major groups:

1 Thread management: Routines that work directly on
threads - creating, detaching, joining, set/query thread
attributes (joinable, scheduling etc.), etc.

2 Mutexes: Routines that deal with synchronization. Mutex
functions provide for creating, destroying, locking and
unlocking mutexes, setting or modifying attributes
associated with mutexes.

3 Condition variables: Routines that address
communications between threads that share a mutex.
Functions to create, destroy, wait and signal based upon
specified variable values, set/query condition variable
attributes.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.19

Thread Basics: Creation and Termination I

• The Pthreads API subroutines can be informally grouped
into four major groups:

1 Thread management: Routines that work directly on
threads - creating, detaching, joining, set/query thread
attributes (joinable, scheduling etc.), etc.

2 Mutexes: Routines that deal with synchronization. Mutex
functions provide for creating, destroying, locking and
unlocking mutexes, setting or modifying attributes
associated with mutexes.

3 Condition variables: Routines that address
communications between threads that share a mutex.
Functions to create, destroy, wait and signal based upon
specified variable values, set/query condition variable
attributes.

4 Synchronization: Routines that manage read/write locks
and barriers.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.20

Thread Basics: Creation and Termination II
• Creating Threads:



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.20

Thread Basics: Creation and Termination II
• Creating Threads:
• Initially, main program contains a single, default thread.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.20

Thread Basics: Creation and Termination II
• Creating Threads:
• Initially, main program contains a single, default thread.
• pthread_create creates a new thread and makes it

executable.
1 #include <pthread.h>
2 int
3 pthread_create (
4 pthread_t *thread_handle,
5 const pthread_attr_t *attribute,
6 void * (*thread_function)(void *),
7 void *arg);



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.20

Thread Basics: Creation and Termination II
• Creating Threads:
• Initially, main program contains a single, default thread.
• pthread_create creates a new thread and makes it

executable.
1 #include <pthread.h>
2 int
3 pthread_create (
4 pthread_t *thread_handle,
5 const pthread_attr_t *attribute,
6 void * (*thread_function)(void *),
7 void *arg);

• Creates a single thread that corresponds to the invocation
of the function thread_function (and any other functions
called by thread_function).



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.20

Thread Basics: Creation and Termination II
• Creating Threads:
• Initially, main program contains a single, default thread.
• pthread_create creates a new thread and makes it

executable.
1 #include <pthread.h>
2 int
3 pthread_create (
4 pthread_t *thread_handle,
5 const pthread_attr_t *attribute,
6 void * (*thread_function)(void *),
7 void *arg);

• Creates a single thread that corresponds to the invocation
of the function thread_function (and any other functions
called by thread_function).

• Once created, threads are peers, and may create other
threads.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.20

Thread Basics: Creation and Termination II
• Creating Threads:
• Initially, main program contains a single, default thread.
• pthread_create creates a new thread and makes it

executable.
1 #include <pthread.h>
2 int
3 pthread_create (
4 pthread_t *thread_handle,
5 const pthread_attr_t *attribute,
6 void * (*thread_function)(void *),
7 void *arg);

• Creates a single thread that corresponds to the invocation
of the function thread_function (and any other functions
called by thread_function).

• Once created, threads are peers, and may create other
threads.

• On successful creation of a thread, a unique identifier is
associated with the thread and assigned to the location
pointed to by thread_handle.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.20

Thread Basics: Creation and Termination II
• Creating Threads:
• Initially, main program contains a single, default thread.
• pthread_create creates a new thread and makes it

executable.
1 #include <pthread.h>
2 int
3 pthread_create (
4 pthread_t *thread_handle,
5 const pthread_attr_t *attribute,
6 void * (*thread_function)(void *),
7 void *arg);

• Creates a single thread that corresponds to the invocation
of the function thread_function (and any other functions
called by thread_function).

• Once created, threads are peers, and may create other
threads.

• On successful creation of a thread, a unique identifier is
associated with the thread and assigned to the location
pointed to by thread_handle.

• On successful creation of a thread, pthread_create
returns 0; else it returns an error code.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.21

Thread Basics: Creation and Termination III

• The thread has the attributes described by the attribute
argument.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.21

Thread Basics: Creation and Termination III

• The thread has the attributes described by the attribute
argument.

• When this argument is NULL, a thread with default
attributes is created.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.21

Thread Basics: Creation and Termination III

• The thread has the attributes described by the attribute
argument.

• When this argument is NULL, a thread with default
attributes is created.

• Some of these ”default” attributes can be changed by the
programmer via the thread attribute object.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.21

Thread Basics: Creation and Termination III

• The thread has the attributes described by the attribute
argument.

• When this argument is NULL, a thread with default
attributes is created.

• Some of these ”default” attributes can be changed by the
programmer via the thread attribute object.

• pthread_attr_init and pthread_attr_destroy are used to
initialize/destroy the thread attribute object.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.21

Thread Basics: Creation and Termination III

• The thread has the attributes described by the attribute
argument.

• When this argument is NULL, a thread with default
attributes is created.

• Some of these ”default” attributes can be changed by the
programmer via the thread attribute object.

• pthread_attr_init and pthread_attr_destroy are used to
initialize/destroy the thread attribute object.

• The arg field specifies a pointer to the argument to
function thread_function.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.21

Thread Basics: Creation and Termination III

• The thread has the attributes described by the attribute
argument.

• When this argument is NULL, a thread with default
attributes is created.

• Some of these ”default” attributes can be changed by the
programmer via the thread attribute object.

• pthread_attr_init and pthread_attr_destroy are used to
initialize/destroy the thread attribute object.

• The arg field specifies a pointer to the argument to
function thread_function.

• This argument is typically used to pass the workspace and
other thread-specific data to a thread.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.22

Thread Basics: Creation and Termination IV

• There is no implied hierarchy or dependency between
threads.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.22

Thread Basics: Creation and Termination IV

• There is no implied hierarchy or dependency between
threads.

• Unless you are using the Pthreads scheduling
mechanism, it is up to the implementation and/or OS to
decide where and when threads will execute.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.22

Thread Basics: Creation and Termination IV

• There is no implied hierarchy or dependency between
threads.

• Unless you are using the Pthreads scheduling
mechanism, it is up to the implementation and/or OS to
decide where and when threads will execute.

• If the thread is scheduled on the same processor, the new
thread may, in fact, preempt its creator.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.22

Thread Basics: Creation and Termination IV

• There is no implied hierarchy or dependency between
threads.

• Unless you are using the Pthreads scheduling
mechanism, it is up to the implementation and/or OS to
decide where and when threads will execute.

• If the thread is scheduled on the same processor, the new
thread may, in fact, preempt its creator.

• This is important because all thread initialization
procedures must be completed before creating the thread.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.22

Thread Basics: Creation and Termination IV

• There is no implied hierarchy or dependency between
threads.

• Unless you are using the Pthreads scheduling
mechanism, it is up to the implementation and/or OS to
decide where and when threads will execute.

• If the thread is scheduled on the same processor, the new
thread may, in fact, preempt its creator.

• This is important because all thread initialization
procedures must be completed before creating the thread.

• This is a very common class of errors caused by race
conditions for data access that shows itself in some
execution instances, but not in others.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.22

Thread Basics: Creation and Termination IV

• There is no implied hierarchy or dependency between
threads.

• Unless you are using the Pthreads scheduling
mechanism, it is up to the implementation and/or OS to
decide where and when threads will execute.

• If the thread is scheduled on the same processor, the new
thread may, in fact, preempt its creator.

• This is important because all thread initialization
procedures must be completed before creating the thread.

• This is a very common class of errors caused by race
conditions for data access that shows itself in some
execution instances, but not in others.

• Robust programs should not depend upon threads
executing in a specific order.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.23

Thread Basics: Creation and Termination V

• Terminating Threads.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.23

Thread Basics: Creation and Termination V

• Terminating Threads.
• There are several ways in which a Pthread may be

terminated:



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.23

Thread Basics: Creation and Termination V

• Terminating Threads.
• There are several ways in which a Pthread may be

terminated:
a The thread returns from its starting routine (the main

routine for the initial thread).



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.23

Thread Basics: Creation and Termination V

• Terminating Threads.
• There are several ways in which a Pthread may be

terminated:
a The thread returns from its starting routine (the main

routine for the initial thread).
b The thread makes a call to the pthread_exit subroutine.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.23

Thread Basics: Creation and Termination V

• Terminating Threads.
• There are several ways in which a Pthread may be

terminated:
a The thread returns from its starting routine (the main

routine for the initial thread).
b The thread makes a call to the pthread_exit subroutine.

• Typically, the pthread_exit routine is called after a thread
has completed its work and is no longer required to exist.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.23

Thread Basics: Creation and Termination V

• Terminating Threads.
• There are several ways in which a Pthread may be

terminated:
a The thread returns from its starting routine (the main

routine for the initial thread).
b The thread makes a call to the pthread_exit subroutine.

• Typically, the pthread_exit routine is called after a thread
has completed its work and is no longer required to exist.

c The thread is cancelled by another thread via the
pthread_cancel routine.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.23

Thread Basics: Creation and Termination V

• Terminating Threads.
• There are several ways in which a Pthread may be

terminated:
a The thread returns from its starting routine (the main

routine for the initial thread).
b The thread makes a call to the pthread_exit subroutine.

• Typically, the pthread_exit routine is called after a thread
has completed its work and is no longer required to exist.

c The thread is cancelled by another thread via the
pthread_cancel routine.

d The entire process is terminated due to a call to either the
exec or exit subroutines.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.23

Thread Basics: Creation and Termination V

• Terminating Threads.
• There are several ways in which a Pthread may be

terminated:
a The thread returns from its starting routine (the main

routine for the initial thread).
b The thread makes a call to the pthread_exit subroutine.

• Typically, the pthread_exit routine is called after a thread
has completed its work and is no longer required to exist.

c The thread is cancelled by another thread via the
pthread_cancel routine.

d The entire process is terminated due to a call to either the
exec or exit subroutines.

• If main finishes before the threads and exits with
pthread_exit() , the other threads will continue to execute
(join function).



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.23

Thread Basics: Creation and Termination V

• Terminating Threads.
• There are several ways in which a Pthread may be

terminated:
a The thread returns from its starting routine (the main

routine for the initial thread).
b The thread makes a call to the pthread_exit subroutine.

• Typically, the pthread_exit routine is called after a thread
has completed its work and is no longer required to exist.

c The thread is cancelled by another thread via the
pthread_cancel routine.

d The entire process is terminated due to a call to either the
exec or exit subroutines.

• If main finishes before the threads and exits with
pthread_exit() , the other threads will continue to execute
(join function).

• If main finishes after the threads and exits, the threads will
be automatically terminated.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.23

Thread Basics: Creation and Termination V

• Terminating Threads.
• There are several ways in which a Pthread may be

terminated:
a The thread returns from its starting routine (the main

routine for the initial thread).
b The thread makes a call to the pthread_exit subroutine.

• Typically, the pthread_exit routine is called after a thread
has completed its work and is no longer required to exist.

c The thread is cancelled by another thread via the
pthread_cancel routine.

d The entire process is terminated due to a call to either the
exec or exit subroutines.

• If main finishes before the threads and exits with
pthread_exit() , the other threads will continue to execute
(join function).

• If main finishes after the threads and exits, the threads will
be automatically terminated.

• Cleanup: the pthread_exit() routine does not close files;
any files opened inside the thread will remain open after
the thread is terminated.



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.24

Thread Basics: Creation and Termination VI

• Example: This example code creates 5 threads with the
pthread_create() routine.

#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5

void *PrintHello(void *threadid)
{

long tid;
tid = (long)threadid;
printf("Hello World! It’s me, thread #%ld!\n", tid);
pthread_exit(NULL);

}



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.24

Thread Basics: Creation and Termination VI

• Example: This example code creates 5 threads with the
pthread_create() routine.

• Each thread prints a ’Hello World!’ message, and then
terminates with a call to pthread_exit() .

#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5

void *PrintHello(void *threadid)
{

long tid;
tid = (long)threadid;
printf("Hello World! It’s me, thread #%ld!\n", tid);
pthread_exit(NULL);

}



Programming Shared
Memory I

Dr. Cem Özdo ğan

Programming Shared
Memory
What is a Thread?

Threads Model

Why Threads?

Thread Basics: Creation
and Termination

Thread Creation

Thread Termination

7.25

Thread Basics: Creation and Termination VII

int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc;
long t;
for(t=0; t<NUM_THREADS; t++){

printf("In main: creating thread %ld\n", t);
rc = pthread_create(&threads[t], NULL, PrintHello,

(void *)t);
if (rc){
printf("ERROR; return code from pthread_create() is

%d\n", rc);
exit(-1);

}
}

pthread_exit(NULL);
}


	Programming Shared Memory
	What is a Thread?
	Threads Model
	Why Threads?
	Thread Basics: Creation and Termination


