

İzmir Kâtip Çelebi University Department of Engineering Sciences Phy101 Physics I Final Examination January 20, 2025 10:20 – 11:50 Good Luck!

NAME-SURNAME:

SIGNATURE:

ID:

DEPARTMENT:

INSTRUCTOR:

DURATION: 90 minutes

 \diamond Answer all the questions.

 \diamond Write the solutions explicitly and clearly.

Use the physical terminology.

 \diamond You are allowed to use Formulae Sheet.

 \diamond Calculator is allowed.

 \diamond You are not allowed to use any other

electronic equipment in the exam.

 \diamond I declare hereby that I fulfilled the requirements for the attendance according to the University regulations and I accept that my examination will not be valid otherwise.

Question	Grade	Out of
1A		15
1B		20
2		15
3		20
4		15
5		15
TOTAL		100

This page is intentionally left blank. Use the space if needed.

- 1. A) A rescue team lifts an injured person directly upward by means of a motor-driven cable. The lift is performed in three stages, each requiring a vertical distance of 10.0 m:
 - 1) The initially stationary person is **accelerated** to a speed of 5.00 m/s;
 - 2) He is then lifted at the constant speed of 5.00 m/s;
 - 3) Finally, he is **decelerated** to zero speed.

How much work is done on the 80.0 kg rescue by the force lifting him during each stage (W_1, W_2, W_3) ?

 $\omega_1 - mgd = \frac{1}{2}$ $\Rightarrow \omega_1 = \frac{1}{2}(80-$ Fid-mgd= W1-mgd= 15 10M 80.06 11 Constant F50 speed 2 :U2-mgd= =mgd= 7.84 kJ iii) Decelerated to 5.0 mls W3-mgd= AK mus, = 6.84 KJ

B) In the figure below, particle 1 of mass $m_1 = 0.40 \ kg$ slides rightward along an x axis on a frictionless floor with a speed of $v_{1i} = 2.0 \ m/s$. When it reaches x = 0, it undergoes a one-dimensional elastic collision with stationary particle 2 ($v_{2i} = 0$) of mass $m_2 = 0.30 \ kg$.

- i Calculate the particle velocities v_{1f} and v_{2f} after the elastic collision.
- ii After the collision, particle 2 reaches a wall at $x_w = 3 m$, it bounces from the wall during which 36% of its kinetic energy is lost (turned into thermal energy). At what position on the x axis does particle 2 collide again with particle 1?

i) Collision at x=0 Elestic collision -> KE is conser 36% KE reaches He 1.339M .375m+1.839m/sx1.2415 0.73M

2. A 10.0 kg block is released from point A in figure. The track is frictionless except for the portion between B and C, which has a length of 6.00 m. The block travels down the track, hits a spring of force constant k = 2250 N/m, and compresses the spring 0.25 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between B and C.

3. A soccer player kicks a soccer ball of mass 0.45 kg that is initially at rest. The foot of the player is in contact with the ball for 3.0×10^{-3} s, and the force of the kick is given by

$$F(t) = [(6.0 \times 10^6)t - (2.0 \times 10^9)t^2] N$$

for $0 \le t \le 3.0 \times 10^{-3}$ s, where t is in seconds. Find the magnitudes of

- i the impulse on the ball due to the kick,
- ii the average force on the ball from the player's foot during the period of contact,
- iii the maximum force on the ball from the player's foot during the period of contact,
- iv the ball's velocity immediately after it loses contact with the player's foot.

$$\begin{array}{c|c} m=0.45 \text{ kg} & (i) \ J=? \ \text{impulse} \quad \overline{f_{ay}} = \frac{J}{\Delta t} & (k) \ J=\int F(t) \ dt = \int (6x10^{6}t-2x10^{9}t^{2}) \ dt \\ \Rightarrow \ J=3x10^{6}t^{2} - \frac{2x10^{9}}{3}t^{3} \left[\frac{3x10^{3}}{3} + \frac{3}{6} + \frac{3}{2} + \frac{3}{6}t^{6} \right] \\ (antbact times) \quad z = 3x10^{6}t^{2} - \frac{2x10^{9}}{3}t^{3} \left[\frac{3x10^{3}}{3} + \frac{3}{6} + \frac{3}{2} + \frac{3}{6}t^{6} \right] \\ = 3x10^{6}(27x10^{3}) \left[\frac{1}{2} - \frac{9}{4} + \frac{3}{3} + \frac{9}{3}t^{3} + \frac{3}{6}t^{3} \right] \\ = 3x10^{6}(27x10^{3}) \left[\frac{1}{2} - \frac{9}{4} + \frac{3}{3} + \frac{3}{3}t^{3} + \frac{3}{6}t^{6} \right] \\ = 3x10^{6}(27x10^{3}) \left[\frac{1}{2} - \frac{9}{4} + \frac{3}{3} + \frac{9}{3}t^{3} + \frac{3}{2} + \frac{3}{2}t^{3} + \frac{3}{6}t^{3} \right] \\ = 3x10^{6}(27x10^{3}) \left[\frac{1}{2} - \frac{9}{4} + \frac{3}{3} + \frac{3}{3}t^{3} + \frac{3}{6}t^{3} + \frac{3}{2} + \frac{3}{6}t^{3} \right] \\ = 3x10^{6}(27x10^{3}) \left[\frac{1}{2} - \frac{9}{4} + \frac{3}{3} + \frac{3}{3}t^{3} + \frac{3}{6}t^{3} + \frac{3}{2}t^{3} + \frac{3}{2}t^{3} \right] \\ = 3x10^{6}(27x10^{3})^{2} \left[\frac{1}{2} - \frac{9}{4} + \frac{3}{3} + \frac{3}{3}t^{3} + \frac{3}{6}t^{3} + \frac{3}{2}t^{3} + \frac{3}{6}t^{3} \right] \\ = 3x10^{6}(27x10^{3})^{2} \left[\frac{1}{2} - \frac{9}{4} + \frac{3}{3} + \frac{3}{3}t^{3} + \frac{3}{6}t^{3} + \frac{3}{2}t^{3} + \frac{3}{6}t^{3} + \frac{3}{2}t^{3} + \frac{3}{2}t$$

- 4. The angular position of a point on a rotating wheel is given by $\theta(t) = 2.0 + 4.0t^2 + 2.0t^3$, where θ is in radians and t is in seconds. At t = 0,
 - i what is the point's angular position?
 - ii what is its angular velocity?
 - iii what is its angular velocity at t = 4.0 s?
 - iv Calculate its angular acceleration at t = 2.0 s.
 - v Is its angular acceleration constant? Why?

 $G(t) = 2t^3 + 4t^2 + 2$ i) at t=0, 0(\$)=2 rad 2 ii) $w(t) = \frac{d\theta(t)}{dt} = 6t^2 + 8t$, at t = 0, $w(\phi) = \phi(\phi)$ ui) t=4 ~ w(t=4)=6.42+8.4=128 rad/s (3) iv) $\mathcal{L}(t) = \frac{d\omega(t)}{dt} = 12t+8$, at t=2, $\mathcal{L}(t=2) = 32$ rad/s² \mathcal{V} at \mathcal{A} has time dependency \mathcal{D} NOT constant \mathcal{A}

5. A solid ball of radius $R = 0.2 \ m$ and mass $M = 3 \ kg$ is placed at the top of a ramp of height $h = 1.2 \ m$ and $\theta = 37^{\circ}$. (Hint: $I = \frac{2}{5}mR^2$)

- i If the ramp surface is frictionless, calculate the velocity of the ball's center of mass (v_{com}) and its angular velocity (ω) at the bottom of the ramp.
- ii Calculate the minimum value of the coefficient of static friction (μ_s) that would cause smooth rolling (no slipping) of the ball down the ramp. Calculate v_{com} and ω at the bottom of the ramp for this case.

frictionless ~ no rolling 1,21