

İzmir Kâtip Çelebi University Department of Engineering Sciences Phy102 Physics II Final Examination January 09, 2018 14:30 – 16:30 Good Luck!

NAME-SURNAME:

SIGNATURE:

ID:

DEPARTMENT:

DURATION: 120 minutes

 \diamond Answer all the questions.

 \diamond Write the solutions explicitly and clearly.

Use the physical terminology.

 \diamond You are allowed to use Formulae Sheet.

 \diamond Calculator is allowed.

 \diamond You are not allowed to use any other

electronic equipment in the exam.

 \diamond I declare hereby that I fulfilled the requirements for the attendance according to the University

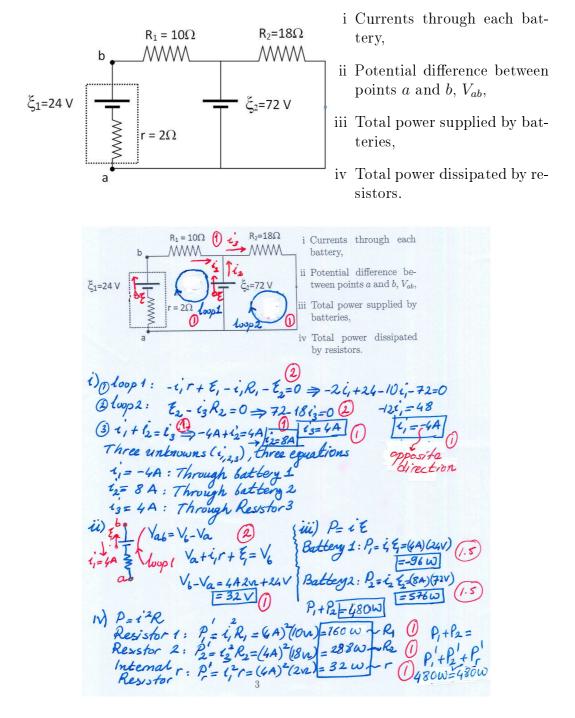
regulations and I accept that my examination will not be valid otherwise.

Question	Grade	Out of
1A		15
1B		15
2		20
3		20
4		20
5		20
TOTAL		110

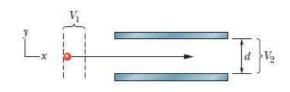
This page is intentionally left blank. Use the space if needed.

- 1. A) A parallel-plate air-filled capacitor has a capacitance of 50 pF.
 - i If each of its plates has an area of 0.35 m^2 , what is the separation?
 - ii If the region between the plates is now filled with material having k=5.6, what is the capacitance?

 $\vec{i} = \underbrace{\epsilon_{0}}_{d} \frac{A}{d} \sim 50 \times 10^{-12} = 8.85 \times 10^{-12} \frac{C^{2}}{Nm^{2}} \frac{0.35 m^{2}}{d}$ $\rightarrow d = \underbrace{(8.85 \times 10^{-12} c^{2}/Nm^{2})(0.35m^{2})}_{50 \times 10^{-12} F} = \underbrace{0.062 m}_{0}$ $\vec{i} = \underbrace{\kappa_{0}}_{d} = \underbrace{(5.6)(50 \times 10^{-12} F)}_{d} = \underbrace{2.80 \ pF}_{0}$

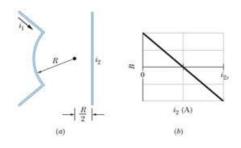

- B) In Figure given below, the magnetic flux through the loop increases according to the relation $\Phi_B = 6.0t^2 + 7.0t$, where Φ_B is in miliwebers and t is in seconds.
- i What is the magnitude of the emf (ε) induced in the loop when $t = 2.0 \ s$?
- ii Is the direction of the current through R to the right or left?

Increasing magnetic flux Finduced emf in the loop $\begin{array}{c} \vec{t} \end{pmatrix} | \vec{t} | = \left| \frac{d \, \vec{\Phi}_B}{dt} \right| \Rightarrow \vec{t} | = \frac{d}{dt} \left(6.0t^2 + 7.0t \right) | = 12t + 7 | \\ \hline 3 & dt \\ \hline \end{array} \\ \vec{t} = 2s \quad (1) \quad t = 2s \quad (2) \quad t = 2s \quad (3) \quad$ $\overline{\xi} = 3/mV$ ii) Increasing flum () induced emf should create a magnetic flum to oppose (to To have an inword (induced) B, we externe should have a clockwise current at the loop. > Left through R


2. The magnitude J of the current density in a certain lab wire with a circular cross section of radius R=5.00 mm is given by $J = (2.00 \times 10^7)r^2$, with J in amperes per square meter and radial distance r in meters. What is the current through the outer section bounded by r=0.800R and r=R?

R= 5x10 m i= (J.dA = (2x10+27)rdr $J(r) = 2 \times 10^{72} A_{m^2}$ i = ? from r = 0.8R0.80 2 1 r3dr= 471×10 $= 4\pi x 10^{7}$ $\frac{3}{27} = \frac{10.3R}{7} (R^{4} - (0.3R)^{4}) = \pi x / 0x 0, 59 R^{4}$ = 0.0116 A = 11.6×10

3. Consider circuit as shown in figure which consists of two batteries. One of the following batteries has an internal resistance r, while the other battery is an ideal battery. Calculate;


4. In Figure, an electron accelerated from rest through potential difference $V_1 = 1.00 \ kV$ enters the gap between two parallel plates having separation $d = 20.0 \ mm$ and potential difference $V_2 = 100 \ V$. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates.

In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap?

Straight line $\Rightarrow F_E = F_B \Rightarrow qE = q \notin BSin 90^{\circ}$ +++++++ $F_E = Since e \Rightarrow F_E \uparrow^{\circ} & UB$ $F_B = F_E = \frac{5 \times 10^3 V/m}{1.8 \times 10^3 M/s} = \frac{2.7 \times 10^{-4} T}{3}$ $F_E = \frac{5 \times 10^3 V/m}{1.8 \times 10^3 M/s} = \frac{2.7 \times 10^{-4} T}{3}$ $F_E = \frac{5 \times 10^3 V/m}{1.8 \times 10^3 M/s} = \frac{2.7 \times 10^{-4} T}{3}$ $F_E = \frac{5 \times 10^3 V/m}{1.8 \times 10^3 M/s} = \frac{2.7 \times 10^{-4} T}{3}$ $F_E = \frac{5 \times 10^3 V/m}{1.8 \times 10^3 M/s} = \frac{2.7 \times 10^{-4} T}{3}$

5. Figure(a) shows two wires, each carrying a current. Wire 1 consists of a circular arc of radius R and two radial lengths; it carries current $i_1 = 3.0 A$ in the direction indicated. Wire 2 is long and straight; it carries a current i_2 that can be varied; and it is at distance R/2 from the center of the arc. The net magnetic field B due to the two currents is measured at the center of curvature of the arc.

Figure(b) is a plot of the component of B in the direction perpendicular to the figure as a function of current i_2 . The horizontal scale is set by $i_{2s} = 2.00 \ A$. What is the angle subtended by the arc?

1=3A, R net magnetic field at point P 12 : variable, R/2 Bp= Moli & - Moliz 277 R/2 circulor stray > Bp=0 4 rachans = 76.4 3 3 (100) 3.16 500