

İzmir Kâtip Çelebi University Department of Engineering Sciences Phy102 Physics II Midterm Examination November 06, 2018 16:30 – 18:30 Good Luck!

NAME-SURNAME:

SIGNATURE:

ID:

DEPARTMENT:

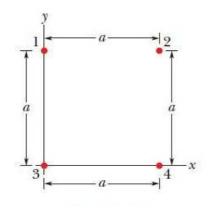
DURATION: 120 minutes

 \diamond Answer all the questions.

 \diamond Write the solutions explicitly and clearly.

Use the physical terminology.

 \diamond You are allowed to use Formulae Sheet.


 \diamond Calculator is allowed.

 \diamond You are not allowed to use any other electronic equipment in the exam.

Question	Grade	Out of
1A		15
1B		15
2		20
3		20
4		20
5		20
TOTAL		110

This page is intentionally left blank. Use the space if needed.

1. A) In Figure, four particles form a square.

The particles have charges $q_1 = -q_2 = 100 \ nC$ and $q_3 = -q_4 = 200 \ nC$, and distance $a = 5.0 \ cm$. What are the x and y components of the net electrostatic force on particle 3?

a F32 aVZ 200 nC -100 nC F32 aVZ 200 nC P34 -200 nC	$\vec{F}_{3,net} = \sum_{i=1}^{3} \vec{F}_{3i} = \vec{F}_{3i} + \vec{F}_{32} + \vec{F}_{34}$ \vec{F}_{324} \vec{F}_{34}	
RUSACA	F3, net, n = F31, n + F32, n + F34, n F32, n	
F34 -2007C	E E E E E E	
+3,	F3, net, n = F32 Cos45 + F34 = k 19311921 Cos45+R13111	
	= 8.99 ×10° Nm² (200 ×10° C) 100×10 C VZ + 200×10 C)	
	$\frac{13, nok, y = 731, y + 732, y + 734, 9}{13, nok, y = 731, y + 732, y + 734, 9} + \frac{1931921}{1200545 + \frac{193194}{120}} + \frac{1931921}{120545 + \frac{193194}{120}} + \frac{1931921}{120545 + \frac{193194}{120}} + \frac{1931921}{1200500} + \frac{1931921}{1200500} + \frac{1931921}{1200500} + \frac{1931921}{1200500} + \frac{1931921}{1200500} + \frac{1931921}{12005000} + \frac{1931921}{120050000} + \frac{1931921}{1200500000} + \frac{1931921}{120050000000000000000000000000000000000$	
	$F_{3, NCt, y} = F_{32} Sin45 - F_{31} = k \frac{ q_3 q_2 }{a^2} Sin45 - k \frac{ q_3 q_1 }{a^2}$	
$F_{3,NC_{1}y} = [F_{32} Sin45 - F_{31} = k \frac{ T_{31} ^{2}}{a^{2}} Sim45 - k \frac{1}{a^{2}} = 8.99 \times 10^{3} Nn^{2}/c^{2} (200 \times 10^{9} c) \left(\frac{100 \times 10^{2} c}{2} \sqrt{2} - \frac{100 \times 10^{2}}{100 \times 10^{2}}\right) = -0.046 N$		
	=-0.046 N	

B) In Figure (a), particle 1 (of charge q_1) and particle 2 (of charge q_2) are fixed in place on an x-axis, 8.00 cm apart. Particle 3 (of charge $q_3 = +8.00 \times 10^{-19} C$) is to be placed on the line between particles 1 and 2 so that they produce a net electrostatic force $F_{3,net}$ on it.

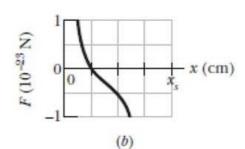


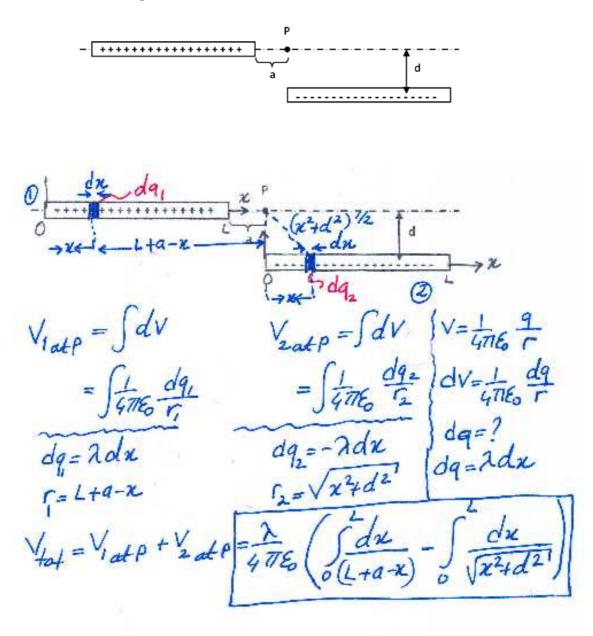
Figure (b) gives the x component of that force versus the coordinate x at which particle 3 is placed. The scale of the x axis is set by $x_s = 8.0 \ cm$.

- i What is the sign of charge q_1 ?
- ii What is the ratio q_2/q_1 ?

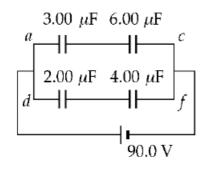
 $F_{3,net} \xrightarrow{2} (\mathcal{H} = 2) = 0 \xrightarrow{1} |F_{32}(\mathcal{H} = 2)| = |F_{32}(\mathcal{H} =$ $\frac{q_2}{(6x(0^{-2})^2)^2} = \frac{q_1}{(2x(0^{-2})^2)^2}$

- 2. In the figure below, a nonconducting rod of length $L = 8.15 \ cm$ has a charge $q = -4.23 \ fC$ uniformly distributed along its length.
 - i What is the linear charge density of the rod?
 - ii What are the magnitude and direction (relative to the +x-axis) of the electric field produced at point P, at distance $a = 12.0 \ cm$ from the rod?
 - iii What is the electric field magnitude produced at distance $a = 50.0 \ cm$ by the rod?
 - iv What is the electric field magnitude produced at distance $a = 50.0 \ cm$ by <u>a particle of charge</u> $q = -4.23 \ fC$ that replaces the rod?

3. An infinitely long cylindrical insulating shell of inner radius a and outer radius b has a uniform volume charge density ρ . A line of uniform linear charge density λ , is placed along the axis of the shell. Determine the electric field in the following regions:


i r < aii a < r < biii r > b

i)
$$r \prec a$$


$$\int \vec{E} \cdot d\vec{A} = \underbrace{\operatorname{Qenc}}_{E_0}$$

$$i = \underbrace{\operatorname{Qenc}}_{E_$$

4. Two very thin non-conducting rods are placed together as shown. Both rods have lengths of L and they carry uniform charges of +q and -q over their lengths. Find the potential at point P at a distance a and d from the positively and negatively charged rods as shown. Don't perform integration.

5. For the system of capacitors shown in Figure,

find

- i the equivalent capacitance of the system,
- ii the potential across each capacitor,
- iii the charge on each capacitor.

 $\begin{array}{c} Cegv = ? \quad \frac{3}{3} \prod \frac{6}{4} \prod \frac{1}{\sqrt{c_{ac}}} = \frac{1}{3\mu F} + \frac{1}{6\mu F} = C_{ac} = 2\mu F \\ = 2\prod \frac{4}{11} \prod \frac{1}{\sqrt{c_{ac}}} = \frac{1}{3\mu F} + \frac{1}{6\mu F} = C_{ac} = 2\mu F \\ = 2\mu F + \frac{1}{2\mu F} = C_{ac} = 1.33\mu F \\ = 2\mu F + \frac{1}{4\mu F} = C_{ac} = 1.33\mu F \\ = 2\mu F + \frac{1}{4\mu F} = C_{ac} = 1.33\mu F \\ = 2\mu F + \frac{1}{4\mu F} = C_{ac} = 299.7\mu C \\ = 299.7\mu C \\ = 1007 \qquad P_{V} \sim Q = C_{ac} = 2\mu F + \frac{1}{4\mu F} = 299.7\mu C \\ = 1007 \qquad P_{V} \sim Q = C_{ac} = 2\mu F + \frac{1}{4\mu F} = 299.7\mu C \\ = 1007 \qquad P_{V} \sim Q = C_{ac} = 2\mu F + \frac{1}{4\mu F} = 2907 = 299.7\mu C \\ = 1007 \qquad P_{V} \sim Q = C_{ac} = 2\mu F + \frac{1}{4\mu F} = 2907 = 299.7\mu C \\ = 1007 \qquad P_{V} \sim Q = C_{ac} = 2\mu F + \frac{1}{4\mu F} = 2907 = 299.7\mu C \\ = 1007 \qquad P_{V} \sim Q = C_{ac} = 2\mu F + \frac{1}{4\mu F} = 2907 = 299.7\mu C \\ = 1007 \qquad P_{V} \sim Q = C_{ac} = 2\mu F + \frac{1}{4\mu F} = 2907 = 299.7\mu C \\ = 1007 \qquad P_{V} \sim Q = C_{ac} = 2\mu F + \frac{1}{4\mu F} = 2907 = 299.7\mu C \\ = 1007 \qquad P_{V} \sim Q = C_{ac} = 2\mu F + \frac{1}{4\mu F} = 2907 = 299.7\mu C \\ = 1007 \qquad P_{V} \sim Q = C_{ac} = 2\mu F + \frac{1}{4\mu F} = 2907 = 299.7\mu C \\ = 1007 \qquad P_{V} \sim Q = C_{ac} = 2\mu F + \frac{1}{4\mu F} = 2907 = 299.7\mu C \\ = 1007 \qquad P_{V} \sim Q = C_{ac} = 2\mu F + \frac{1}{4\mu F} = 2907 = 299.7\mu C \\ = 1007 \qquad P_{V} \sim Q = C_{ac} = 2\mu F + \frac{1}{4\mu F} = 2907 = 299.7\mu C \\ = 1007 \qquad P_{V} \sim Q = C_{ac} = 2\mu F + \frac{1}{4\mu F} = 2907 = 299.7\mu C \\ = 1007 \qquad P_{V} \sim Q = C_{ac} = 2\mu F + \frac{1}{4\mu F} = 2907 = 299.7\mu C \\ = 1007 \qquad P_{V} \sim Q = 2907 = 2907 = 299.7\mu C \\ = 1007 \qquad P_{V} \sim Q = 2907 = 2907 = 2907 = 299.7\mu C \\ = 1007 \qquad P_{V} \sim Q = 2007 = 2907 = 2$ 3,4F 180,4C 2,4F 19,7,4C